organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(5-Bromo-2-meth­­oxy­phen­yl)-2-fluoro­pyridine

aDepartment of Chemistry, Gomal University, Dera Ismail Khan, K.P.K., Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 28 July 2012; accepted 2 August 2012; online 8 August 2012)

In the title compound, C12H9BrFNO, the dihedral angle between the aromatic rings is 51.39 (5)°; the C atom of the meth­oxy group is close to being coplanar with its attached ring (r.m.s. deviation = 0.0172 Å] and is oriented away from the pyridine ring. In the crystal, mol­ecules inter­act by van der Waals forces.

Related literature

For a related structure, see: Adeel et al. (2012[Adeel, M., Elahi, F., Tahir, M. N., Khan, A. & Langer, P. (2012). Acta Cryst. E68, o2043.]); Elahi et al. (2012[Elahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.]a[Elahi, F., Adeel, M. & Tahir, M. N. (2012a). Acta Cryst. E68, o2124.],b[Elahi, F., Adeel, M. & Tahir, M. N. (2012b). Acta Cryst. E68, o2180.]); Elahi et al. (2012[Elahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9BrFNO

  • Mr = 282.11

  • Monoclinic, P 21 /c

  • a = 3.9376 (4) Å

  • b = 20.999 (3) Å

  • c = 13.2700 (15) Å

  • β = 95.035 (7)°

  • V = 1093.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.75 mm−1

  • T = 296 K

  • 0.34 × 0.18 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.674, Tmax = 0.698

  • 7773 measured reflections

  • 2027 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.068

  • S = 1.04

  • 2027 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported the crystal structure of 5-(4-chlorophenyl)-2-fluoropyridine (Adeel et al., 2012), 4-(2-fluoropyridin-5-yl)phenol (Elahi et al., 2012a), 5-(2,3-dichlorophenyl)-2-fluoropyridine (Elahi et al., 2012b) and 2-fluoro-5-(4-fluorophenyl)pyridine (Elahi et al., 2012) which have common moiety of 2-fluoropyridine as in the title compound, (Fig. 1).

In the title compound, the 1-bromo-4-methoxybenzene A (C1–C7/BR1/O1) and the 2-fluoropyridine B (C8—C12/N1/F1) systems are almost planar with r.m.s. deviations of 0.0172 Å and 0.0087 Å, respectively. The dihedral angle between A/B is 51.39 (5)°. There does not exist any kind of H-bonding and the molecules interact by van der Waals forces.

Related literature top

For a related structure, see: Adeel et al. (2012); Elahi et al. (2012a,b); Elahi et al. (2012).

Experimental top

To a 6 ml solution of 5-bromo-2-fluoropyridine (0.20 g, 1.13 mmol), 5-bromo-2-methoxyphenylboronic acid (0.314 g, 1.36 mmol) in dioxane and K3PO4 (0.361 g, 1.7 mmol, in 1 ml H2O) was added Pd(PPh3)4 (1.5 mole %) at 373 K under N2 atmosphere. The reaction mixture was refluxed for 8 h. Then 20 ml of distilled water was added. The aqueous layer was extracted three times with EtOAc(3 × 15 ml). The organic layer was evaporated in vacuo and the crude product was obtained. Colorless needles of (I) were obtained by the recrystalization of crude product in a saturated CHCl3/CH3OH solution.

Yield: 0.294 g, 92%. m.p. 345–347 K.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.
5-(5-Bromo-2-methoxyphenyl)-2-fluoropyridine top
Crystal data top
C12H9BrFNOF(000) = 560
Mr = 282.11Dx = 1.714 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1441 reflections
a = 3.9376 (4) Åθ = 1.8–25.5°
b = 20.999 (3) ŵ = 3.75 mm1
c = 13.2700 (15) ÅT = 296 K
β = 95.035 (7)°Needle, colorless
V = 1093.0 (2) Å30.34 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2027 independent reflections
Radiation source: fine-focus sealed tube1441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.10 pixels mm-1θmax = 25.5°, θmin = 1.8°
ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2515
Tmin = 0.674, Tmax = 0.698l = 1516
7773 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.027P)2]
where P = (Fo2 + 2Fc2)/3
2027 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C12H9BrFNOV = 1093.0 (2) Å3
Mr = 282.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9376 (4) ŵ = 3.75 mm1
b = 20.999 (3) ÅT = 296 K
c = 13.2700 (15) Å0.34 × 0.18 × 0.16 mm
β = 95.035 (7)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2027 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1441 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.698Rint = 0.042
7773 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
2027 reflectionsΔρmin = 0.28 e Å3
146 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.56028 (8)0.42649 (2)0.65535 (3)0.0533 (1)
F10.6238 (6)0.43194 (10)0.01878 (15)0.0815 (9)
O11.0021 (5)0.25300 (10)0.32894 (14)0.0422 (7)
N10.5368 (7)0.35827 (13)0.0979 (2)0.0501 (11)
C10.7736 (7)0.35084 (13)0.3789 (2)0.0326 (10)
C20.9046 (7)0.29045 (14)0.4060 (2)0.0337 (10)
C30.9321 (7)0.27195 (15)0.5063 (2)0.0407 (11)
C40.8285 (7)0.31185 (16)0.5803 (3)0.0439 (11)
C50.7032 (7)0.37101 (14)0.5544 (2)0.0377 (11)
C60.6760 (7)0.39044 (14)0.4547 (2)0.0378 (10)
C71.1517 (8)0.19256 (15)0.3560 (3)0.0511 (12)
C80.7416 (7)0.37357 (13)0.2724 (2)0.0333 (10)
C90.8664 (7)0.43295 (15)0.2473 (2)0.0429 (11)
C100.8273 (8)0.45436 (16)0.1482 (3)0.0510 (11)
C110.6638 (9)0.41379 (17)0.0803 (3)0.0516 (12)
C120.5761 (7)0.33878 (15)0.1936 (2)0.0418 (11)
H31.021420.232120.524150.0488*
H40.843800.298660.647460.0525*
H60.590730.430760.438110.0454*
H7A1.235080.173260.297410.0763*
H7B0.983110.165420.381710.0763*
H7C1.337270.198470.407090.0763*
H90.976740.458410.297330.0514*
H100.907580.493880.129400.0611*
H120.486830.299270.208760.0503*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0574 (2)0.0553 (2)0.0484 (2)0.0061 (2)0.0108 (2)0.0154 (2)
F10.138 (2)0.0654 (14)0.0405 (13)0.0176 (14)0.0042 (12)0.0153 (12)
O10.0590 (13)0.0327 (12)0.0339 (13)0.0100 (11)0.0007 (10)0.0006 (11)
N10.0724 (19)0.0421 (18)0.0340 (18)0.0103 (16)0.0060 (14)0.0015 (15)
C10.0329 (16)0.0309 (17)0.0330 (19)0.0033 (14)0.0023 (14)0.0005 (15)
C20.0343 (16)0.0343 (17)0.0316 (19)0.0043 (15)0.0022 (14)0.0027 (16)
C30.0501 (18)0.0339 (18)0.037 (2)0.0014 (16)0.0026 (15)0.0062 (16)
C40.0507 (19)0.048 (2)0.0316 (19)0.0100 (17)0.0040 (15)0.0046 (17)
C50.0379 (17)0.0410 (19)0.034 (2)0.0041 (15)0.0014 (14)0.0062 (16)
C60.0371 (17)0.0322 (17)0.043 (2)0.0003 (15)0.0025 (14)0.0026 (17)
C70.059 (2)0.040 (2)0.053 (2)0.0107 (17)0.0028 (17)0.0056 (18)
C80.0343 (16)0.0294 (17)0.0362 (19)0.0064 (14)0.0028 (14)0.0004 (15)
C90.0474 (18)0.0372 (19)0.043 (2)0.0009 (16)0.0016 (15)0.0009 (18)
C100.065 (2)0.0376 (19)0.051 (2)0.0003 (18)0.0087 (18)0.0078 (19)
C110.071 (2)0.050 (2)0.034 (2)0.021 (2)0.0063 (17)0.0084 (19)
C120.0521 (19)0.0320 (18)0.040 (2)0.0030 (16)0.0033 (16)0.0003 (17)
Geometric parameters (Å, º) top
Br1—C51.898 (3)C8—C91.391 (4)
F1—C111.365 (4)C8—C121.390 (4)
O1—C21.371 (3)C9—C101.386 (5)
O1—C71.432 (4)C10—C111.360 (5)
N1—C111.298 (5)C3—H30.9300
N1—C121.330 (4)C4—H40.9300
C1—C21.404 (4)C6—H60.9300
C1—C61.385 (4)C7—H7A0.9600
C1—C81.487 (4)C7—H7B0.9600
C2—C31.382 (4)C7—H7C0.9600
C3—C41.380 (5)C9—H90.9300
C4—C51.369 (4)C10—H100.9300
C5—C61.380 (4)C12—H120.9300
C2—O1—C7117.2 (2)N1—C11—C10127.7 (4)
C11—N1—C12115.7 (3)N1—C12—C8124.3 (3)
C2—C1—C6118.4 (2)C2—C3—H3120.00
C2—C1—C8122.2 (2)C4—C3—H3120.00
C6—C1—C8119.5 (2)C3—C4—H4120.00
O1—C2—C1116.6 (2)C5—C4—H4120.00
O1—C2—C3123.6 (3)C1—C6—H6119.00
C1—C2—C3119.8 (3)C5—C6—H6119.00
C2—C3—C4120.8 (3)O1—C7—H7A109.00
C3—C4—C5119.7 (3)O1—C7—H7B109.00
Br1—C5—C4120.2 (2)O1—C7—H7C109.00
Br1—C5—C6119.5 (2)H7A—C7—H7B109.00
C4—C5—C6120.3 (3)H7A—C7—H7C109.00
C1—C6—C5121.0 (3)H7B—C7—H7C109.00
C1—C8—C9120.9 (2)C8—C9—H9120.00
C1—C8—C12122.8 (2)C10—C9—H9120.00
C9—C8—C12116.3 (2)C9—C10—H10122.00
C8—C9—C10120.4 (3)C11—C10—H10122.00
C9—C10—C11115.6 (3)N1—C12—H12118.00
F1—C11—N1114.2 (3)C8—C12—H12118.00
F1—C11—C10118.1 (3)
C7—O1—C2—C1177.0 (2)O1—C2—C3—C4179.8 (3)
C7—O1—C2—C32.4 (4)C1—C2—C3—C40.8 (4)
C12—N1—C11—F1179.1 (3)C2—C3—C4—C51.3 (4)
C12—N1—C11—C100.9 (5)C3—C4—C5—Br1179.9 (2)
C11—N1—C12—C80.3 (5)C3—C4—C5—C60.9 (4)
C6—C1—C2—O1179.2 (2)Br1—C5—C6—C1179.1 (2)
C6—C1—C2—C30.2 (4)C4—C5—C6—C10.1 (4)
C8—C1—C2—O10.1 (4)C1—C8—C9—C10178.3 (3)
C8—C1—C2—C3179.3 (3)C12—C8—C9—C100.8 (4)
C2—C1—C6—C50.6 (4)C1—C8—C12—N1178.6 (3)
C8—C1—C6—C5179.8 (3)C9—C8—C12—N11.1 (4)
C2—C1—C8—C9130.1 (3)C8—C9—C10—C110.2 (4)
C2—C1—C8—C1252.6 (4)C9—C10—C11—F1178.8 (3)
C6—C1—C8—C949.0 (4)C9—C10—C11—N11.2 (5)
C6—C1—C8—C12128.3 (3)

Experimental details

Crystal data
Chemical formulaC12H9BrFNO
Mr282.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)3.9376 (4), 20.999 (3), 13.2700 (15)
β (°) 95.035 (7)
V3)1093.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.75
Crystal size (mm)0.34 × 0.18 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.674, 0.698
No. of measured, independent and
observed [I > 2σ(I)] reflections
7773, 2027, 1441
Rint0.042
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.068, 1.04
No. of reflections2027
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. MA also acknowledges the World University Service, Germany, for an equipment grant and the Higher Education Commission, Pakistan, for a resource grant.

References

First citationAdeel, M., Elahi, F., Tahir, M. N., Khan, A. & Langer, P. (2012). Acta Cryst. E68, o2043.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElahi, F., Adeel, M. & Tahir, M. N. (2012a). Acta Cryst. E68, o2124.  CSD CrossRef IUCr Journals Google Scholar
First citationElahi, F., Adeel, M. & Tahir, M. N. (2012b). Acta Cryst. E68, o2180.  CSD CrossRef IUCr Journals Google Scholar
First citationElahi, F., Adeel, M., Tahir, M. N., Langer, P. & Ahmad, S. (2012). Acta Cryst. E68, o2070.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds