organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(2-Fluoro­phen­yl)-1-(4-fluoro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Montepadavu, PO, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 30 July 2012; accepted 2 August 2012; online 8 August 2012)

In the title compouund, C15H10F2O, the mol­ecule exists in an E conformation with respect to the C=C bond [1.3382 (16) Å]. The dihedral angle between the fluoro-substituted benzene rings is 6.80 (6)° and the whole mol­ecule is roughly planar (r.m.s. deviation for the non-H atoms = 0.069 Å). In the crystal, mol­ecules are linked by C—H⋯F and C—H⋯O inter­actions into sheets lying parallel to the bc plane.

Related literature

For details of the synthesis of chalcones, see: Fun et al. (2012[Fun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o629.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10F2O

  • Mr = 244.23

  • Monoclinic, P 21 /c

  • a = 14.569 (2) Å

  • b = 7.2737 (10) Å

  • c = 11.3933 (15) Å

  • β = 108.827 (3)°

  • V = 1142.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.25 × 0.23 × 0.10 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.989

  • 12454 measured reflections

  • 3316 independent reflections

  • 2525 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.02

  • 3316 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F2i 0.95 2.47 3.4145 (16) 175
C14—H14A⋯F1ii 0.95 2.54 3.4816 (16) 174
C15—H15A⋯O1iii 0.95 2.55 3.4956 (15) 174
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of chalcone derivatives (Fun et al., 2012), the title compound (I) has been prepared and its crystal structure is now reported.

In the title compouund (Fig. 1), the molecule exists in an E conformation with respect to C8C9 [1.3382 (16) Å]. The dihedral angle between the fluoro-substituted (C1–C6 & C10–C15) benzene rings is 6.80 (6)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), the molecules are linked via C4—H4A···F2, C14—H14A···F1 and C15—H15A···O1 hydrogen bonds (Table 1) into two dimensional networks parallel to bc plane.

Related literature top

For details of the synthesis of chalcones, see: Fun et al. (2012). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for data collection, see: Cosier & Glazer (1986).

Experimental top

To a mixture of 4-fluoroacetophenone (1.38 g, 0.01 mol) and 2-fluorobenzaldehyde (1.05 ml, 0.01 mol) in ethanol (100 ml), 15 ml of 10% sodium hydroxide solution was added and stirred at 0–5 °C for 3 h. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless blocks were grown from methanol solution by the slow evaporation method (M.P.: 351 K).

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) (C—H = 0.95 Å).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
(2E)-3-(2-Fluorophenyl)-1-(4-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H10F2OF(000) = 504
Mr = 244.23Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3240 reflections
a = 14.569 (2) Åθ = 3.0–30.0°
b = 7.2737 (10) ŵ = 0.11 mm1
c = 11.3933 (15) ÅT = 100 K
β = 108.827 (3)°Block, colourless
V = 1142.7 (3) Å30.25 × 0.23 × 0.10 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
3316 independent reflections
Radiation source: fine-focus sealed tube2525 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2019
Tmin = 0.973, Tmax = 0.989k = 810
12454 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.4256P]
where P = (Fo2 + 2Fc2)/3
3316 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H10F2OV = 1142.7 (3) Å3
Mr = 244.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.569 (2) ŵ = 0.11 mm1
b = 7.2737 (10) ÅT = 100 K
c = 11.3933 (15) Å0.25 × 0.23 × 0.10 mm
β = 108.827 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
3316 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2525 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.989Rint = 0.031
12454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
3316 reflectionsΔρmin = 0.27 e Å3
163 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.16014 (5)0.57105 (12)0.38021 (7)0.0270 (2)
F20.88539 (6)0.90022 (15)0.48557 (7)0.0357 (2)
O10.56195 (6)0.67338 (14)0.29627 (8)0.0249 (2)
C10.40989 (8)0.71839 (17)0.49338 (11)0.0190 (2)
H1A0.45460.77120.56560.023*
C20.31519 (9)0.68328 (18)0.48962 (11)0.0203 (2)
H2A0.29450.71110.55860.024*
C30.25209 (8)0.60721 (17)0.38349 (11)0.0195 (2)
C40.27869 (9)0.56238 (18)0.28129 (11)0.0209 (3)
H4A0.23340.50970.20960.025*
C50.37332 (9)0.59650 (18)0.28640 (11)0.0193 (2)
H5A0.39350.56530.21760.023*
C60.43978 (8)0.67640 (16)0.39157 (11)0.0171 (2)
C70.54041 (8)0.71165 (17)0.38906 (11)0.0181 (2)
C80.61241 (8)0.79265 (18)0.50023 (11)0.0198 (2)
H8A0.59310.82680.56930.024*
C90.70435 (8)0.81809 (17)0.50426 (11)0.0189 (2)
H9A0.72030.78470.43260.023*
C100.78236 (8)0.89267 (17)0.60915 (11)0.0183 (2)
C110.87245 (9)0.93383 (19)0.59684 (11)0.0222 (3)
C120.94940 (9)1.0061 (2)0.69058 (13)0.0264 (3)
H12A1.00911.03340.67730.032*
C130.93744 (9)1.0379 (2)0.80465 (12)0.0256 (3)
H13A0.98931.08730.87100.031*
C140.84936 (9)0.9974 (2)0.82199 (12)0.0252 (3)
H14A0.84161.01810.90060.030*
C150.77291 (9)0.92723 (18)0.72577 (12)0.0215 (3)
H15A0.71300.90210.73900.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0162 (3)0.0386 (5)0.0260 (4)0.0048 (3)0.0066 (3)0.0005 (3)
F20.0216 (4)0.0672 (7)0.0203 (4)0.0037 (4)0.0097 (3)0.0020 (4)
O10.0216 (4)0.0347 (5)0.0197 (4)0.0006 (4)0.0083 (3)0.0016 (4)
C10.0180 (5)0.0196 (6)0.0180 (5)0.0003 (4)0.0037 (4)0.0008 (5)
C20.0196 (5)0.0232 (6)0.0184 (6)0.0001 (5)0.0068 (4)0.0013 (5)
C30.0156 (5)0.0208 (6)0.0215 (6)0.0006 (4)0.0052 (4)0.0033 (5)
C40.0199 (5)0.0233 (6)0.0166 (5)0.0022 (5)0.0019 (4)0.0014 (5)
C50.0209 (5)0.0213 (6)0.0151 (5)0.0001 (4)0.0048 (4)0.0009 (4)
C60.0167 (5)0.0164 (5)0.0173 (5)0.0015 (4)0.0042 (4)0.0018 (4)
C70.0180 (5)0.0181 (6)0.0176 (5)0.0015 (4)0.0050 (4)0.0028 (4)
C80.0192 (5)0.0220 (6)0.0180 (5)0.0003 (4)0.0056 (4)0.0003 (5)
C90.0185 (5)0.0213 (6)0.0166 (5)0.0012 (4)0.0052 (4)0.0022 (4)
C100.0164 (5)0.0195 (6)0.0185 (5)0.0018 (4)0.0048 (4)0.0037 (5)
C110.0184 (5)0.0316 (7)0.0172 (5)0.0021 (5)0.0067 (4)0.0032 (5)
C120.0152 (5)0.0373 (8)0.0255 (6)0.0016 (5)0.0047 (5)0.0030 (6)
C130.0193 (6)0.0308 (7)0.0230 (6)0.0013 (5)0.0019 (5)0.0008 (5)
C140.0230 (6)0.0318 (7)0.0200 (6)0.0007 (5)0.0061 (5)0.0025 (5)
C150.0179 (5)0.0260 (6)0.0210 (6)0.0003 (5)0.0068 (4)0.0008 (5)
Geometric parameters (Å, º) top
F1—C31.3539 (13)C8—C91.3382 (16)
F2—C111.3627 (14)C8—H8A0.9500
O1—C71.2279 (15)C9—C101.4621 (17)
C1—C21.3901 (16)C9—H9A0.9500
C1—C61.3980 (16)C10—C111.3966 (16)
C1—H1A0.9500C10—C151.4021 (17)
C2—C31.3769 (17)C11—C121.3788 (18)
C2—H2A0.9500C12—C131.3852 (19)
C3—C41.3797 (17)C12—H12A0.9500
C4—C51.3834 (17)C13—C141.3915 (18)
C4—H4A0.9500C13—H13A0.9500
C5—C61.4007 (16)C14—C151.3837 (18)
C5—H5A0.9500C14—H14A0.9500
C6—C71.4977 (16)C15—H15A0.9500
C7—C81.4813 (17)
C2—C1—C6120.40 (11)C7—C8—H8A119.7
C2—C1—H1A119.8C8—C9—C10125.79 (11)
C6—C1—H1A119.8C8—C9—H9A117.1
C3—C2—C1118.40 (11)C10—C9—H9A117.1
C3—C2—H2A120.8C11—C10—C15116.08 (11)
C1—C2—H2A120.8C11—C10—C9120.35 (11)
F1—C3—C2118.46 (11)C15—C10—C9123.57 (10)
F1—C3—C4118.40 (11)F2—C11—C12117.84 (11)
C2—C3—C4123.12 (11)F2—C11—C10118.14 (11)
C3—C4—C5118.01 (11)C12—C11—C10124.02 (11)
C3—C4—H4A121.0C11—C12—C13118.25 (11)
C5—C4—H4A121.0C11—C12—H12A120.9
C4—C5—C6120.98 (11)C13—C12—H12A120.9
C4—C5—H5A119.5C12—C13—C14119.92 (12)
C6—C5—H5A119.5C12—C13—H13A120.0
C1—C6—C5119.08 (11)C14—C13—H13A120.0
C1—C6—C7123.19 (10)C15—C14—C13120.60 (12)
C5—C6—C7117.73 (10)C15—C14—H14A119.7
O1—C7—C8121.28 (11)C13—C14—H14A119.7
O1—C7—C6120.09 (11)C14—C15—C10121.11 (11)
C8—C7—C6118.63 (10)C14—C15—H15A119.4
C9—C8—C7120.60 (11)C10—C15—H15A119.4
C9—C8—H8A119.7
C6—C1—C2—C30.23 (19)C6—C7—C8—C9176.72 (11)
C1—C2—C3—F1179.28 (11)C7—C8—C9—C10178.59 (11)
C1—C2—C3—C40.7 (2)C8—C9—C10—C11172.08 (13)
F1—C3—C4—C5178.75 (11)C8—C9—C10—C157.9 (2)
C2—C3—C4—C50.2 (2)C15—C10—C11—F2179.16 (11)
C3—C4—C5—C60.83 (19)C9—C10—C11—F20.85 (19)
C2—C1—C6—C50.76 (18)C15—C10—C11—C120.7 (2)
C2—C1—C6—C7179.61 (11)C9—C10—C11—C12179.33 (13)
C4—C5—C6—C11.31 (18)F2—C11—C12—C13178.95 (12)
C4—C5—C6—C7179.04 (11)C10—C11—C12—C130.9 (2)
C1—C6—C7—O1179.26 (12)C11—C12—C13—C140.2 (2)
C5—C6—C7—O11.10 (17)C12—C13—C14—C150.7 (2)
C1—C6—C7—C80.84 (18)C13—C14—C15—C100.9 (2)
C5—C6—C7—C8178.80 (11)C11—C10—C15—C140.25 (19)
O1—C7—C8—C93.18 (19)C9—C10—C15—C14179.76 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F2i0.952.473.4145 (16)175
C14—H14A···F1ii0.952.543.4816 (16)174
C15—H15A···O1iii0.952.553.4956 (15)174
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H10F2O
Mr244.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.569 (2), 7.2737 (10), 11.3933 (15)
β (°) 108.827 (3)
V3)1142.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.23 × 0.10
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.973, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12454, 3316, 2525
Rint0.031
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.121, 1.02
No. of reflections3316
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···F2i0.952.473.4145 (16)175
C14—H14A···F1ii0.952.543.4816 (16)174
C15—H15A···O1iii0.952.553.4956 (15)174
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and AF thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. BN thanks UGC, New Delhi, and Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o629.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds