organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Oxo-3-(piperidin-1-yl)propane­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 24 July 2012; accepted 8 August 2012; online 15 August 2012)

In the title compound, C8H12N2O, the piperidine ring exhibits a chair conformation and its least-squares plane (all atoms) makes a dihedral angle of 32.88 (12)° with the propane­nitrile unit (r.m.s. deviation = 0.001 Å). In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains along [001].

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For background to piperidine derivatives, see: Andrews et al. (2008[Andrews, D. M., Stokes, E. S. E., Carr, G. R., Matusiak, Z. S., Roberts, C. A., Waring, M. J., Brady, M. C., Chresta, C. M. & East, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2580-2854.]); Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-4997.]); Abdel-Aziz et al. (2009[Abdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 431-437.], 2011[Abdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2172.]). For the synthesis, see: Whitehead & Traverso (1955[Whitehead, C. W. & Traverso, J. J. (1955). J. Am. Chem. Soc. 20, 5867-5872.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N2O

  • Mr = 152.20

  • Monoclinic, P 21 /c

  • a = 9.7106 (2) Å

  • b = 8.9468 (2) Å

  • c = 9.8487 (2) Å

  • β = 101.425 (1)°

  • V = 838.69 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 296 K

  • 0.70 × 0.62 × 0.39 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.656, Tmax = 0.783

  • 5110 measured reflections

  • 1300 independent reflections

  • 1222 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.128

  • S = 1.12

  • 1300 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O1i 0.97 2.23 3.1922 (17) 170
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidines are an important class of heterocycles found in numerous natural products and medicinal structures (Andrews et al., 2008). In continuation of our interest in the chemistry of piperidines (Abdel-Aziz & Mekawey, 2009; Abdel-Aziz et al., 2009, 2011), we report here the crystal structure of the title compound.

In the title molecule, Fig. 1, the piperidin-1-yl ring (N1/C1-C5) exhibits a chair conformation, puckering parameters (Cremer & Pople, 1975) Q = 0.5455 (18) Å; Θ = 1.84 (19)° and ϕ = 113 (6)Å, and its least square plane makes a dihedral angle of 32.88 (12)° with the propanenitrile unit (N2/C6-C8, r.m.s. deviation = 0.001 Å).

In the crystal (Fig.2), molecules are linked via C7–H7A···O1 hydrogen bonds (Table 1), forming chains along [001].

Related literature top

For ring conformations, see: Cremer & Pople (1975). For background to piperidine derivatives, see: Andrews et al. (2008); Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2009, 2011). For the synthesis, see: Whitehead & Traverso (1955).

Experimental top

The title compound was prepared by the reaction of ethyl cyanoacetate with piperidine according to the reported method (Whitehead et al., 1955). Colourless blocks were obtained by slowly evaporating an ethanol solution at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.97 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-Oxo-3-(piperidin-1-yl)propanenitrile top
Crystal data top
C8H12N2OF(000) = 328
Mr = 152.20Dx = 1.205 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2826 reflections
a = 9.7106 (2) Åθ = 4.6–70.9°
b = 8.9468 (2) ŵ = 0.66 mm1
c = 9.8487 (2) ÅT = 296 K
β = 101.425 (1)°Block, colourless
V = 838.69 (3) Å30.70 × 0.62 × 0.39 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
1300 independent reflections
Radiation source: fine-focus sealed tube1222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 63.0°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.656, Tmax = 0.783k = 710
5110 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0759P)2 + 0.0948P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
1300 reflectionsΔρmax = 0.20 e Å3
101 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.82 (4)
Crystal data top
C8H12N2OV = 838.69 (3) Å3
Mr = 152.20Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.7106 (2) ŵ = 0.66 mm1
b = 8.9468 (2) ÅT = 296 K
c = 9.8487 (2) Å0.70 × 0.62 × 0.39 mm
β = 101.425 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1300 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1222 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.783Rint = 0.030
5110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.12Δρmax = 0.20 e Å3
1300 reflectionsΔρmin = 0.30 e Å3
101 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24331 (12)0.06319 (12)0.22467 (11)0.0473 (4)
N20.08305 (19)0.56540 (17)0.19855 (19)0.0850 (6)
O10.24717 (12)0.26280 (12)0.36568 (9)0.0599 (5)
C10.19317 (15)0.01701 (16)0.09524 (15)0.0514 (5)
H1A0.14520.05190.02570.062*
H1B0.12660.09340.10970.062*
C20.31440 (19)0.08861 (19)0.04488 (17)0.0637 (5)
H2A0.37520.01130.02050.076*
H2B0.27870.14680.03770.076*
C30.39850 (19)0.1892 (2)0.15449 (19)0.0683 (6)
H3A0.34140.27380.17050.082*
H3B0.48010.22690.12240.082*
C40.44535 (18)0.10440 (19)0.28805 (19)0.0673 (6)
H4A0.49080.17290.35940.081*
H4B0.51360.02930.27510.081*
C50.32379 (19)0.0296 (2)0.33513 (16)0.0635 (5)
H5A0.26270.10510.36210.076*
H5B0.35900.03220.41550.076*
C60.20841 (13)0.20271 (15)0.25256 (12)0.0425 (5)
C70.11643 (16)0.28844 (15)0.13497 (14)0.0491 (5)
H7A0.15880.28520.05370.059*
H7B0.02500.24100.11160.059*
C80.09924 (16)0.44374 (17)0.17336 (16)0.0558 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0568 (7)0.0441 (7)0.0387 (7)0.0043 (5)0.0038 (5)0.0000 (4)
N20.0915 (12)0.0557 (10)0.1066 (14)0.0150 (8)0.0165 (9)0.0146 (8)
O10.0771 (8)0.0609 (8)0.0407 (7)0.0035 (5)0.0090 (5)0.0114 (4)
C10.0560 (8)0.0436 (8)0.0495 (8)0.0026 (6)0.0017 (6)0.0064 (6)
C20.0770 (11)0.0552 (10)0.0575 (9)0.0141 (7)0.0097 (8)0.0108 (7)
C30.0657 (10)0.0527 (10)0.0837 (13)0.0142 (7)0.0077 (8)0.0032 (8)
C40.0628 (10)0.0564 (10)0.0736 (11)0.0085 (7)0.0083 (8)0.0097 (7)
C50.0808 (11)0.0605 (10)0.0448 (9)0.0074 (7)0.0018 (7)0.0103 (6)
C60.0476 (7)0.0455 (8)0.0364 (7)0.0053 (5)0.0133 (5)0.0027 (5)
C70.0615 (9)0.0436 (9)0.0428 (8)0.0051 (6)0.0115 (6)0.0030 (5)
C80.0597 (9)0.0496 (10)0.0600 (9)0.0057 (6)0.0167 (7)0.0037 (6)
Geometric parameters (Å, º) top
N1—C61.3361 (18)C3—H3A0.9700
N1—C11.4597 (16)C3—H3B0.9700
N1—C51.4650 (17)C4—C51.508 (3)
N2—C81.134 (2)C4—H4A0.9700
O1—C61.2271 (16)C4—H4B0.9700
C1—C21.508 (2)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—C71.5224 (18)
C2—C31.514 (2)C7—C81.458 (2)
C2—H2A0.9700C7—H7A0.9700
C2—H2B0.9700C7—H7B0.9700
C3—C41.508 (2)
C6—N1—C1125.76 (11)C5—C4—H4A109.2
C6—N1—C5119.75 (11)C3—C4—H4A109.2
C1—N1—C5113.99 (12)C5—C4—H4B109.2
N1—C1—C2110.43 (11)C3—C4—H4B109.2
N1—C1—H1A109.6H4A—C4—H4B107.9
C2—C1—H1A109.6N1—C5—C4110.98 (13)
N1—C1—H1B109.6N1—C5—H5A109.4
C2—C1—H1B109.6C4—C5—H5A109.4
H1A—C1—H1B108.1N1—C5—H5B109.4
C1—C2—C3111.34 (14)C4—C5—H5B109.4
C1—C2—H2A109.4H5A—C5—H5B108.0
C3—C2—H2A109.4O1—C6—N1123.45 (12)
C1—C2—H2B109.4O1—C6—C7119.88 (12)
C3—C2—H2B109.4N1—C6—C7116.67 (11)
H2A—C2—H2B108.0C8—C7—C6111.28 (11)
C4—C3—C2110.49 (13)C8—C7—H7A109.4
C4—C3—H3A109.6C6—C7—H7A109.4
C2—C3—H3A109.6C8—C7—H7B109.4
C4—C3—H3B109.6C6—C7—H7B109.4
C2—C3—H3B109.6H7A—C7—H7B108.0
H3A—C3—H3B108.1N2—C8—C7177.51 (18)
C5—C4—C3111.85 (14)
C6—N1—C1—C2131.80 (14)C3—C4—C5—N153.1 (2)
C5—N1—C1—C256.33 (17)C1—N1—C6—O1175.87 (13)
N1—C1—C2—C355.29 (18)C5—N1—C6—O14.4 (2)
C1—C2—C3—C454.4 (2)C1—N1—C6—C74.54 (19)
C2—C3—C4—C553.3 (2)C5—N1—C6—C7175.99 (12)
C6—N1—C5—C4132.36 (14)O1—C6—C7—C86.13 (18)
C1—N1—C5—C455.23 (18)N1—C6—C7—C8173.48 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.972.233.1922 (17)170
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H12N2O
Mr152.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.7106 (2), 8.9468 (2), 9.8487 (2)
β (°) 101.425 (1)
V3)838.69 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.70 × 0.62 × 0.39
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.656, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
5110, 1300, 1222
Rint0.030
(sin θ/λ)max1)0.578
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.128, 1.12
No. of reflections1300
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.972.233.1922 (17)170
Symmetry code: (i) x, y+1/2, z1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 431–437.  CAS Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–4997.  Google Scholar
First citationAbdel-Aziz, H. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAndrews, D. M., Stokes, E. S. E., Carr, G. R., Matusiak, Z. S., Roberts, C. A., Waring, M. J., Brady, M. C., Chresta, C. M. & East, S. J. (2008). Bioorg. Med. Chem. Lett. 18, 2580–2854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitehead, C. W. & Traverso, J. J. (1955). J. Am. Chem. Soc. 20, 5867–5872.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds