organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2675-o2676

2-Cyclo­pentyl­idenehydrazine­carboxamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India, and cBiotechnology Division, Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 July 2012; accepted 3 August 2012; online 11 August 2012)

The asymmetric unit of the title compound, C6H11N3O, consists of two independent mol­ecules in which the cyclo­pentane rings adopt envelope conformations with CH2 grouping as the flap and the semicarbazone groups are essentially planar, with maximums deviation of 0.0311 (12) and 0.0285 (12) Å. In the crystal, N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules to form sheets lying parallel to the ab plane.

Related literature

For background to the biological activity of semicarbazones, see: Dogan et al. (1999[Dogan, H. N., Duran, A. & Yemni, E. (1999). Drug Metab. Drug Interact. 15, 187-195.]); Pandeya & Dimmock (1993[Pandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659-666.]); Pandeya et al. (1998[Pandeya, S. N., Misra, V., Singh, P. N. & Rupainwar, D. C. (1998). Pharmacology, 37, 17-22.]); Yogeeswari et al. (2004[Yogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Il Farmaco, 59, 609-613.]); Sriram et al. (2004[Sriram, D., Yogeeswari, P. & Thirumurugan, R. S. (2004). Bioorg. Med. Chem. Lett. 14, 3923-3924.]); Fun et al. (2011[Fun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2885-o2886.]). For related structures, see: Fun et al. (2009a[Fun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591-o1592.],b[Fun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619-o1620.]). For further synthetic details, see: Furniss et al. (1978[Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H11N3O

  • Mr = 141.18

  • Monoclinic, P 21 /c

  • a = 8.9507 (1) Å

  • b = 10.7929 (2) Å

  • c = 15.0204 (2) Å

  • β = 95.126 (1)°

  • V = 1445.23 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.40 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.995

  • 14322 measured reflections

  • 4231 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.114

  • S = 1.00

  • 4231 reflections

  • 205 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1N2⋯O1B 0.875 (17) 2.048 (17) 2.9088 (14) 167.7 (17)
N3A—H1N3⋯N1Bi 0.858 (18) 2.614 (18) 3.3214 (16) 140.5 (16)
N3A—H2N3⋯O1Aii 0.926 (19) 1.949 (19) 2.8749 (16) 178.7 (15)
N2B—H2N2⋯O1A 0.919 (17) 2.065 (17) 2.9663 (14) 166.6 (16)
N3B—H3N3⋯O1Biii 0.889 (19) 1.980 (19) 2.8682 (16) 175.9 (18)
N3B—H4N3⋯N1Aiv 0.858 (17) 2.515 (17) 3.1771 (16) 134.7 (15)
C1A—H1AB⋯O1Bv 0.99 2.52 3.3923 (18) 146
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) -x, -y, -z; (iv) x-1, y, z; (v) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various semicarbazones, have been known to possess biological activities against many of the most common species of bacteria (Dogan et al., 1999). Semicarbazones are of much interest due to their wide spectrum of antibacterial activities (Pandeya & Dimmock, 1993). Recently some workers reviewed the bioactivity of semicarbazones and they have exhibited anticonvulsant (Pandeya et al., 1998; Yogeeswari et al., 2004) and antitubercular (Sriram et al., 2004) properties. Our previous report highlights the synthesis and crystal structures of the semicarbozones (Fun et al., 2011). In continuation of our studies in this area, we now report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, consists of two crystallographically independent molecules. The cyclopentane (C1–C5) rings adopt an envelope conformation. The semicarbazone groups (O1/N1–N3/C6) are essentially planar with maximum deviation of 0.0311 (12) Å at atom N2A and 0.0285 (12) Å at atom N2B. Bond lengths and angles are comparable with the related structures (Fun et al. 2009a,b).

In the crystal, Fig. 2, N2A—H1N2···O1B, N3A—H1N3···N1B, N3A—H2N3···O1A, N2B—H2N2···O1A, N3B—H3N3···O1B, N3B—H4N3···N1A and C1A—H1AB···O1B hydrogen bonds (Table 1), link the molecules to form planes parallel to the ab plane.

Related literature top

For background to the biological activity of semicarbazones, see: Dogan et al. (1999); Pandeya & Dimmock (1993); Pandeya et al. (1998); Yogeeswari et al. (2004); Sriram et al. (2004); Fun et al. (2011). For related structures, see: Fun et al. (2009a,b). For further synthetic details, see: Furniss et al. (1978). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Semicarbazide hydrochloride (0.66 g, 0.0059 mol) and freshly recrystallized sodium acetate (0.58 g, 0.007 mol) were dissolved in water (10 ml) following a literature procedure (Furniss et al., 1978). The reaction mixture was stirred at room temperature for 10 minutes. To this, cyclopentanone (0.5 g, 0.0059 mol) was added and shaken well. A little alcohol was added to dissolve the turbidity. It was shaken for 10 more minutes and allowed to stand. The semicarbazone crystallized on standing for 6 h. The separated crystals were filtered, washed with cold water and recrystallized from ethanol as colourless plates. M.p. 495–498 K.

Refinement top

N– bound H atoms were located from the difference Fourier map and were refined freely [N–H = 0.858 (18) to 0.926 (19) Å]. The remaining H atoms were located geometrically and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.99 Å]. In the final refinement, one outliner was omitted, 6 11 8.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-Cyclopentylidenehydrazinecarboxamide top
Crystal data top
C6H11N3OF(000) = 608
Mr = 141.18Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3109 reflections
a = 8.9507 (1) Åθ = 2.7–29.3°
b = 10.7929 (2) ŵ = 0.09 mm1
c = 15.0204 (2) ÅT = 100 K
β = 95.126 (1)°Plate, colourless
V = 1445.23 (4) Å30.40 × 0.20 × 0.05 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD
diffractometer
4231 independent reflections
Radiation source: fine-focus sealed tube3120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 30.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.964, Tmax = 0.995k = 1215
14322 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.6439P]
where P = (Fo2 + 2Fc2)/3
4231 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C6H11N3OV = 1445.23 (4) Å3
Mr = 141.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.9507 (1) ŵ = 0.09 mm1
b = 10.7929 (2) ÅT = 100 K
c = 15.0204 (2) Å0.40 × 0.20 × 0.05 mm
β = 95.126 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
4231 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3120 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.995Rint = 0.040
14322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
4231 reflectionsΔρmin = 0.30 e Å3
205 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1B0.14864 (10)0.11961 (9)0.00969 (7)0.0163 (2)
N1B0.03324 (12)0.35060 (10)0.12404 (8)0.0142 (2)
N2B0.07174 (12)0.29357 (11)0.07505 (8)0.0148 (2)
N3B0.07584 (13)0.11717 (12)0.06934 (9)0.0180 (3)
C1B0.11403 (15)0.53548 (13)0.19876 (10)0.0179 (3)
H1BA0.08920.51960.26330.021*
H1BB0.22000.51250.18240.021*
C2B0.08570 (15)0.67107 (13)0.17588 (10)0.0196 (3)
H2BA0.10790.72640.22560.024*
H2BB0.14790.69640.12110.024*
C3B0.08159 (15)0.67431 (13)0.16132 (10)0.0187 (3)
H3BA0.14360.68150.21900.022*
H3BB0.10430.74500.12270.022*
C4B0.11103 (14)0.55001 (12)0.11528 (9)0.0154 (3)
H4BA0.10360.55970.04950.018*
H4BB0.21170.51750.13570.018*
C5B0.01062 (14)0.46502 (12)0.14338 (9)0.0140 (3)
C6B0.05040 (14)0.17321 (12)0.04950 (9)0.0132 (3)
O1A0.35640 (10)0.37841 (9)0.00812 (7)0.0169 (2)
N1A0.57800 (12)0.13301 (11)0.09989 (8)0.0145 (2)
N2A0.45488 (12)0.19836 (11)0.06156 (8)0.0153 (3)
N3A0.60763 (13)0.36934 (12)0.04762 (9)0.0194 (3)
C1A0.67282 (15)0.05543 (13)0.17484 (10)0.0173 (3)
H1AA0.75220.00470.20720.021*
H1AB0.71840.10930.13130.021*
C2A0.58742 (15)0.13169 (14)0.23954 (10)0.0202 (3)
H2AA0.57180.08370.29410.024*
H2AB0.64170.20910.25690.024*
C3A0.43811 (16)0.15927 (14)0.18545 (10)0.0208 (3)
H3AA0.35910.17880.22540.025*
H3AB0.44820.22990.14440.025*
C4A0.40070 (15)0.03906 (13)0.13277 (10)0.0176 (3)
H4AA0.35510.05770.07180.021*
H4AB0.33070.01330.16370.021*
C5A0.55099 (14)0.02476 (12)0.12953 (9)0.0137 (3)
C6A0.47038 (14)0.31899 (12)0.03773 (9)0.0138 (3)
H1N20.3656 (19)0.1655 (16)0.0516 (12)0.028 (5)*
H1N30.682 (2)0.3267 (17)0.0710 (12)0.030 (5)*
H2N30.6182 (19)0.4510 (18)0.0303 (12)0.028 (5)*
H2N20.1582 (19)0.3309 (16)0.0600 (12)0.027 (5)*
H3N30.0968 (19)0.0420 (18)0.0474 (12)0.028 (5)*
H4N30.1441 (19)0.1587 (16)0.0927 (12)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1B0.0139 (4)0.0136 (5)0.0217 (5)0.0001 (3)0.0040 (4)0.0029 (4)
N1B0.0147 (5)0.0156 (6)0.0128 (5)0.0013 (4)0.0032 (4)0.0006 (4)
N2B0.0128 (5)0.0126 (6)0.0197 (6)0.0009 (4)0.0059 (4)0.0018 (5)
N3B0.0165 (5)0.0131 (6)0.0255 (7)0.0022 (5)0.0082 (5)0.0039 (5)
C1B0.0174 (6)0.0177 (7)0.0189 (7)0.0005 (5)0.0038 (5)0.0045 (6)
C2B0.0204 (6)0.0168 (7)0.0214 (7)0.0043 (5)0.0000 (5)0.0050 (6)
C3B0.0205 (6)0.0138 (7)0.0216 (7)0.0006 (5)0.0001 (6)0.0026 (6)
C4B0.0153 (6)0.0150 (6)0.0158 (7)0.0005 (5)0.0015 (5)0.0005 (5)
C5B0.0141 (6)0.0143 (6)0.0136 (6)0.0001 (5)0.0002 (5)0.0007 (5)
C6B0.0138 (6)0.0127 (6)0.0128 (6)0.0006 (5)0.0006 (5)0.0009 (5)
O1A0.0136 (4)0.0144 (5)0.0226 (5)0.0005 (4)0.0006 (4)0.0020 (4)
N1A0.0127 (5)0.0149 (6)0.0161 (6)0.0025 (4)0.0026 (4)0.0001 (5)
N2A0.0113 (5)0.0129 (6)0.0216 (6)0.0004 (4)0.0007 (4)0.0031 (5)
N3A0.0132 (5)0.0153 (6)0.0293 (7)0.0007 (4)0.0001 (5)0.0057 (5)
C1A0.0156 (6)0.0190 (7)0.0175 (7)0.0021 (5)0.0034 (5)0.0042 (6)
C2A0.0193 (7)0.0233 (8)0.0181 (7)0.0014 (6)0.0032 (5)0.0063 (6)
C3A0.0213 (7)0.0185 (7)0.0225 (7)0.0054 (5)0.0013 (6)0.0064 (6)
C4A0.0159 (6)0.0174 (7)0.0195 (7)0.0022 (5)0.0019 (5)0.0022 (6)
C5A0.0149 (6)0.0149 (7)0.0118 (6)0.0005 (5)0.0036 (5)0.0012 (5)
C6A0.0145 (6)0.0143 (7)0.0131 (6)0.0001 (5)0.0039 (5)0.0019 (5)
Geometric parameters (Å, º) top
O1B—C6B1.2488 (16)O1A—C6A1.2526 (15)
N1B—C5B1.2806 (17)N1A—C5A1.2811 (18)
N1B—N2B1.3882 (16)N1A—N2A1.3892 (14)
N2B—C6B1.3631 (17)N2A—C6A1.3605 (17)
N2B—H2N20.919 (17)N2A—H1N20.875 (17)
N3B—C6B1.3385 (17)N3A—C6A1.3394 (17)
N3B—H3N30.889 (19)N3A—H1N30.860 (18)
N3B—H4N30.858 (18)N3A—H2N30.926 (19)
C1B—C5B1.5049 (19)C1A—C5A1.5062 (17)
C1B—C2B1.530 (2)C1A—C2A1.529 (2)
C1B—H1BA0.9900C1A—H1AA0.9900
C1B—H1BB0.9900C1A—H1AB0.9900
C2B—C3B1.533 (2)C2A—C3A1.5300 (18)
C2B—H2BA0.9900C2A—H2AA0.9900
C2B—H2BB0.9900C2A—H2AB0.9900
C3B—C4B1.5427 (19)C3A—C4A1.541 (2)
C3B—H3BA0.9900C3A—H3AA0.9900
C3B—H3BB0.9900C3A—H3AB0.9900
C4B—C5B1.5124 (19)C4A—C5A1.5159 (18)
C4B—H4BA0.9900C4A—H4AA0.9900
C4B—H4BB0.9900C4A—H4AB0.9900
C5B—N1B—N2B116.56 (11)C5A—N1A—N2A116.09 (11)
C6B—N2B—N1B119.17 (11)C6A—N2A—N1A119.94 (11)
C6B—N2B—H2N2116.7 (11)C6A—N2A—H1N2117.2 (12)
N1B—N2B—H2N2124.1 (11)N1A—N2A—H1N2122.9 (12)
C6B—N3B—H3N3118.9 (12)C6A—N3A—H1N3119.9 (12)
C6B—N3B—H4N3120.1 (12)C6A—N3A—H2N3118.1 (10)
H3N3—N3B—H4N3119.6 (16)H1N3—N3A—H2N3121.9 (16)
C5B—C1B—C2B103.70 (12)C5A—C1A—C2A102.33 (11)
C5B—C1B—H1BA111.0C5A—C1A—H1AA111.3
C2B—C1B—H1BA111.0C2A—C1A—H1AA111.3
C5B—C1B—H1BB111.0C5A—C1A—H1AB111.3
C2B—C1B—H1BB111.0C2A—C1A—H1AB111.3
H1BA—C1B—H1BB109.0H1AA—C1A—H1AB109.2
C1B—C2B—C3B103.74 (11)C1A—C2A—C3A103.28 (11)
C1B—C2B—H2BA111.0C1A—C2A—H2AA111.1
C3B—C2B—H2BA111.0C3A—C2A—H2AA111.1
C1B—C2B—H2BB111.0C1A—C2A—H2AB111.1
C3B—C2B—H2BB111.0C3A—C2A—H2AB111.1
H2BA—C2B—H2BB109.0H2AA—C2A—H2AB109.1
C2B—C3B—C4B104.61 (11)C2A—C3A—C4A104.38 (11)
C2B—C3B—H3BA110.8C2A—C3A—H3AA110.9
C4B—C3B—H3BA110.8C4A—C3A—H3AA110.9
C2B—C3B—H3BB110.8C2A—C3A—H3AB110.9
C4B—C3B—H3BB110.8C4A—C3A—H3AB110.9
H3BA—C3B—H3BB108.9H3AA—C3A—H3AB108.9
C5B—C4B—C3B104.26 (11)C5A—C4A—C3A104.26 (10)
C5B—C4B—H4BA110.9C5A—C4A—H4AA110.9
C3B—C4B—H4BA110.9C3A—C4A—H4AA110.9
C5B—C4B—H4BB110.9C5A—C4A—H4AB110.9
C3B—C4B—H4BB110.9C3A—C4A—H4AB110.9
H4BA—C4B—H4BB108.9H4AA—C4A—H4AB108.9
N1B—C5B—C1B121.34 (12)N1A—C5A—C1A121.98 (11)
N1B—C5B—C4B128.67 (13)N1A—C5A—C4A128.40 (12)
C1B—C5B—C4B109.97 (11)C1A—C5A—C4A109.46 (11)
O1B—C6B—N3B122.81 (12)O1A—C6A—N3A122.79 (13)
O1B—C6B—N2B119.30 (12)O1A—C6A—N2A118.98 (11)
N3B—C6B—N2B117.89 (12)N3A—C6A—N2A118.24 (12)
C5B—N1B—N2B—C6B177.45 (11)C5A—N1A—N2A—C6A172.46 (13)
C5B—C1B—C2B—C3B34.21 (13)C5A—C1A—C2A—C3A38.89 (14)
C1B—C2B—C3B—C4B36.78 (14)C1A—C2A—C3A—C4A38.43 (15)
C2B—C3B—C4B—C5B24.62 (14)C2A—C3A—C4A—C5A22.39 (15)
N2B—N1B—C5B—C1B177.98 (11)N2A—N1A—C5A—C1A178.43 (12)
N2B—N1B—C5B—C4B4.09 (19)N2A—N1A—C5A—C4A3.6 (2)
C2B—C1B—C5B—N1B158.97 (12)C2A—C1A—C5A—N1A150.21 (13)
C2B—C1B—C5B—C4B19.31 (13)C2A—C1A—C5A—C4A25.50 (15)
C3B—C4B—C5B—N1B178.62 (13)C3A—C4A—C5A—N1A173.30 (14)
C3B—C4B—C5B—C1B3.26 (13)C3A—C4A—C5A—C1A2.06 (15)
N1B—N2B—C6B—O1B176.11 (11)N1A—N2A—C6A—O1A175.88 (12)
N1B—N2B—C6B—N3B3.25 (18)N1A—N2A—C6A—N3A3.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1N2···O1B0.875 (17)2.048 (17)2.9088 (14)167.7 (17)
N3A—H1N3···N1Bi0.858 (18)2.614 (18)3.3214 (16)140.5 (16)
N3A—H2N3···O1Aii0.926 (19)1.949 (19)2.8749 (16)178.7 (15)
N2B—H2N2···O1A0.919 (17)2.065 (17)2.9663 (14)166.6 (16)
N3B—H3N3···O1Biii0.889 (19)1.980 (19)2.8682 (16)175.9 (18)
N3B—H4N3···N1Aiv0.858 (17)2.515 (17)3.1771 (16)134.7 (15)
C1A—H1AB···O1Bv0.992.523.3923 (18)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H11N3O
Mr141.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9507 (1), 10.7929 (2), 15.0204 (2)
β (°) 95.126 (1)
V3)1445.23 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
14322, 4231, 3120
Rint0.040
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.114, 1.00
No. of reflections4231
No. of parameters205
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1N2···O1B0.875 (17)2.048 (17)2.9088 (14)167.7 (17)
N3A—H1N3···N1Bi0.858 (18)2.614 (18)3.3214 (16)140.5 (16)
N3A—H2N3···O1Aii0.926 (19)1.949 (19)2.8749 (16)178.7 (15)
N2B—H2N2···O1A0.919 (17)2.065 (17)2.9663 (14)166.6 (16)
N3B—H3N3···O1Biii0.889 (19)1.980 (19)2.8682 (16)175.9 (18)
N3B—H4N3···N1Aiv0.858 (17)2.515 (17)3.1771 (16)134.7 (15)
C1A—H1AB···O1Bv0.992.523.3923 (18)146
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x, y, z; (iv) x1, y, z; (v) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the post of Research Officer under the Research University Grant (1001/PFIZIK/811160). AMI is thankful to the Board of Research in Nuclear Sciences, Government of India for the Young Scientist award. AMI also thanks the Vision Group on Science & Technology, Government of Karnataka, India for the Best Research Paper award.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDogan, H. N., Duran, A. & Yemni, E. (1999). Drug Metab. Drug Interact. 15, 187–195.  CAS Google Scholar
First citationFun, H.-K., Chia, T. S., Malladi, S., Isloor, A. M. & Shivananda, K. N. (2011). Acta Cryst. E67, o2885–o2886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Goh, J. H., Padaki, M., Malladi, S. & Isloor, A. M. (2009a). Acta Cryst. E65, o1591–o1592.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Padaki, M., Malladi, S. & Isloor, A. M. (2009b). Acta Cryst. E65, o1619–o1620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel's Textbook of Practical Organic Chemistry, 4th ed., p. 1112. London: ELBS.  Google Scholar
First citationPandeya, S. N. & Dimmock, J. R. (1993). Pharmazie, 48, 659–666.  CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Misra, V., Singh, P. N. & Rupainwar, D. C. (1998). Pharmacology, 37, 17–22.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Thirumurugan, R. S. (2004). Bioorg. Med. Chem. Lett. 14, 3923–3924.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYogeeswari, P., Sriram, D., Pandeya, S. N. & Stables, J. P. (2004). Il Farmaco, 59, 609–613.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2675-o2676
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds