organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzene­sulfonamido-3-methyl­butyric acid

aCenter of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, bDepartment of Chemistry, University of Gujrat, Gujrat 50781, Pakistan, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dDepartment of Chemistry, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia
*Correspondence e-mail: mnachemist@hotmail.com, muhammad.danish@uog.edu.pk

(Received 30 July 2012; accepted 2 August 2012; online 8 August 2012)

In the crystal structure of the title compound, C11H15NO4S, two independent mol­ecules are present per asymmetric unit; they are dimerized through O—H⋯O hydrogen bonds between their carb­oxy groups to generate R22(8) loops. An intra­molecular N—H⋯O link in one of the mol­ecules closes an S(5) ring. The dimers are linked by N—H⋯O and C—H⋯O hydrogen bonds to form a three-dimensional network. The C atoms of the isopropyl group of one of the mol­ecules are disordered over two orientations in a 3:1 ratio.

Related literature

For biological studies of sulfonamides, see: Nalam et al. (2007[Nalam, M. N. L., Tim, A. K., Jonckers, H. M., Dierynck, I. & Schiffer, C. A. (2007). J. Virol. 81, 9512-9518.]). For related structures, see: Khan et al. (2011[Khan, I. U., Arshad, M. N., Mubashar-ur-Rehman, H., Harrison, W. T. A. & Ali, M. B. (2011). Acta Cryst. E67, o2325.]); Arshad et al. (2012[Arshad, M. N., Danish, M., Tahir, M. N., Khalid, S. & Asiri, A. M. (2012). Acta Cryst. E68, o2573.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15NO4S

  • Mr = 257.30

  • Monoclinic, P 21

  • a = 5.4954 (3) Å

  • b = 15.5097 (10) Å

  • c = 15.5106 (9) Å

  • β = 94.043 (3)°

  • V = 1318.71 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.37 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.957

  • 9573 measured reflections

  • 4203 independent reflections

  • 3803 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.05

  • 4203 reflections

  • 335 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1785 Friedel pairs

  • Flack parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8O⋯O3 0.85 (1) 1.81 (1) 2.649 (3) 171 (6)
O4—H4O⋯O7 0.86 (1) 1.83 (2) 2.668 (3) 166 (6)
N1—H1N⋯O1i 0.81 (5) 2.52 (5) 3.322 (3) 172 (5)
N2—H2N⋯O7i 0.82 (5) 2.47 (5) 3.240 (3) 157 (5)
N2—H2N⋯O8 0.82 (5) 2.45 (5) 2.734 (3) 102 (4)
C2—H2⋯O3ii 0.93 2.56 3.440 (4) 158
C4—H4⋯O6iii 0.93 2.54 3.427 (4) 161
C14—H14⋯O2iv 0.93 2.52 3.378 (5) 154
C15—H15⋯O1v 0.93 2.60 3.521 (5) 173
C9A—H9A⋯O2v 0.98 2.52 3.421 (7) 153
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+2]; (v) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]).

Supporting information


Comment top

Crystal structure of sulfonamide derived from lysine has been reported which proved as a new class of inhibitors, to combat the resistant variants of HIV protease (Nalam et al., 2007). Herein, we report the crystal structure of sulfonamide derived from L-valine, in countinuation of our work for the synthesis of sulfonamide (Khan et al., 2011), (Arshad et al., 2012).

The unit cell comprises of two independent molecules (C1—C11) A & (C12—C22) B. Each molecule adopted U shaped and aromatic rings are oriented with carboxylic groups at dihedral angles of 20.91 (2)° & 28.27 (2)° in molecule A and B respectively. These two molecules have been joined to each other through complex intermolecular hydrogen bonding interactions. Molecule B also undergoes intramolecular hydrogen bonding to form five membered (N2/C18/C19/O8/H2N) ring motif S11(5) (Bernstein et al., 1995). Molecules undergo typical dimerization to produce eight membered ring motifs R22(8) (Bernstein et al., 1995) through the carboxylic functional groups. This ring motif (O3/C8/O4/H4O/O7/C19/O8/H8O) lies between the two aromatic rings just like sandwich and the centroid distances of plane generated from it are 3.934 Å & 4.155 Å with aromatic rings (C1—C6) & (C12—C17) respectively. These dimers further connected through the N—H···O, O—H···O and C—H···O type interaction to form three dimensional network (Table. 1, Fig. 2). The C- atoms of isopropyl group in molecule A is disordered over two positions with occupancies ratio of 3:1.

Related literature top

For biological studies of sulfonamides, see: Nalam et al. (2007). For related structures, see: Khan et al. (2011); Arshad et al. (2012). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

L-Valine (0.50 g, 0.043 mmole) dissolved in 12-15 mL distilled water using sodium carbonate (1M) to a pH of 8–9. Benzenesulphonyl chloride (0.75 g, 0.043 mmole) added within 3–5 min. The pH was adjusted by sodium carbonate (1M). Disappearance of suspended benzenesulfonyl chloride gave indication of completion of reaction. Then, dilute HCl was added dropwise to result in a pH 2–3. The precipitate was filtered, washed with plenty of water and dried. Colourless prisms were obtained upon recrystalization from methanol solution.

Refinement top

All the C—H and H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.96 Å for methyl group and C—H = 0.98 Å for tertiary, and were refined using a riding model with Uiso(H) = 1.2 Ueq(C) for aromatic & tertiary and Uiso(H) = 1.5 Ueq(C) for methyl carbon atoms.

The N—H = 0.81–0.82 (5) and O—H = 0.85—0.86 (1) Å hydrogen atoms were located with difference map and were refined with Uiso(H) = 1.2 Ueq(N) and Uiso(H) = 1.5 Ueq(O).

Reaction does not affect the chirality of product, and the chirality is that of the reactant (L-Valine).

The atoms C9—C11 were disordered over two positions with the occupancies of 0.75 for C9A—C11A and 0.25 for C9B—C11B. The temperature factors of pairs of atoms were restrained to be identical.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Figures top
[Figure 1] Fig. 1. The labelled molecular structure of (I) with 50% displacement ellipsoids, showing intramolecular hydrogen bonding and formation of dimers through carboxylic group using dashed lines.
[Figure 2] Fig. 2. Unit cell packing showes intermolecular interactions using dashed lines.
2-Benzenesulfonamido-3-methylbutyric acid top
Crystal data top
C11H15NO4SF(000) = 544
Mr = 257.30Dx = 1.296 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4554 reflections
a = 5.4954 (3) Åθ = 2.6–24.4°
b = 15.5097 (10) ŵ = 0.25 mm1
c = 15.5106 (9) ÅT = 296 K
β = 94.043 (3)°Prismatic, colorless
V = 1318.71 (14) Å30.37 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4203 independent reflections
Radiation source: fine-focus sealed tube3803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 56
Tmin = 0.914, Tmax = 0.957k = 1518
9573 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0931P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.18 e Å3
4203 reflectionsΔρmin = 0.18 e Å3
335 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.0039 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1785 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (6)
Crystal data top
C11H15NO4SV = 1318.71 (14) Å3
Mr = 257.30Z = 4
Monoclinic, P21Mo Kα radiation
a = 5.4954 (3) ŵ = 0.25 mm1
b = 15.5097 (10) ÅT = 296 K
c = 15.5106 (9) Å0.37 × 0.22 × 0.18 mm
β = 94.043 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4203 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3803 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.957Rint = 0.023
9573 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093Δρmax = 0.18 e Å3
S = 1.05Δρmin = 0.18 e Å3
4203 reflectionsAbsolute structure: Flack (1983), 1785 Friedel pairs
335 parametersAbsolute structure parameter: 0.00 (6)
7 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.01018 (13)0.47881 (5)0.94705 (4)0.0526 (2)
S20.63466 (11)0.90716 (5)0.55510 (4)0.04379 (18)
O10.2265 (4)0.50382 (18)0.97036 (13)0.0746 (7)
O20.1285 (5)0.40489 (17)0.98428 (14)0.0812 (7)
O30.3451 (4)0.64351 (16)0.82551 (15)0.0762 (7)
O40.0009 (5)0.7191 (2)0.82050 (16)0.0896 (9)
O50.4720 (4)0.94893 (15)0.49394 (12)0.0615 (6)
O60.8908 (3)0.91930 (15)0.55236 (12)0.0583 (5)
O70.0874 (3)0.74580 (16)0.65554 (14)0.0683 (6)
O80.4671 (4)0.69767 (18)0.67244 (14)0.0713 (7)
N10.1901 (4)0.55941 (18)0.97225 (14)0.0519 (6)
N20.5961 (4)0.80431 (17)0.54293 (14)0.0470 (6)
C10.0023 (4)0.4673 (2)0.83346 (15)0.0478 (7)
C20.1899 (5)0.5045 (2)0.78370 (19)0.0642 (9)
H20.31460.53320.80940.077*
C30.1909 (7)0.4988 (3)0.6954 (2)0.0783 (11)
H30.31680.52430.66110.094*
C40.0131 (7)0.4572 (3)0.6580 (2)0.0799 (11)
H40.01700.45330.59800.096*
C50.1747 (7)0.4201 (3)0.7076 (2)0.0877 (13)
H50.29870.39160.68140.105*
C60.1802 (6)0.4251 (3)0.7962 (2)0.0721 (10)
H60.30700.40000.83030.087*
C70.1146 (7)0.6464 (2)0.95050 (19)0.0640 (8)
H70.06360.64600.95110.077*
C80.1658 (6)0.6696 (2)0.8590 (2)0.0598 (8)
C9A0.2016 (11)0.7179 (4)1.0149 (3)0.0846 (16)0.75
H9A0.13250.77360.99600.102*0.75
C9B0.336 (5)0.6908 (11)1.0186 (10)0.0846 (16)0.25
H9B0.48890.65801.01830.102*0.25
C10A0.1194 (16)0.6948 (6)1.1039 (4)0.1206 (18)0.75
H10A0.19680.64221.12350.181*0.75
H10B0.05440.68741.10040.181*0.75
H10C0.16420.74031.14390.181*0.75
C10B0.252 (4)0.699 (2)1.1091 (11)0.132 (8)0.25
H10D0.37540.72731.14550.198*0.25
H10E0.22480.64201.13170.198*0.25
H10F0.10350.73111.10750.198*0.25
C11A0.4800 (14)0.7213 (6)1.0175 (5)0.1206 (18)0.75
H11A0.53070.72570.95970.181*0.75
H11B0.54660.66981.04410.181*0.75
H11C0.53750.77061.05040.181*0.75
C11B0.366 (4)0.7811 (13)0.9824 (12)0.132 (8)0.25
H11D0.44280.81761.02640.198*0.25
H11E0.20830.80410.96430.198*0.25
H11F0.46480.77870.93390.198*0.25
C120.5515 (5)0.93452 (19)0.65875 (17)0.0517 (7)
C130.6936 (7)0.9040 (3)0.72930 (18)0.0840 (11)
H130.83280.87150.72190.101*
C140.6242 (12)0.9230 (4)0.8109 (2)0.1203 (18)
H140.71540.90180.85910.144*
C150.4279 (12)0.9714 (5)0.8216 (3)0.135 (2)
H150.38430.98360.87710.162*
C160.2912 (8)1.0028 (4)0.7526 (4)0.130 (2)
H160.15491.03640.76130.156*
C170.3527 (6)0.9852 (3)0.6681 (3)0.0889 (12)
H170.26151.00730.62030.107*
C180.3522 (4)0.76567 (19)0.53994 (17)0.0444 (6)
H180.23350.80990.52030.053*
C190.2898 (5)0.7353 (2)0.62866 (19)0.0515 (7)
C200.3346 (5)0.6908 (2)0.4741 (2)0.0617 (8)
H200.46120.64850.49150.074*
C210.3830 (8)0.7240 (3)0.3847 (2)0.0929 (13)
H21A0.38960.67630.34550.139*
H21B0.53570.75430.38750.139*
H21C0.25420.76240.36460.139*
C220.0909 (7)0.6464 (3)0.4729 (3)0.1032 (15)
H22A0.03590.68670.45570.155*
H22B0.06570.62490.52960.155*
H22C0.08730.59930.43270.155*
H1N0.329 (8)0.544 (4)0.967 (3)0.124*
H2N0.701 (8)0.775 (4)0.569 (3)0.124*
H4O0.016 (10)0.736 (4)0.7683 (15)0.155*
H8O0.423 (9)0.676 (4)0.719 (2)0.155*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0641 (4)0.0565 (5)0.0374 (3)0.0096 (3)0.0055 (3)0.0090 (3)
S20.0456 (3)0.0506 (4)0.0350 (3)0.0056 (3)0.0010 (2)0.0099 (3)
O10.0674 (13)0.110 (2)0.0498 (11)0.0205 (12)0.0258 (10)0.0023 (12)
O20.1254 (19)0.0546 (14)0.0609 (12)0.0055 (15)0.0131 (12)0.0208 (12)
O30.0810 (14)0.0791 (18)0.0719 (14)0.0184 (13)0.0298 (12)0.0299 (13)
O40.0912 (17)0.104 (2)0.0765 (16)0.0295 (15)0.0289 (14)0.0358 (16)
O50.0675 (12)0.0630 (14)0.0517 (11)0.0038 (10)0.0127 (9)0.0186 (9)
O60.0503 (10)0.0710 (16)0.0540 (10)0.0132 (10)0.0062 (8)0.0129 (10)
O70.0496 (11)0.0854 (17)0.0726 (14)0.0144 (10)0.0227 (10)0.0315 (12)
O80.0566 (12)0.0935 (19)0.0656 (14)0.0184 (12)0.0166 (10)0.0356 (13)
N10.0609 (13)0.0558 (17)0.0387 (11)0.0016 (12)0.0024 (10)0.0051 (11)
N20.0405 (11)0.0574 (17)0.0440 (12)0.0009 (10)0.0088 (9)0.0049 (11)
C10.0488 (14)0.0562 (19)0.0386 (13)0.0048 (13)0.0049 (11)0.0002 (13)
C20.0537 (16)0.091 (3)0.0480 (15)0.0123 (15)0.0015 (13)0.0100 (15)
C30.082 (2)0.105 (3)0.0460 (16)0.012 (2)0.0087 (15)0.0079 (18)
C40.091 (2)0.104 (3)0.0449 (16)0.009 (2)0.0090 (17)0.0220 (18)
C50.083 (2)0.111 (4)0.071 (2)0.014 (2)0.0245 (19)0.028 (2)
C60.0671 (18)0.084 (3)0.0648 (19)0.0208 (18)0.0004 (15)0.0091 (17)
C70.084 (2)0.055 (2)0.0549 (17)0.0038 (16)0.0198 (15)0.0013 (15)
C80.0667 (19)0.056 (2)0.0592 (17)0.0038 (15)0.0203 (15)0.0137 (15)
C9A0.118 (5)0.060 (4)0.076 (3)0.017 (3)0.008 (3)0.017 (3)
C9B0.118 (5)0.060 (4)0.076 (3)0.017 (3)0.008 (3)0.017 (3)
C10A0.145 (5)0.124 (5)0.092 (3)0.026 (4)0.001 (3)0.035 (3)
C10B0.138 (15)0.163 (17)0.094 (9)0.098 (14)0.000 (9)0.032 (10)
C11A0.145 (5)0.124 (5)0.092 (3)0.026 (4)0.001 (3)0.035 (3)
C11B0.138 (15)0.163 (17)0.094 (9)0.098 (14)0.000 (9)0.032 (10)
C120.0509 (15)0.059 (2)0.0456 (15)0.0092 (13)0.0033 (12)0.0048 (13)
C130.111 (3)0.100 (3)0.0396 (15)0.019 (3)0.0019 (16)0.0004 (19)
C140.175 (5)0.148 (5)0.0382 (19)0.020 (4)0.007 (2)0.016 (3)
C150.140 (4)0.196 (7)0.074 (3)0.052 (5)0.044 (3)0.075 (4)
C160.076 (3)0.196 (7)0.122 (4)0.007 (3)0.031 (3)0.090 (4)
C170.0591 (19)0.120 (4)0.086 (2)0.007 (2)0.0036 (17)0.041 (3)
C180.0423 (13)0.0456 (17)0.0457 (14)0.0035 (12)0.0057 (11)0.0087 (12)
C190.0486 (15)0.0491 (18)0.0579 (17)0.0040 (13)0.0118 (13)0.0099 (13)
C200.0570 (17)0.055 (2)0.072 (2)0.0017 (15)0.0021 (14)0.0047 (16)
C210.121 (3)0.101 (4)0.055 (2)0.006 (3)0.002 (2)0.023 (2)
C220.086 (3)0.076 (3)0.147 (4)0.022 (2)0.004 (3)0.030 (3)
Geometric parameters (Å, º) top
S1—O21.420 (3)C9B—C11B1.522 (10)
S1—O11.428 (2)C9B—H9B0.9800
S1—N11.624 (3)C10A—H10A0.9600
S1—C11.767 (2)C10A—H10B0.9600
S2—O51.414 (2)C10A—H10C0.9600
S2—O61.4239 (19)C10B—H10D0.9600
S2—N21.619 (3)C10B—H10E0.9600
S2—C121.754 (3)C10B—H10F0.9600
O3—C81.215 (4)C11A—H11A0.9600
O4—C81.300 (4)C11A—H11B0.9600
O4—H4O0.859 (10)C11A—H11C0.9600
O7—C191.226 (3)C11B—H11D0.9600
O8—C191.288 (3)C11B—H11E0.9600
O8—H8O0.849 (10)C11B—H11F0.9600
N1—C71.445 (4)C12—C171.362 (5)
N1—H1N0.81 (5)C12—C131.382 (4)
N2—C181.466 (3)C13—C141.379 (6)
N2—H2N0.82 (5)C13—H130.9300
C1—C61.359 (4)C14—C151.334 (8)
C1—C21.371 (4)C14—H140.9300
C2—C31.373 (4)C15—C161.354 (8)
C2—H20.9300C15—H150.9300
C3—C41.338 (5)C16—C171.403 (6)
C3—H30.9300C16—H160.9300
C4—C51.370 (5)C17—H170.9300
C4—H40.9300C18—C191.516 (4)
C5—C61.375 (5)C18—C201.545 (4)
C5—H50.9300C18—H180.9800
C6—H60.9300C20—C221.505 (5)
C7—C81.510 (4)C20—C211.521 (5)
C7—C9A1.545 (6)C20—H200.9800
C7—C9B1.70 (2)C21—H21A0.9600
C7—H70.9800C21—H21B0.9600
C9A—C10A1.526 (7)C21—H21C0.9600
C9A—C11A1.528 (7)C22—H22A0.9600
C9A—H9A0.9800C22—H22B0.9600
C9B—C10B1.513 (10)C22—H22C0.9600
O2—S1—O1121.01 (16)C10B—C9B—H9B111.3
O2—S1—N1105.66 (14)C11B—C9B—H9B111.3
O1—S1—N1106.25 (15)C7—C9B—H9B111.3
O2—S1—C1107.95 (15)C9B—C10B—H10D109.5
O1—S1—C1107.93 (13)C9B—C10B—H10E109.5
N1—S1—C1107.33 (12)H10D—C10B—H10E109.5
O5—S2—O6119.94 (12)C9B—C10B—H10F109.5
O5—S2—N2107.56 (13)H10D—C10B—H10F109.5
O6—S2—N2104.39 (12)H10E—C10B—H10F109.5
O5—S2—C12108.11 (14)C9B—C11B—H11D109.5
O6—S2—C12108.50 (12)C9B—C11B—H11E109.5
N2—S2—C12107.75 (13)H11D—C11B—H11E109.5
C8—O4—H4O120 (4)C9B—C11B—H11F109.5
C19—O8—H8O112 (4)H11D—C11B—H11F109.5
C7—N1—S1120.2 (2)H11E—C11B—H11F109.5
C7—N1—H1N121 (4)C17—C12—C13121.8 (3)
S1—N1—H1N108 (4)C17—C12—S2120.0 (2)
C18—N2—S2121.25 (18)C13—C12—S2118.3 (2)
C18—N2—H2N114 (4)C14—C13—C12118.4 (4)
S2—N2—H2N114 (4)C14—C13—H13120.8
C6—C1—C2120.7 (3)C12—C13—H13120.8
C6—C1—S1119.6 (2)C15—C14—C13120.8 (5)
C2—C1—S1119.6 (2)C15—C14—H14119.6
C1—C2—C3119.0 (3)C13—C14—H14119.6
C1—C2—H2120.5C14—C15—C16120.8 (4)
C3—C2—H2120.5C14—C15—H15119.6
C4—C3—C2120.8 (3)C16—C15—H15119.6
C4—C3—H3119.6C15—C16—C17120.8 (5)
C2—C3—H3119.6C15—C16—H16119.6
C3—C4—C5120.2 (3)C17—C16—H16119.6
C3—C4—H4119.9C12—C17—C16117.3 (4)
C5—C4—H4119.9C12—C17—H17121.3
C4—C5—C6120.1 (3)C16—C17—H17121.3
C4—C5—H5120.0N2—C18—C19111.3 (2)
C6—C5—H5120.0N2—C18—C20110.1 (2)
C1—C6—C5119.2 (3)C19—C18—C20111.0 (3)
C1—C6—H6120.4N2—C18—H18108.1
C5—C6—H6120.4C19—C18—H18108.1
N1—C7—C8111.9 (3)C20—C18—H18108.1
N1—C7—C9A116.7 (3)O7—C19—O8123.5 (3)
C8—C7—C9A111.5 (3)O7—C19—C18122.4 (2)
N1—C7—C9B93.0 (6)O8—C19—C18114.1 (2)
C8—C7—C9B108.3 (6)C22—C20—C21110.9 (3)
C9A—C7—C9B29.9 (6)C22—C20—C18111.5 (3)
N1—C7—H7105.2C21—C20—C18109.9 (3)
C8—C7—H7105.2C22—C20—H20108.1
C9A—C7—H7105.2C21—C20—H20108.1
C9B—C7—H7132.1C18—C20—H20108.1
O3—C8—O4124.1 (3)C20—C21—H21A109.5
O3—C8—C7122.2 (3)C20—C21—H21B109.5
O4—C8—C7113.7 (3)H21A—C21—H21B109.5
C10A—C9A—C11A110.1 (6)C20—C21—H21C109.5
C10A—C9A—C7108.6 (5)H21A—C21—H21C109.5
C11A—C9A—C7107.8 (5)H21B—C21—H21C109.5
C10A—C9A—H9A110.1C20—C22—H22A109.5
C11A—C9A—H9A110.1C20—C22—H22B109.5
C7—C9A—H9A110.1H22A—C22—H22B109.5
C10B—C9B—C11B108.4 (17)C20—C22—H22C109.5
C10B—C9B—C7110.8 (17)H22A—C22—H22C109.5
C11B—C9B—C7103.5 (14)H22B—C22—H22C109.5
O2—S1—N1—C7174.7 (2)C8—C7—C9A—C11A66.9 (6)
O1—S1—N1—C745.0 (2)C9B—C7—C9A—C11A22.7 (11)
C1—S1—N1—C770.3 (2)N1—C7—C9B—C10B86.3 (18)
O5—S2—N2—C1850.0 (2)C8—C7—C9B—C10B159.4 (17)
O6—S2—N2—C18178.45 (19)C9A—C7—C9B—C10B58 (2)
C12—S2—N2—C1866.3 (2)N1—C7—C9B—C11B157.6 (14)
O2—S1—C1—C632.5 (3)C8—C7—C9B—C11B43.4 (15)
O1—S1—C1—C6164.8 (3)C9A—C7—C9B—C11B58.1 (13)
N1—S1—C1—C681.0 (3)O5—S2—C12—C172.4 (3)
O2—S1—C1—C2150.6 (3)O6—S2—C12—C17134.0 (3)
O1—S1—C1—C218.3 (3)N2—S2—C12—C17113.6 (3)
N1—S1—C1—C295.9 (3)O5—S2—C12—C13177.0 (3)
C6—C1—C2—C30.2 (6)O6—S2—C12—C1345.4 (3)
S1—C1—C2—C3176.7 (3)N2—S2—C12—C1367.0 (3)
C1—C2—C3—C40.5 (6)C17—C12—C13—C142.7 (7)
C2—C3—C4—C50.7 (7)S2—C12—C13—C14177.9 (4)
C3—C4—C5—C60.5 (7)C12—C13—C14—C151.6 (8)
C2—C1—C6—C50.0 (6)C13—C14—C15—C160.3 (10)
S1—C1—C6—C5176.9 (3)C14—C15—C16—C170.0 (10)
C4—C5—C6—C10.2 (7)C13—C12—C17—C162.5 (6)
S1—N1—C7—C884.3 (3)S2—C12—C17—C16178.1 (4)
S1—N1—C7—C9A145.6 (3)C15—C16—C17—C121.1 (8)
S1—N1—C7—C9B164.6 (6)S2—N2—C18—C1993.4 (2)
N1—C7—C8—O335.6 (5)S2—N2—C18—C20143.0 (2)
C9A—C7—C8—O397.1 (5)N2—C18—C19—O7138.6 (3)
C9B—C7—C8—O365.4 (8)C20—C18—C19—O798.4 (3)
N1—C7—C8—O4144.1 (3)N2—C18—C19—O841.7 (4)
C9A—C7—C8—O483.3 (4)C20—C18—C19—O881.3 (3)
C9B—C7—C8—O4114.9 (7)N2—C18—C20—C22176.9 (3)
N1—C7—C9A—C10A55.9 (7)C19—C18—C20—C2253.2 (4)
C8—C7—C9A—C10A173.9 (5)N2—C18—C20—C2159.7 (3)
C9B—C7—C9A—C10A96.6 (14)C19—C18—C20—C21176.6 (3)
N1—C7—C9A—C11A63.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8O···O30.85 (1)1.81 (1)2.649 (3)171 (6)
O4—H4O···O70.86 (1)1.83 (2)2.668 (3)166 (6)
N1—H1N···O1i0.81 (5)2.52 (5)3.322 (3)172 (5)
N2—H2N···O7i0.82 (5)2.47 (5)3.240 (3)157 (5)
N2—H2N···O80.82 (5)2.45 (5)2.734 (3)102 (4)
C2—H2···O3ii0.932.563.440 (4)158
C4—H4···O6iii0.932.543.427 (4)161
C14—H14···O2iv0.932.523.378 (5)154
C15—H15···O1v0.932.603.521 (5)173
C9A—H9A···O2v0.982.523.421 (7)153
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+2; (v) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC11H15NO4S
Mr257.30
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)5.4954 (3), 15.5097 (10), 15.5106 (9)
β (°) 94.043 (3)
V3)1318.71 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.37 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.914, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
9573, 4203, 3803
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.05
No. of reflections4203
No. of parameters335
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.18
Absolute structureFlack (1983), 1785 Friedel pairs
Absolute structure parameter0.00 (6)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999) and X-SEED (Barbour, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8O···O30.849 (10)1.806 (14)2.649 (3)171 (6)
O4—H4O···O70.859 (10)1.826 (18)2.668 (3)166 (6)
N1—H1N···O1i0.81 (5)2.52 (5)3.322 (3)172 (5)
N2—H2N···O7i0.82 (5)2.47 (5)3.240 (3)157 (5)
N2—H2N···O80.82 (5)2.45 (5)2.734 (3)102 (4)
C2—H2···O3ii0.932.563.440 (4)158
C4—H4···O6iii0.932.543.427 (4)161
C14—H14···O2iv0.932.523.378 (5)154
C15—H15···O1v0.932.603.521 (5)173
C9A—H9A···O2v0.982.523.421 (7)153
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z+2; (v) x, y+1/2, z+2.
 

Acknowledgements

The authors acknowledge the University of Sargodha for providing diffraction facilities at its Department of Physics.

References

First citationArshad, M. N., Danish, M., Tahir, M. N., Khalid, S. & Asiri, A. M. (2012). Acta Cryst. E68, o2573.  CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhan, I. U., Arshad, M. N., Mubashar-ur-Rehman, H., Harrison, W. T. A. & Ali, M. B. (2011). Acta Cryst. E67, o2325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNalam, M. N. L., Tim, A. K., Jonckers, H. M., Dierynck, I. & Schiffer, C. A. (2007). J. Virol. 81, 9512–9518.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds