organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-Benzyl­idenebenzo[d]thia­zolo[3,2-a]imidazol-3(2H)-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 24 July 2012; accepted 8 August 2012; online 15 August 2012)

The mol­ecule of the title compound, C16H10N2OS, is approximately planar, the dihedral angle between the 1,3-benzothia­zolo[3,2-a]imidazol-3(2H)-one and the benzyl­idene moieties being 4.10 (8)°. A weak intra­molecular C—H⋯S inter­action generates an S(6) ring. No inter­molecular hydrogen bonds are observed in the crystal structure.

Related literature

For background to and the biological activity of thia­zolo[3,2-a]benzimidazoles, see: Al-Rashood & Abdel-Aziz (2010[Al-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775-3815.]); Chimirri et al. (1988[Chimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975-2003.]), For a related structure, references to our previous work in this area and references to further synthetic details, see: Fun et al. (2012[Fun, H.-K., Chantrapromma, S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1393-o1394.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10N2OS

  • Mr = 278.32

  • Orthorhombic, P b c a

  • a = 12.1721 (5) Å

  • b = 7.7697 (3) Å

  • c = 27.2200 (8) Å

  • V = 2574.29 (16) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.20 mm−1

  • T = 296 K

  • 0.77 × 0.65 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.282, Tmax = 0.917

  • 8750 measured reflections

  • 2270 independent reflections

  • 1912 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.03

  • 2270 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯S1 0.93 2.56 3.262 (3) 132

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiazolo[3,2-a]benzimidazoles show a variety of interesting biological activity such as antibacterial, antifungal, anti-inflammatory, antiulcer, antiviral, anthelmintic and anticancer activity (Al-Rashood & Abdel-Aziz, 2010; Chimirri et al., 1988). As part on our ongoing studies in this area (Fun et al., 2012), we now describe the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzo[d]thiazolo[3,2-a]imidazol- 3(2H)-one moiety is roughly planar with an r.m.s. deviation 0.062 Å for the thirteen non H-atoms (C1–C9/N1/N2/O1/S1) and the benzilidene moiety is also nearly planar with an r.m.s. deviation 0.005Å for the seven non H-atoms (C10–C16). The dihedral between the two mean planes is 4.10 (8)°. An intramolecular C12—H12A···S1 weak interaction (Fig. 1 and Table 1) generates an S(6) ring, which helps to establish the planarity of the molecule. The bond distances are comparable to those in a related structure (Fun et al., 2012). There are no significant intermolecular hydrogen bond observed in the crystal structure of this compound.

Related literature top

For background to and the biological activity of thiazolo[3,2-a]benzimidazoles, see: Al-Rashood & Abdel-Aziz (2010); Chimirri et al. (1988), For a related structure, references to our previous work in this area and references to further synthetic details, see: Fun et al. (2012).

Experimental top

The one-pot synthesis of the title compound carried out by a cyclocondensation of 2-mercaptobenzimidazole, chloroacetic acid, benzaldehyde, acetic anhydride and glacial acetic acid in the presence of sodium acetate to afford the title compound (Fun et al., 2012). Yellow plates were obtained by slowly evaporating an EtOH/DMF solution at room temperature.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH atoms, and the Uiso(H) values were constrained to be 1.2Ueq of the carrier atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
(Z)-2-Benzylidenebenzo[d]thiazolo[3,2-a]imidazol- 3(2H)-one top
Crystal data top
C16H10N2OSF(000) = 1152
Mr = 278.32Dx = 1.436 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 1434 reflections
a = 12.1721 (5) Åθ = 3.3–69.8°
b = 7.7697 (3) ŵ = 2.20 mm1
c = 27.2200 (8) ÅT = 296 K
V = 2574.29 (16) Å3Plate, yellow
Z = 80.77 × 0.65 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2270 independent reflections
Radiation source: fine-focus sealed tube1912 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 67.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1314
Tmin = 0.282, Tmax = 0.917k = 86
8750 measured reflectionsl = 3228
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.7634P]
where P = (Fo2 + 2Fc2)/3
2270 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H10N2OSV = 2574.29 (16) Å3
Mr = 278.32Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 12.1721 (5) ŵ = 2.20 mm1
b = 7.7697 (3) ÅT = 296 K
c = 27.2200 (8) Å0.77 × 0.65 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2270 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1912 reflections with I > 2σ(I)
Tmin = 0.282, Tmax = 0.917Rint = 0.051
8750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
2270 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78126 (4)0.01576 (8)0.554734 (19)0.0518 (2)
O11.04329 (12)0.1399 (2)0.62205 (6)0.0608 (5)
N10.89265 (13)0.0307 (2)0.63592 (6)0.0441 (4)
N20.72939 (15)0.1641 (3)0.64488 (7)0.0556 (5)
C10.95869 (16)0.0762 (3)0.60802 (7)0.0450 (5)
C20.90610 (16)0.0989 (3)0.55886 (7)0.0440 (5)
C30.79414 (17)0.0814 (3)0.61580 (8)0.0470 (5)
C40.78928 (17)0.1704 (3)0.68946 (8)0.0488 (5)
C50.75984 (19)0.2391 (3)0.73449 (9)0.0580 (6)
H5A0.69240.29310.73890.070*
C60.8340 (2)0.2249 (3)0.77273 (8)0.0591 (6)
H6A0.81560.27000.80330.071*
C70.9350 (2)0.1456 (3)0.76682 (8)0.0569 (6)
H7A0.98260.13870.79350.068*
C80.96661 (18)0.0763 (3)0.72232 (8)0.0506 (5)
H8A1.03490.02480.71800.061*
C90.89105 (17)0.0880 (3)0.68454 (7)0.0439 (5)
C100.95483 (17)0.1957 (3)0.52492 (8)0.0472 (5)
H10A1.02130.24300.53500.057*
C110.92361 (16)0.2417 (3)0.47492 (8)0.0460 (5)
C120.82753 (19)0.1866 (4)0.45178 (9)0.0592 (6)
H12A0.77890.11470.46830.071*
C130.8045 (2)0.2387 (4)0.40425 (10)0.0714 (7)
H13A0.74010.20210.38920.086*
C140.8757 (2)0.3439 (4)0.37915 (9)0.0659 (7)
H14A0.85940.37840.34720.079*
C150.9707 (2)0.3979 (4)0.40123 (9)0.0655 (7)
H15A1.01970.46770.38420.079*
C160.99336 (19)0.3485 (3)0.44864 (8)0.0554 (6)
H16A1.05740.38790.46350.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0486 (4)0.0588 (4)0.0480 (3)0.0084 (2)0.0101 (2)0.0030 (2)
O10.0484 (8)0.0820 (12)0.0522 (9)0.0157 (8)0.0082 (7)0.0057 (8)
N10.0437 (9)0.0443 (10)0.0442 (9)0.0009 (7)0.0052 (7)0.0007 (7)
N20.0549 (10)0.0609 (13)0.0509 (10)0.0135 (9)0.0049 (8)0.0033 (9)
C10.0437 (11)0.0476 (12)0.0438 (11)0.0019 (9)0.0018 (9)0.0002 (9)
C20.0416 (10)0.0465 (13)0.0438 (11)0.0023 (9)0.0034 (8)0.0035 (9)
C30.0484 (11)0.0451 (12)0.0474 (11)0.0040 (9)0.0060 (9)0.0031 (9)
C40.0530 (12)0.0463 (13)0.0471 (11)0.0022 (9)0.0013 (9)0.0029 (9)
C50.0586 (13)0.0613 (15)0.0542 (13)0.0076 (11)0.0057 (11)0.0022 (11)
C60.0708 (14)0.0632 (16)0.0432 (12)0.0013 (12)0.0060 (10)0.0032 (11)
C70.0656 (14)0.0616 (15)0.0437 (12)0.0062 (11)0.0053 (10)0.0001 (11)
C80.0499 (11)0.0527 (14)0.0492 (11)0.0013 (10)0.0059 (9)0.0003 (10)
C90.0497 (11)0.0409 (12)0.0413 (10)0.0030 (9)0.0006 (8)0.0001 (9)
C100.0449 (10)0.0520 (13)0.0446 (11)0.0002 (9)0.0022 (9)0.0036 (10)
C110.0473 (10)0.0461 (12)0.0446 (11)0.0049 (9)0.0009 (9)0.0016 (9)
C120.0542 (12)0.0716 (17)0.0519 (12)0.0081 (11)0.0052 (10)0.0082 (12)
C130.0661 (15)0.090 (2)0.0578 (15)0.0089 (14)0.0158 (12)0.0099 (14)
C140.0783 (16)0.0715 (18)0.0478 (12)0.0034 (13)0.0079 (12)0.0104 (12)
C150.0772 (16)0.0656 (17)0.0538 (13)0.0069 (13)0.0063 (12)0.0083 (12)
C160.0544 (13)0.0606 (15)0.0511 (13)0.0049 (11)0.0014 (10)0.0002 (11)
Geometric parameters (Å, º) top
S1—C31.746 (2)C7—H7A0.9300
S1—C21.765 (2)C8—C91.383 (3)
O1—C11.205 (2)C8—H8A0.9300
N1—C31.376 (3)C10—C111.457 (3)
N1—C11.383 (3)C10—H10A0.9300
N1—C91.396 (3)C11—C161.386 (3)
N2—C31.289 (3)C11—C121.396 (3)
N2—C41.417 (3)C12—C131.384 (3)
C1—C21.494 (3)C12—H12A0.9300
C2—C101.331 (3)C13—C141.373 (4)
C4—C51.384 (3)C13—H13A0.9300
C4—C91.401 (3)C14—C151.369 (4)
C5—C61.382 (3)C14—H14A0.9300
C5—H5A0.9300C15—C161.374 (3)
C6—C71.384 (3)C15—H15A0.9300
C6—H6A0.9300C16—H16A0.9300
C7—C81.380 (3)
C3—S1—C290.54 (10)C7—C8—H8A121.9
C3—N1—C1117.37 (17)C9—C8—H8A121.9
C3—N1—C9105.91 (17)C8—C9—N1132.4 (2)
C1—N1—C9136.04 (18)C8—C9—C4123.2 (2)
C3—N2—C4103.21 (17)N1—C9—C4104.39 (17)
O1—C1—N1124.72 (19)C2—C10—C11132.1 (2)
O1—C1—C2127.0 (2)C2—C10—H10A113.9
N1—C1—C2108.28 (17)C11—C10—H10A113.9
C10—C2—C1119.84 (19)C16—C11—C12117.6 (2)
C10—C2—S1128.66 (16)C16—C11—C10117.96 (19)
C1—C2—S1111.49 (15)C12—C11—C10124.4 (2)
N2—C3—N1115.54 (19)C13—C12—C11120.1 (2)
N2—C3—S1132.50 (16)C13—C12—H12A119.9
N1—C3—S1111.95 (15)C11—C12—H12A119.9
C5—C4—C9119.3 (2)C14—C13—C12120.7 (2)
C5—C4—N2129.7 (2)C14—C13—H13A119.6
C9—C4—N2110.95 (18)C12—C13—H13A119.6
C6—C5—C4117.8 (2)C15—C14—C13119.8 (2)
C6—C5—H5A121.1C15—C14—H14A120.1
C4—C5—H5A121.1C13—C14—H14A120.1
C5—C6—C7121.9 (2)C14—C15—C16119.8 (2)
C5—C6—H6A119.1C14—C15—H15A120.1
C7—C6—H6A119.1C16—C15—H15A120.1
C8—C7—C6121.6 (2)C15—C16—C11121.9 (2)
C8—C7—H7A119.2C15—C16—H16A119.0
C6—C7—H7A119.2C11—C16—H16A119.0
C7—C8—C9116.2 (2)
C3—N1—C1—O1174.8 (2)C6—C7—C8—C91.2 (4)
C9—N1—C1—O15.8 (4)C7—C8—C9—N1178.4 (2)
C3—N1—C1—C24.5 (3)C7—C8—C9—C42.4 (3)
C9—N1—C1—C2173.5 (2)C3—N1—C9—C8179.5 (2)
O1—C1—C2—C101.4 (4)C1—N1—C9—C810.7 (4)
N1—C1—C2—C10179.30 (19)C3—N1—C9—C40.1 (2)
O1—C1—C2—S1179.0 (2)C1—N1—C9—C4169.9 (2)
N1—C1—C2—S10.3 (2)C5—C4—C9—C82.3 (3)
C3—S1—C2—C10177.7 (2)N2—C4—C9—C8179.4 (2)
C3—S1—C2—C12.71 (16)C5—C4—C9—N1178.3 (2)
C4—N2—C3—N10.2 (3)N2—C4—C9—N10.0 (2)
C4—N2—C3—S1178.6 (2)C1—C2—C10—C11179.5 (2)
C1—N1—C3—N2172.3 (2)S1—C2—C10—C111.0 (4)
C9—N1—C3—N20.2 (3)C2—C10—C11—C16179.5 (2)
C1—N1—C3—S16.8 (3)C2—C10—C11—C120.1 (4)
C9—N1—C3—S1178.84 (14)C16—C11—C12—C130.1 (4)
C2—S1—C3—N2173.7 (3)C10—C11—C12—C13179.3 (2)
C2—S1—C3—N15.20 (17)C11—C12—C13—C140.4 (5)
C3—N2—C4—C5178.0 (3)C12—C13—C14—C150.1 (5)
C3—N2—C4—C90.1 (3)C13—C14—C15—C161.0 (4)
C9—C4—C5—C60.9 (4)C14—C15—C16—C111.3 (4)
N2—C4—C5—C6178.8 (2)C12—C11—C16—C150.8 (4)
C4—C5—C6—C70.2 (4)C10—C11—C16—C15179.7 (2)
C5—C6—C7—C80.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···S10.932.563.262 (3)132

Experimental details

Crystal data
Chemical formulaC16H10N2OS
Mr278.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)12.1721 (5), 7.7697 (3), 27.2200 (8)
V3)2574.29 (16)
Z8
Radiation typeCu Kα
µ (mm1)2.20
Crystal size (mm)0.77 × 0.65 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.282, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
8750, 2270, 1912
Rint0.051
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.03
No. of reflections2270
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···S10.932.563.262 (3)132
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAl-Rashood, K. A. & Abdel-Aziz, H. A. (2010). Molecules, 15, 3775–3815.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimirri, A., Grasso, S., Romeo, G. & Zappala, M. (1988). Heterocycles, 27, 1975–2003.  CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1393–o1394.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds