organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2655-o2656

1-[5-(4-Bromo­phen­yl)-3-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]butan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 July 2012; accepted 2 August 2012; online 8 August 2012)

In the title compound, C19H18BrFN2O, the benzene rings form dihedral angles of 5.38 (7) and 85.48 (7)° with the mean plane of the 4,5-dihydro-1H-pyrazole ring (r.m.s. deviation = 0.0849 Å), which approximates to an envelope conformation with the –CH2– group as the flap. The dihedral angle between the benzene rings is 82.86 (7)°. In the crystal, C—H⋯F and C—H⋯O hydrogen bonds link the mol­ecules to form inversion dimers and together these generate chains along [011]. The crystal packing also features C—H⋯π inter­actions.

Related literature

For background to pyrazoline derivatives, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487-493.]). For related structures, see: Fun, Quah et al. (2012[Fun, H.-K., Quah, C. K., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o975.]); Fun, Loh et al. (2012[Fun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2586.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BrFN2O

  • Mr = 389.26

  • Triclinic, [P \overline 1]

  • a = 6.7502 (3) Å

  • b = 10.1253 (5) Å

  • c = 13.7792 (8) Å

  • α = 105.354 (1)°

  • β = 98.976 (1)°

  • γ = 107.369 (1)°

  • V = 838.01 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.47 mm−1

  • T = 100 K

  • 0.28 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.546, Tmax = 0.823

  • 17838 measured reflections

  • 4816 independent reflections

  • 4458 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.066

  • S = 1.06

  • 4816 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C5 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯F1i 0.95 2.37 3.1873 (17) 144
C14—H14A⋯O1ii 0.95 2.57 3.1832 (16) 122
C5—H5ACg2iii 0.95 2.68 3.5453 (15) 152
C17—H17BCg1iv 0.99 2.70 3.5488 (14) 144
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+2; (iii) x+1, y, z; (iv) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010; Samshuddin et al., 2011), the title compound is prepared and its crystal structure is reported.

In the title compound, Fig. 1, the benzene rings (C1–C6 & C10–C15) form dihedral angles of 5.38 (7) and 85.48 (7)°, respectively, with the mean plane of 4,5-dihydro-1H-pyrazole ring (N1/N2/C7–C9, r.m.s. deviation = 0.0849 Å). The dihedral angle between the two benzene rings is 82.86 (7) °. Bond lengths and angles are comparable with those in related structures (Fun, Quah et al., 2012; Fun, Loh et al., 2012).

In the crystal packing as shown in Fig. 2, C11—H11A···F1 and C14—H14A···O1 hydrogen bonds (Table 1) link the molecules to form dimers, generating chains along the [011]. The crystal packing is further consolidated by C17—H17B···Cg1 and C5—H5A···Cg2 (Table 1) interactions, where Cg1 and Cg2 are the centroids of C1–C5 and C10–C15 benzene rings, respectively.

Related literature top

For background to pyrazoline derivatives, see: Fun et al. (2010); Samshuddin et al. (2011). For related structures, see: Fun, Quah et al. (2012); Fun, Loh et al. (2012). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and hydrazine hydrate (0.48 ml, 0.01 mol) in 30 ml butyric acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. Colourless plates were grown from acetone solution by slow evaporation method. M. p.: 383–385 K.

Refinement top

All the H atoms were located geometrically and were refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 to 0.99 Å]. A rotating group model was applied to the methyl group. In the final refinement, eighteen outliners were omitted, 3 - 3 7, 0 - 3 10, 4 0 3, 2 - 4 9, 2 0 2, 4 - 1 4, 1 0 0, -2 4 6, 2 5 1, -1 2 4, 1 0 5, -2 2 6, -2 5 4, 0 6 3, -1 - 1 8, 1 - 3 9, 15 2 and 1 2 1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-[5-(4-Bromophenyl)-3-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1- yl]butan-1-one top
Crystal data top
C19H18BrFN2OZ = 2
Mr = 389.26F(000) = 396
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7502 (3) ÅCell parameters from 9994 reflections
b = 10.1253 (5) Åθ = 3.1–33.0°
c = 13.7792 (8) ŵ = 2.47 mm1
α = 105.354 (1)°T = 100 K
β = 98.976 (1)°Plate, colourless
γ = 107.369 (1)°0.28 × 0.23 × 0.08 mm
V = 838.01 (7) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4816 independent reflections
Radiation source: fine-focus sealed tube4458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.546, Tmax = 0.823k = 1414
17838 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.3618P]
where P = (Fo2 + 2Fc2)/3
4816 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C19H18BrFN2Oγ = 107.369 (1)°
Mr = 389.26V = 838.01 (7) Å3
Triclinic, P1Z = 2
a = 6.7502 (3) ÅMo Kα radiation
b = 10.1253 (5) ŵ = 2.47 mm1
c = 13.7792 (8) ÅT = 100 K
α = 105.354 (1)°0.28 × 0.23 × 0.08 mm
β = 98.976 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4816 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4458 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.823Rint = 0.023
17838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
4816 reflectionsΔρmin = 0.63 e Å3
218 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29346 (2)1.105034 (15)0.629792 (11)0.02435 (5)
F11.22640 (16)0.30984 (10)0.49188 (7)0.02653 (19)
O10.44837 (15)0.73712 (10)0.95847 (7)0.01715 (18)
N10.69619 (17)0.56573 (11)0.78382 (8)0.01292 (18)
N20.65164 (17)0.67234 (11)0.85431 (8)0.01310 (19)
C10.8653 (2)0.39253 (14)0.64641 (10)0.0171 (2)
H1A0.73510.34380.66080.020*
C20.9522 (2)0.31297 (15)0.57824 (11)0.0201 (2)
H2A0.88340.21000.54570.024*
C31.1414 (2)0.38745 (16)0.55897 (10)0.0184 (2)
C41.2486 (2)0.53618 (15)0.60412 (10)0.0175 (2)
H4A1.37880.58360.58920.021*
C51.1603 (2)0.61528 (14)0.67260 (10)0.0150 (2)
H5A1.23100.71820.70490.018*
C60.96862 (19)0.54438 (13)0.69403 (9)0.0133 (2)
C70.87764 (19)0.62814 (13)0.76656 (9)0.0127 (2)
C80.98525 (19)0.78883 (13)0.83134 (10)0.0149 (2)
H8A1.03760.84930.78830.018*
H8B1.10650.80460.88910.018*
C90.80040 (19)0.82300 (13)0.87232 (9)0.0131 (2)
H9A0.85110.88010.94840.016*
C100.68978 (19)0.89988 (13)0.81387 (9)0.0129 (2)
C110.6768 (2)0.87756 (14)0.70818 (10)0.0165 (2)
H11A0.74820.81920.67350.020*
C120.5613 (2)0.93907 (14)0.65294 (10)0.0183 (2)
H12A0.55270.92290.58100.022*
C130.4586 (2)1.02469 (14)0.70504 (10)0.0167 (2)
C140.4748 (2)1.05360 (13)0.81074 (10)0.0158 (2)
H14A0.40841.11550.84580.019*
C150.59010 (19)0.99012 (13)0.86442 (9)0.0143 (2)
H15A0.60121.00850.93670.017*
C160.48284 (19)0.63837 (13)0.89729 (9)0.0128 (2)
C170.34922 (19)0.47749 (13)0.86741 (9)0.0137 (2)
H17A0.44230.42490.88770.016*
H17B0.29120.43630.79090.016*
C180.1640 (2)0.45162 (14)0.91894 (10)0.0157 (2)
H18A0.06740.50070.89650.019*
H18B0.22130.49590.99540.019*
C190.0363 (2)0.28890 (16)0.89136 (11)0.0226 (3)
H19A0.07780.27650.92790.034*
H19B0.13210.23960.91230.034*
H19C0.02740.24590.81610.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02830 (8)0.02231 (8)0.02494 (8)0.01276 (6)0.00379 (5)0.00926 (5)
F10.0359 (5)0.0316 (5)0.0200 (4)0.0222 (4)0.0148 (4)0.0051 (3)
O10.0176 (4)0.0163 (4)0.0177 (4)0.0058 (3)0.0095 (3)0.0033 (3)
N10.0128 (4)0.0133 (4)0.0136 (4)0.0056 (4)0.0056 (4)0.0037 (4)
N20.0127 (4)0.0109 (4)0.0156 (5)0.0035 (4)0.0068 (4)0.0030 (4)
C10.0156 (5)0.0162 (5)0.0185 (6)0.0053 (4)0.0053 (5)0.0042 (5)
C20.0235 (6)0.0180 (6)0.0174 (6)0.0097 (5)0.0041 (5)0.0018 (5)
C30.0242 (6)0.0247 (6)0.0122 (5)0.0163 (5)0.0071 (5)0.0054 (5)
C40.0169 (6)0.0244 (6)0.0167 (5)0.0108 (5)0.0085 (5)0.0092 (5)
C50.0142 (5)0.0174 (5)0.0153 (5)0.0070 (4)0.0058 (4)0.0058 (4)
C60.0128 (5)0.0162 (5)0.0123 (5)0.0069 (4)0.0041 (4)0.0047 (4)
C70.0110 (5)0.0134 (5)0.0137 (5)0.0047 (4)0.0036 (4)0.0040 (4)
C80.0110 (5)0.0142 (5)0.0187 (5)0.0032 (4)0.0066 (4)0.0037 (4)
C90.0117 (5)0.0120 (5)0.0147 (5)0.0026 (4)0.0059 (4)0.0032 (4)
C100.0126 (5)0.0115 (5)0.0134 (5)0.0027 (4)0.0057 (4)0.0027 (4)
C110.0190 (6)0.0170 (5)0.0154 (5)0.0077 (5)0.0096 (5)0.0041 (4)
C120.0224 (6)0.0186 (6)0.0151 (5)0.0072 (5)0.0083 (5)0.0054 (5)
C130.0168 (5)0.0142 (5)0.0194 (6)0.0050 (4)0.0054 (5)0.0063 (4)
C140.0151 (5)0.0131 (5)0.0193 (6)0.0046 (4)0.0078 (4)0.0036 (4)
C150.0145 (5)0.0132 (5)0.0142 (5)0.0034 (4)0.0072 (4)0.0026 (4)
C160.0113 (5)0.0154 (5)0.0124 (5)0.0046 (4)0.0041 (4)0.0052 (4)
C170.0123 (5)0.0140 (5)0.0146 (5)0.0035 (4)0.0048 (4)0.0048 (4)
C180.0127 (5)0.0191 (5)0.0165 (5)0.0039 (4)0.0063 (4)0.0080 (4)
C190.0180 (6)0.0216 (6)0.0240 (7)0.0006 (5)0.0067 (5)0.0087 (5)
Geometric parameters (Å, º) top
Br1—C131.8991 (13)C9—C101.5177 (17)
F1—C31.3606 (14)C9—H9A1.0000
O1—C161.2322 (15)C10—C151.3960 (16)
N1—C71.2901 (16)C10—C111.3978 (17)
N1—N21.3888 (13)C11—C121.3894 (19)
N2—C161.3608 (15)C11—H11A0.9500
N2—C91.4846 (15)C12—C131.3902 (17)
C1—C21.3891 (17)C12—H12A0.9500
C1—C61.4013 (17)C13—C141.3872 (18)
C1—H1A0.9500C14—C151.3918 (18)
C2—C31.381 (2)C14—H14A0.9500
C2—H2A0.9500C15—H15A0.9500
C3—C41.375 (2)C16—C171.5127 (17)
C4—C51.3957 (16)C17—C181.5219 (16)
C4—H4A0.9500C17—H17A0.9900
C5—C61.3975 (17)C17—H17B0.9900
C5—H5A0.9500C18—C191.5232 (19)
C6—C71.4660 (16)C18—H18A0.9900
C7—C81.5148 (17)C18—H18B0.9900
C8—C91.5394 (16)C19—H19A0.9800
C8—H8A0.9900C19—H19B0.9800
C8—H8B0.9900C19—H19C0.9800
C7—N1—N2107.76 (10)C15—C10—C9120.04 (11)
C16—N2—N1122.03 (10)C11—C10—C9121.35 (10)
C16—N2—C9125.22 (10)C12—C11—C10121.24 (11)
N1—N2—C9112.69 (9)C12—C11—H11A119.4
C2—C1—C6120.32 (12)C10—C11—H11A119.4
C2—C1—H1A119.8C11—C12—C13118.64 (12)
C6—C1—H1A119.8C11—C12—H12A120.7
C3—C2—C1118.28 (12)C13—C12—H12A120.7
C3—C2—H2A120.9C14—C13—C12121.63 (12)
C1—C2—H2A120.9C14—C13—Br1119.20 (9)
F1—C3—C4118.22 (12)C12—C13—Br1119.17 (10)
F1—C3—C2118.38 (12)C13—C14—C15118.73 (11)
C4—C3—C2123.40 (12)C13—C14—H14A120.6
C3—C4—C5117.96 (12)C15—C14—H14A120.6
C3—C4—H4A121.0C14—C15—C10121.14 (11)
C5—C4—H4A121.0C14—C15—H15A119.4
C4—C5—C6120.54 (12)C10—C15—H15A119.4
C4—C5—H5A119.7O1—C16—N2119.59 (11)
C6—C5—H5A119.7O1—C16—C17123.68 (11)
C5—C6—C1119.50 (11)N2—C16—C17116.72 (10)
C5—C6—C7120.20 (11)C16—C17—C18112.50 (10)
C1—C6—C7120.30 (11)C16—C17—H17A109.1
N1—C7—C6121.06 (11)C18—C17—H17A109.1
N1—C7—C8113.62 (10)C16—C17—H17B109.1
C6—C7—C8125.25 (10)C18—C17—H17B109.1
C7—C8—C9101.79 (9)H17A—C17—H17B107.8
C7—C8—H8A111.4C17—C18—C19111.82 (11)
C9—C8—H8A111.4C17—C18—H18A109.3
C7—C8—H8B111.4C19—C18—H18A109.3
C9—C8—H8B111.4C17—C18—H18B109.3
H8A—C8—H8B109.3C19—C18—H18B109.3
N2—C9—C10110.08 (10)H18A—C18—H18B107.9
N2—C9—C8100.37 (9)C18—C19—H19A109.5
C10—C9—C8114.80 (10)C18—C19—H19B109.5
N2—C9—H9A110.4H19A—C19—H19B109.5
C10—C9—H9A110.4C18—C19—H19C109.5
C8—C9—H9A110.4H19A—C19—H19C109.5
C15—C10—C11118.55 (11)H19B—C19—H19C109.5
C7—N1—N2—C16172.51 (11)C7—C8—C9—N217.81 (11)
C7—N1—N2—C910.01 (13)C7—C8—C9—C10100.16 (11)
C6—C1—C2—C30.1 (2)N2—C9—C10—C1594.86 (13)
C1—C2—C3—F1179.72 (12)C8—C9—C10—C15152.80 (11)
C1—C2—C3—C40.3 (2)N2—C9—C10—C1182.31 (14)
F1—C3—C4—C5179.79 (11)C8—C9—C10—C1130.03 (16)
C2—C3—C4—C50.2 (2)C15—C10—C11—C122.23 (19)
C3—C4—C5—C60.02 (19)C9—C10—C11—C12174.98 (12)
C4—C5—C6—C10.20 (19)C10—C11—C12—C130.3 (2)
C4—C5—C6—C7179.61 (11)C11—C12—C13—C142.1 (2)
C2—C1—C6—C50.13 (19)C11—C12—C13—Br1178.25 (10)
C2—C1—C6—C7179.54 (12)C12—C13—C14—C152.6 (2)
N2—N1—C7—C6179.32 (10)Br1—C13—C14—C15177.84 (9)
N2—N1—C7—C83.50 (14)C13—C14—C15—C100.53 (19)
C5—C6—C7—N1176.94 (12)C11—C10—C15—C141.81 (18)
C1—C6—C7—N13.66 (18)C9—C10—C15—C14175.44 (11)
C5—C6—C7—C86.23 (18)N1—N2—C16—O1179.08 (11)
C1—C6—C7—C8173.18 (12)C9—N2—C16—O11.92 (18)
N1—C7—C8—C914.48 (14)N1—N2—C16—C172.02 (16)
C6—C7—C8—C9168.48 (11)C9—N2—C16—C17179.18 (11)
C16—N2—C9—C1074.12 (14)O1—C16—C17—C181.59 (17)
N1—N2—C9—C10103.27 (11)N2—C16—C17—C18179.55 (10)
C16—N2—C9—C8164.49 (11)C16—C17—C18—C19177.81 (11)
N1—N2—C9—C818.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···F1i0.952.373.1873 (17)144
C14—H14A···O1ii0.952.573.1832 (16)122
C5—H5A···Cg2iii0.952.683.5453 (15)152
C17—H17B···Cg1iv0.992.703.5488 (14)144
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formulaC19H18BrFN2O
Mr389.26
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.7502 (3), 10.1253 (5), 13.7792 (8)
α, β, γ (°)105.354 (1), 98.976 (1), 107.369 (1)
V3)838.01 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.28 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.546, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
17838, 4816, 4458
Rint0.023
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.066, 1.06
No. of reflections4816
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.63

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···F1i0.952.373.1873 (17)144
C14—H14A···O1ii0.952.573.1832 (16)122
C5—H5A···Cg2iii0.952.683.5453 (15)152
C17—H17B···Cg1iv0.992.703.5488 (14)144
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y, z; (iv) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). WSL also thanks the Malaysian government and USM for the post of Research Officer under the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC for financial assistance through SAP and BSR one time grant for the purchase of chemicals.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o2586.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o975.  CSD CrossRef IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487–493.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2655-o2656
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds