organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(5-Acetyl-4-methyl-3-phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­­idene)-3-(3-methyl-1-benzo­furan-2-yl)-3-oxo­propane­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 24 July 2012; accepted 8 August 2012; online 15 August 2012)

In the title compound, C24H18N2O3S, the benzofuran ring system (r.m.s. deviation = 0.010 Å) forms dihedral angles of 83.13 (17) and 8.92 (14)° with the benzene and thia­zole rings, respectively. The dihedral angle between the benzene and thia­zole rings is 84.51 (19)°. The mol­ecular structure features an intra­molecular C—H⋯O hydrogen bond, which closes an S(6) ring. There are no inter­molecular hydrogen bonds observed in this structure.

Related literature

For background to and the biological activity of benzofuran derivatives, see: Abdel-Aziz et al. (2009)[Abdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 431-437.]; Abdel-Wahab et al. (2009[Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601-605.]). For further synthetic details, see: Dawood et al. (2005[Dawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621-627.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Fun et al. (2012[Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682.]); Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1255-o1256.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N2O3S

  • Mr = 414.46

  • Monoclinic, P 21

  • a = 9.7836 (4) Å

  • b = 6.3682 (3) Å

  • c = 16.2330 (6) Å

  • β = 100.351 (3)°

  • V = 994.92 (7) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.69 mm−1

  • T = 296 K

  • 0.92 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.306, Tmax = 0.906

  • 7151 measured reflections

  • 2831 independent reflections

  • 2310 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.01

  • 2831 reflections

  • 275 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 831 Friedel pairs

  • Flack parameter: 0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O3 0.96 2.30 2.999 (5) 129

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL ; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our interest in the structures and properties of benzofuran derivatives (Abdel-Aziz et al., 2009; Abdel-Wahab et al., 2009), we publish here the crystal structure of the title compound.

In the title molecule, Fig. 1, the benzofuran-2-yl ring system (O1/C1-C8, r.m.s. deviation = 0.010 Å) forms dihedral angles of 83.13 (17) and 8.92 (14)° with the benzene (C18-C23) and thiazol (S1/N1/C11-C13) rings, respectively. The dihedral angle between benzene and thiazol rings is 84.51 (19)°. Bond lengths and angles are comparable to related structures (Fun et al., 2012; Abdel-Aziz et al., 2012). The crystal structure is features an intramolecular C14–H14A···O3 hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995).

There is no significant intermolecular hydrogen bond observed in this compound.

Related literature top

For background to and the biological activity of benzofuran derivatives, see: Abdel-Aziz et al. (2009); Abdel-Wahab et al. (2009). For further synthetic details, see: Dawood et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2012); Abdel-Aziz et al. (2012).

Experimental top

To a solution of 2-cyano-2-(3-methylbenzofuran-2-carbonyl)thioacetanilide (Dawood et al., 2005), (0.33 g, 1 mmol) in ethanol (25 mL) and 3-chloropentane-2,4-dione (0.135 g, 1 mmol), triethylamine (0.2 mL) was added. The mixture was refluxed for 2 h, and then allowed to cool. The formed solid was filtered off, washed with ethanol, and recrystallized from EtOH/DMF solution to afford yellow needles of the title compound.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
(Z)-2-(5-Acetyl-4-methyl-3-phenyl-2,3-dihydro-1,3-thiazol-2-ylidene)- 3-(3-methyl-1-benzofuran-2-yl)-3-oxopropanenitrile top
Crystal data top
C24H18N2O3SF(000) = 432
Mr = 414.46Dx = 1.383 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 1283 reflections
a = 9.7836 (4) Åθ = 2.8–65.0°
b = 6.3682 (3) ŵ = 1.69 mm1
c = 16.2330 (6) ÅT = 296 K
β = 100.351 (3)°Needle, yellow
V = 994.92 (7) Å30.92 × 0.09 × 0.06 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD
diffractometer
2831 independent reflections
Radiation source: fine-focus sealed tube2310 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 69.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.306, Tmax = 0.906k = 67
7151 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0714P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2831 reflectionsΔρmax = 0.25 e Å3
275 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 831 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C24H18N2O3SV = 994.92 (7) Å3
Mr = 414.46Z = 2
Monoclinic, P21Cu Kα radiation
a = 9.7836 (4) ŵ = 1.69 mm1
b = 6.3682 (3) ÅT = 296 K
c = 16.2330 (6) Å0.92 × 0.09 × 0.06 mm
β = 100.351 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2310 reflections with I > 2σ(I)
Tmin = 0.306, Tmax = 0.906Rint = 0.041
7151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.119Δρmax = 0.25 e Å3
S = 1.01Δρmin = 0.32 e Å3
2831 reflectionsAbsolute structure: Flack (1983), 831 Friedel pairs
275 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23468 (9)0.89038 (14)0.13562 (4)0.0454 (2)
N10.1798 (2)0.8805 (5)0.28286 (14)0.0386 (6)
N20.3568 (3)0.4048 (7)0.39528 (18)0.0667 (9)
O10.4965 (2)0.1891 (4)0.26849 (14)0.0482 (6)
O20.3871 (3)0.5930 (5)0.11922 (15)0.0618 (8)
O30.0119 (3)1.3800 (6)0.12668 (17)0.0857 (11)
C10.4888 (4)0.3163 (6)0.1977 (2)0.0452 (8)
C20.5710 (4)0.2416 (6)0.1451 (2)0.0454 (8)
C30.6340 (3)0.0518 (6)0.1842 (2)0.0462 (9)
C40.7255 (4)0.0986 (8)0.1629 (2)0.0600 (10)
H4A0.76020.08710.11340.072*
C50.7627 (4)0.2620 (7)0.2159 (3)0.0659 (12)
H5A0.82270.36410.20200.079*
C60.7126 (4)0.2797 (7)0.2907 (3)0.0615 (11)
H6A0.74000.39350.32580.074*
C70.6235 (3)0.1329 (7)0.3142 (2)0.0542 (9)
H7A0.59100.14280.36450.065*
C80.5854 (3)0.0286 (6)0.2590 (2)0.0446 (8)
C90.4003 (4)0.5035 (6)0.1875 (2)0.0453 (8)
C100.3304 (3)0.5853 (6)0.2518 (2)0.0398 (7)
C110.2520 (3)0.7699 (5)0.23210 (18)0.0366 (7)
C120.1271 (4)1.0842 (6)0.1664 (2)0.0440 (8)
C130.1085 (3)1.0533 (6)0.2467 (2)0.0421 (8)
C140.0248 (4)1.1810 (7)0.2967 (2)0.0532 (10)
H14A0.00851.30500.26590.080*
H14B0.08191.22040.34890.080*
H14C0.05271.09960.30750.080*
C150.0719 (4)1.2547 (6)0.1092 (2)0.0514 (9)
C160.1266 (4)1.2735 (7)0.0292 (2)0.0591 (11)
H16A0.10201.40830.00440.089*
H16B0.08711.16490.00870.089*
H16C0.22591.25930.04060.089*
C170.3444 (3)0.4875 (6)0.3318 (2)0.0446 (8)
C180.1851 (3)0.8306 (5)0.37089 (19)0.0377 (7)
C190.0806 (4)0.7114 (6)0.3935 (2)0.0488 (8)
H19A0.00690.66390.35350.059*
C200.0879 (5)0.6641 (7)0.4774 (3)0.0629 (11)
H20A0.01780.58530.49430.076*
C210.1971 (5)0.7323 (9)0.5355 (2)0.0687 (13)
H21A0.20220.69640.59150.082*
C220.2995 (4)0.8532 (8)0.5121 (2)0.0669 (13)
H22A0.37300.90030.55240.080*
C230.2939 (3)0.9058 (7)0.4283 (2)0.0496 (9)
H23A0.36210.98950.41180.059*
C240.5966 (5)0.3262 (8)0.0633 (2)0.0680 (12)
H24D0.61590.47390.06880.102*
H24C0.51570.30400.02110.102*
H24B0.67460.25520.04760.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0576 (5)0.0388 (5)0.0416 (4)0.0113 (4)0.0137 (3)0.0032 (4)
N10.0428 (14)0.0336 (15)0.0403 (12)0.0021 (14)0.0101 (10)0.0002 (14)
N20.088 (2)0.057 (2)0.0603 (18)0.032 (2)0.0280 (16)0.015 (2)
O10.0559 (15)0.0382 (15)0.0538 (13)0.0121 (11)0.0188 (11)0.0001 (12)
O20.0834 (19)0.0566 (19)0.0504 (14)0.0275 (16)0.0252 (13)0.0067 (14)
O30.103 (2)0.080 (2)0.0808 (19)0.051 (2)0.0368 (16)0.034 (2)
C10.051 (2)0.037 (2)0.0476 (19)0.0041 (15)0.0099 (15)0.0022 (15)
C20.051 (2)0.038 (2)0.0480 (18)0.0042 (16)0.0122 (15)0.0086 (15)
C30.042 (2)0.043 (2)0.0524 (19)0.0005 (15)0.0056 (15)0.0141 (17)
C40.056 (2)0.057 (3)0.067 (2)0.012 (2)0.0123 (17)0.021 (2)
C50.056 (2)0.050 (3)0.089 (3)0.021 (2)0.005 (2)0.018 (2)
C60.052 (2)0.041 (2)0.087 (3)0.0102 (18)0.002 (2)0.003 (2)
C70.048 (2)0.046 (2)0.069 (2)0.0011 (19)0.0105 (16)0.001 (2)
C80.0388 (19)0.035 (2)0.060 (2)0.0044 (15)0.0093 (15)0.0044 (16)
C90.056 (2)0.032 (2)0.0478 (18)0.0040 (17)0.0091 (15)0.0048 (16)
C100.0428 (19)0.0297 (18)0.0475 (17)0.0001 (14)0.0095 (14)0.0002 (15)
C110.0422 (18)0.0340 (19)0.0343 (15)0.0012 (14)0.0086 (13)0.0007 (13)
C120.049 (2)0.037 (2)0.0472 (18)0.0065 (16)0.0119 (15)0.0031 (16)
C130.042 (2)0.035 (2)0.0489 (17)0.0040 (14)0.0060 (14)0.0010 (15)
C140.060 (2)0.046 (2)0.055 (2)0.0197 (19)0.0148 (17)0.0006 (19)
C150.057 (2)0.040 (2)0.057 (2)0.0123 (17)0.0098 (17)0.0071 (17)
C160.072 (3)0.052 (3)0.052 (2)0.008 (2)0.0094 (18)0.0144 (19)
C170.047 (2)0.0349 (19)0.055 (2)0.0070 (16)0.0174 (16)0.0003 (17)
C180.0425 (18)0.0314 (19)0.0407 (16)0.0066 (13)0.0112 (13)0.0004 (13)
C190.049 (2)0.042 (2)0.058 (2)0.0021 (17)0.0161 (16)0.0010 (18)
C200.072 (3)0.050 (3)0.075 (3)0.008 (2)0.036 (2)0.020 (2)
C210.076 (3)0.084 (4)0.049 (2)0.020 (3)0.018 (2)0.020 (2)
C220.066 (3)0.082 (4)0.0483 (19)0.013 (3)0.0006 (17)0.009 (2)
C230.0476 (19)0.049 (2)0.0528 (18)0.0024 (19)0.0118 (15)0.008 (2)
C240.079 (3)0.070 (3)0.060 (2)0.011 (2)0.029 (2)0.002 (2)
Geometric parameters (Å, º) top
S1—C111.725 (3)C10—C171.425 (4)
S1—C121.752 (4)C12—C131.363 (4)
N1—C111.372 (4)C12—C151.467 (5)
N1—C131.377 (5)C13—C141.493 (4)
N1—C181.456 (4)C14—H14A0.9600
N2—C171.144 (4)C14—H14B0.9600
O1—C81.368 (4)C14—H14C0.9600
O1—C11.396 (4)C15—C161.496 (5)
O2—C91.233 (4)C16—H16A0.9600
O3—C151.213 (5)C16—H16B0.9600
C1—C21.361 (5)C16—H16C0.9600
C1—C91.465 (5)C18—C231.369 (5)
C2—C31.451 (5)C18—C191.375 (4)
C2—C241.494 (5)C19—C201.384 (5)
C3—C81.390 (5)C19—H19A0.9300
C3—C41.396 (5)C20—C211.363 (6)
C4—C51.358 (6)C20—H20A0.9300
C4—H4A0.9300C21—C221.370 (6)
C5—C61.394 (5)C21—H21A0.9300
C5—H5A0.9300C22—C231.393 (5)
C6—C71.378 (5)C22—H22A0.9300
C6—H6A0.9300C23—H23A0.9300
C7—C81.370 (5)C24—H24D0.9600
C7—H7A0.9300C24—H24C0.9600
C9—C101.444 (4)C24—H24B0.9600
C10—C111.409 (5)
C11—S1—C1291.20 (16)C12—C13—C14128.5 (3)
C11—N1—C13115.5 (3)N1—C13—C14119.3 (3)
C11—N1—C18123.1 (3)C13—C14—H14A109.5
C13—N1—C18121.3 (3)C13—C14—H14B109.5
C8—O1—C1106.4 (2)H14A—C14—H14B109.5
C2—C1—O1111.3 (3)C13—C14—H14C109.5
C2—C1—C9128.1 (3)H14A—C14—H14C109.5
O1—C1—C9120.6 (3)H14B—C14—H14C109.5
C1—C2—C3105.6 (3)O3—C15—C12121.8 (3)
C1—C2—C24130.1 (4)O3—C15—C16120.8 (4)
C3—C2—C24124.3 (3)C12—C15—C16117.4 (3)
C8—C3—C4118.7 (4)C15—C16—H16A109.5
C8—C3—C2106.6 (3)C15—C16—H16B109.5
C4—C3—C2134.7 (4)H16A—C16—H16B109.5
C5—C4—C3118.6 (4)C15—C16—H16C109.5
C5—C4—H4A120.7H16A—C16—H16C109.5
C3—C4—H4A120.7H16B—C16—H16C109.5
C4—C5—C6121.2 (4)N2—C17—C10178.4 (4)
C4—C5—H5A119.4C23—C18—C19122.4 (3)
C6—C5—H5A119.4C23—C18—N1118.6 (3)
C7—C6—C5121.6 (4)C19—C18—N1119.0 (3)
C7—C6—H6A119.2C18—C19—C20118.3 (4)
C5—C6—H6A119.2C18—C19—H19A120.9
C8—C7—C6116.2 (3)C20—C19—H19A120.9
C8—C7—H7A121.9C21—C20—C19120.5 (4)
C6—C7—H7A121.9C21—C20—H20A119.8
O1—C8—C7126.3 (3)C19—C20—H20A119.8
O1—C8—C3110.1 (3)C20—C21—C22120.5 (4)
C7—C8—C3123.7 (3)C20—C21—H21A119.7
O2—C9—C10119.8 (3)C22—C21—H21A119.7
O2—C9—C1116.2 (3)C21—C22—C23120.3 (4)
C10—C9—C1124.0 (3)C21—C22—H22A119.9
C11—C10—C17122.1 (3)C23—C22—H22A119.9
C11—C10—C9116.5 (3)C18—C23—C22118.1 (4)
C17—C10—C9121.4 (3)C18—C23—H23A121.0
N1—C11—C10127.6 (3)C22—C23—H23A121.0
N1—C11—S1109.9 (2)C2—C24—H24D109.5
C10—C11—S1122.6 (2)C2—C24—H24C109.5
C13—C12—C15127.9 (3)H24D—C24—H24C109.5
C13—C12—S1111.2 (3)C2—C24—H24B109.5
C15—C12—S1120.9 (3)H24D—C24—H24B109.5
C12—C13—N1112.3 (3)H24C—C24—H24B109.5
C8—O1—C1—C20.7 (4)C18—N1—C11—S1173.8 (2)
C8—O1—C1—C9179.4 (3)C17—C10—C11—N10.2 (5)
O1—C1—C2—C30.9 (4)C9—C10—C11—N1178.1 (3)
C9—C1—C2—C3179.2 (3)C17—C10—C11—S1179.8 (3)
O1—C1—C2—C24179.3 (4)C9—C10—C11—S11.9 (4)
C9—C1—C2—C240.6 (7)C12—S1—C11—N11.1 (3)
C1—C2—C3—C80.8 (4)C12—S1—C11—C10178.9 (3)
C24—C2—C3—C8179.4 (4)C11—S1—C12—C130.2 (3)
C1—C2—C3—C4179.0 (4)C11—S1—C12—C15178.9 (3)
C24—C2—C3—C40.8 (7)C15—C12—C13—N1177.8 (3)
C8—C3—C4—C50.3 (6)S1—C12—C13—N10.7 (4)
C2—C3—C4—C5179.4 (4)C15—C12—C13—C141.6 (7)
C3—C4—C5—C60.7 (6)S1—C12—C13—C14179.9 (3)
C4—C5—C6—C70.0 (6)C11—N1—C13—C121.6 (4)
C5—C6—C7—C81.1 (6)C18—N1—C13—C12174.0 (3)
C1—O1—C8—C7179.8 (3)C11—N1—C13—C14178.9 (3)
C1—O1—C8—C30.1 (4)C18—N1—C13—C145.4 (5)
C6—C7—C8—O1178.8 (3)C13—C12—C15—O37.9 (7)
C6—C7—C8—C31.6 (6)S1—C12—C15—O3173.7 (3)
C4—C3—C8—O1179.4 (3)C13—C12—C15—C16170.0 (4)
C2—C3—C8—O10.4 (4)S1—C12—C15—C168.4 (5)
C4—C3—C8—C70.9 (5)C11—N1—C18—C2382.6 (4)
C2—C3—C8—C7179.3 (3)C13—N1—C18—C2392.7 (4)
C2—C1—C9—O28.2 (6)C11—N1—C18—C1997.8 (4)
O1—C1—C9—O2172.0 (3)C13—N1—C18—C1986.9 (4)
C2—C1—C9—C10171.7 (4)C23—C18—C19—C201.0 (5)
O1—C1—C9—C108.2 (5)N1—C18—C19—C20179.5 (3)
O2—C9—C10—C111.3 (5)C18—C19—C20—C210.8 (6)
C1—C9—C10—C11178.5 (3)C19—C20—C21—C221.7 (7)
O2—C9—C10—C17179.3 (3)C20—C21—C22—C230.8 (7)
C1—C9—C10—C170.6 (5)C19—C18—C23—C221.9 (6)
C13—N1—C11—C10178.2 (3)N1—C18—C23—C22178.6 (4)
C18—N1—C11—C106.2 (5)C21—C22—C23—C181.0 (6)
C13—N1—C11—S11.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.962.302.999 (5)129

Experimental details

Crystal data
Chemical formulaC24H18N2O3S
Mr414.46
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)9.7836 (4), 6.3682 (3), 16.2330 (6)
β (°) 100.351 (3)
V3)994.92 (7)
Z2
Radiation typeCu Kα
µ (mm1)1.69
Crystal size (mm)0.92 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.306, 0.906
No. of measured, independent and
observed [I > 2σ(I)] reflections
7151, 2831, 2310
Rint0.041
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.01
No. of reflections2831
No. of parameters275
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.32
Absolute structureFlack (1983), 831 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O30.962.302.999 (5)129
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and CKQ thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F., El-Sharief, M. A. M. Sh. & Abdulla, M. M. (2009). Monatsh. Chem. 140, 431–437.  CAS Google Scholar
First citationAbdel-Aziz, H. A., Ghabbour, H. A., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o1255–o1256.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawood, K. M., Farag, A. M. & Abdel-Aziz, H. A. (2005). Heteroat. Chem. 16, 621–627.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds