organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2659-o2660

2,2-Di­phenyl-N-(2,4,5-tri­chloro­phen­yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 July 2012; accepted 2 August 2012; online 8 August 2012)

The asymmetric unit of the title compound, C20H14Cl3NO, consists of two independent mol­ecules. In one mol­ecule, the chlorinated benzene ring forms dihedral angles of 12.00 (9) and 77.04 (9)° with the phenyl rings. The dihedral angle between the phenyl rings is 80.37 (10)°. The corresponding dihedral angles for the other mol­ecule are 26.34 (10), 62.98 (10) and 88.47 (11)°, respectively. One of the mol­ecules features an intra­molecular C—H⋯O hydrogen bond, which forms an S(6) ring motif. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds into [100] chains. The chains are further linked by C—H⋯O and C—H⋯Cl hydrogen bonds into a three-dimensional network.

Related literature

For general background to and related structures of the title compound, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012a[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.],b[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14Cl3NO

  • Mr = 390.67

  • Orthorhombic, P b c a

  • a = 18.6630 (16) Å

  • b = 17.1713 (15) Å

  • c = 22.5648 (19) Å

  • V = 7231.3 (11) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 100 K

  • 0.38 × 0.14 × 0.11 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 0.946

  • 45180 measured reflections

  • 10676 independent reflections

  • 7536 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.02

  • 10676 reflections

  • 459 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Bi 0.78 (2) 2.09 (2) 2.8379 (19) 161 (2)
N1B—H1NB⋯O1A 0.84 (2) 1.94 (2) 2.7684 (19) 168 (2)
C7A—H7AA⋯O1Bi 1.00 2.33 3.234 (2) 151
C1B—H1BA⋯O1B 0.95 2.48 3.116 (3) 125
C3B—H3BA⋯O1Bii 0.95 2.42 3.368 (3) 172
C12B—H12B⋯Cl2Biii 0.95 2.82 3.641 (3) 145
C7B—H7BA⋯O1A 1.00 2.46 3.341 (2) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{5\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

The asymmetric unit (Fig. 1) of the title compound consists of two independent molecules (A and B), with comparable geometries. In molecule A, the benzene ring (C15A-C20A) forms dihedral angles of 12.00 (9) and 77.04 (9)° with two phenyl rings (C1A-C6A and C8A-C13A). The dihedral angle between two phenyl rings is 80.37 (10)°. The corresponding dihedral angles for molecule B are 26.34 (10), 62.98 (10) and 88.47 (11)°, respectively. Bond lengths and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a, 2011b, 2012a, 2012b). The molecular structure is stabilized by intramolecular C1B–H1BA···O1B hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked by N1A–H1NA···O1B, N1B–H1NB···O1A, C7A–H7AA···O1B, C3B–H3BA···O1B, C12B–H12B···Cl2B and C7B–H7BA···O1A hydrogen bonds (Table 1) into a three-dimensional network.

Related literature top

For general background to and related structures of the title compound, see: Fun et al. (2011a,b, 2012a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Diphenylacetic acid (0.212 g, 1 mmol), 2,4,5-trichloroaniline (0.196 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in the presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring. The concoction was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Colourless needles were grown from ethanol solution by the slow evaporation method (m.p.: 391-393K).

Refinement top

N-bound H atoms were located in a difference Fourier map and refined freely [N–H = 0.78 (2) or 0.84 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95 or 1.00 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2,2-Diphenyl-N-(2,4,5-trichlorophenyl)acetamide top
Crystal data top
C20H14Cl3NOF(000) = 3200
Mr = 390.67Dx = 1.435 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6747 reflections
a = 18.6630 (16) Åθ = 2.4–29.9°
b = 17.1713 (15) ŵ = 0.51 mm1
c = 22.5648 (19) ÅT = 100 K
V = 7231.3 (11) Å3Needle, colourless
Z = 160.38 × 0.14 × 0.11 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
10676 independent reflections
Radiation source: fine-focus sealed tube7536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 30.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2625
Tmin = 0.830, Tmax = 0.946k = 1524
45180 measured reflectionsl = 2831
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0465P)2 + 2.0216P]
where P = (Fo2 + 2Fc2)/3
10676 reflections(Δ/σ)max = 0.001
459 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C20H14Cl3NOV = 7231.3 (11) Å3
Mr = 390.67Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 18.6630 (16) ŵ = 0.51 mm1
b = 17.1713 (15) ÅT = 100 K
c = 22.5648 (19) Å0.38 × 0.14 × 0.11 mm
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
10676 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7536 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.946Rint = 0.076
45180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.52 e Å3
10676 reflectionsΔρmin = 0.49 e Å3
459 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.25176 (2)0.93641 (3)0.13414 (2)0.01907 (10)
Cl2A0.27575 (3)1.19747 (3)0.00787 (2)0.02842 (12)
Cl3A0.36832 (3)1.27469 (3)0.11150 (2)0.02949 (12)
O1A0.23516 (6)1.01068 (8)0.26465 (6)0.0181 (3)
N1A0.34664 (8)1.01920 (9)0.22602 (7)0.0137 (3)
C1A0.28328 (10)0.83104 (12)0.27665 (9)0.0210 (4)
H1AA0.27130.85900.24170.025*
C2A0.27020 (11)0.75132 (13)0.27947 (9)0.0246 (4)
H2AA0.24920.72560.24650.030*
C3A0.28742 (10)0.70921 (12)0.32957 (9)0.0236 (4)
H3AA0.27830.65480.33140.028*
C4A0.31836 (11)0.74771 (13)0.37728 (9)0.0265 (4)
H4AA0.33080.71940.41190.032*
C5A0.33122 (11)0.82721 (12)0.37473 (8)0.0217 (4)
H5AA0.35230.85270.40770.026*
C6A0.31349 (9)0.87024 (11)0.32420 (8)0.0150 (3)
C7A0.33187 (9)0.95686 (10)0.32258 (7)0.0131 (3)
H7AA0.38520.96150.31980.016*
C8A0.30808 (9)1.00164 (11)0.37751 (8)0.0149 (3)
C9A0.23862 (10)0.99421 (12)0.39993 (8)0.0208 (4)
H9AA0.20640.95780.38280.025*
C10A0.21668 (12)1.04027 (13)0.44749 (9)0.0281 (5)
H10A0.16921.03570.46230.034*
C11A0.26365 (14)1.09258 (14)0.47326 (9)0.0345 (6)
H11A0.24831.12410.50550.041*
C12A0.33262 (14)1.09906 (13)0.45230 (10)0.0323 (5)
H12A0.36511.13420.47060.039*
C13A0.35485 (11)1.05418 (12)0.40421 (9)0.0233 (4)
H13A0.40231.05950.38950.028*
C14A0.29980 (9)0.99760 (10)0.26836 (7)0.0129 (3)
C15A0.32606 (9)1.06227 (11)0.17496 (7)0.0135 (3)
C16A0.28376 (9)1.03068 (11)0.12995 (8)0.0148 (3)
C17A0.26736 (10)1.07342 (12)0.07947 (8)0.0185 (4)
H17A0.23791.05140.04950.022*
C18A0.29391 (10)1.14804 (12)0.07292 (8)0.0185 (4)
C19A0.33520 (10)1.18112 (11)0.11770 (8)0.0189 (4)
C20A0.35102 (9)1.13825 (11)0.16837 (8)0.0171 (4)
H20A0.37921.16110.19880.020*
Cl1B0.03020 (3)0.94169 (3)0.09896 (2)0.02343 (11)
Cl2B0.05234 (3)1.22599 (4)0.00236 (2)0.03695 (14)
Cl3B0.14530 (3)1.28165 (3)0.11307 (2)0.02957 (12)
O1B0.01287 (6)1.01048 (8)0.22632 (6)0.0165 (3)
N1B0.10563 (8)1.01476 (9)0.20494 (7)0.0149 (3)
C1B0.00063 (12)0.83378 (13)0.25576 (9)0.0279 (5)
H1BA0.02830.86750.23250.034*
C2B0.01116 (14)0.75387 (14)0.25393 (11)0.0385 (6)
H2BA0.04810.73320.22960.046*
C3B0.03066 (13)0.70482 (13)0.28732 (13)0.0423 (7)
H3BA0.02230.65030.28630.051*
C4B0.08436 (13)0.73425 (14)0.32218 (14)0.0465 (7)
H4BA0.11350.70010.34490.056*
C5B0.09604 (11)0.81390 (13)0.32417 (11)0.0333 (5)
H5BA0.13330.83400.34850.040*
C6B0.05443 (9)0.86469 (11)0.29132 (8)0.0187 (4)
C7B0.06907 (9)0.95122 (10)0.29632 (8)0.0144 (3)
H7BA0.12180.95760.30240.017*
C8B0.03170 (9)0.99156 (11)0.34826 (8)0.0171 (4)
C9B0.01905 (10)0.95404 (13)0.38322 (9)0.0249 (4)
H9BA0.03180.90160.37510.030*
C10B0.05113 (12)0.99360 (17)0.43017 (9)0.0370 (6)
H10B0.08530.96760.45430.044*
C11B0.03377 (13)1.06999 (18)0.44199 (10)0.0423 (7)
H11B0.05571.09650.47420.051*
C12B0.01588 (13)1.10794 (16)0.40664 (11)0.0413 (6)
H12B0.02761.16080.41420.050*
C13B0.04849 (12)1.06879 (13)0.36023 (10)0.0295 (5)
H13B0.08271.09510.33630.035*
C14B0.04969 (9)0.99439 (10)0.23948 (8)0.0133 (3)
C15B0.09611 (9)1.06242 (11)0.15425 (8)0.0151 (3)
C16B0.05996 (10)1.03687 (11)0.10398 (8)0.0169 (4)
C17B0.04756 (10)1.08745 (12)0.05716 (8)0.0220 (4)
H17B0.02201.07000.02330.026*
C18B0.07236 (10)1.16331 (12)0.05979 (8)0.0221 (4)
C19B0.11177 (10)1.18824 (11)0.10842 (9)0.0200 (4)
C20B0.12309 (9)1.13779 (11)0.15547 (8)0.0178 (4)
H20B0.14961.15500.18890.021*
H1NA0.3879 (12)1.0179 (13)0.2313 (10)0.024 (6)*
H1NB0.1474 (12)1.0101 (13)0.2186 (10)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0270 (2)0.0140 (2)0.0162 (2)0.00103 (17)0.00160 (17)0.00142 (16)
Cl2A0.0418 (3)0.0240 (3)0.0194 (2)0.0052 (2)0.0025 (2)0.00825 (19)
Cl3A0.0362 (3)0.0173 (2)0.0349 (3)0.0061 (2)0.0022 (2)0.0071 (2)
O1A0.0105 (6)0.0288 (8)0.0151 (6)0.0016 (5)0.0005 (5)0.0017 (5)
N1A0.0081 (7)0.0183 (8)0.0146 (7)0.0008 (6)0.0000 (5)0.0031 (6)
C1A0.0255 (9)0.0192 (10)0.0183 (9)0.0003 (8)0.0026 (8)0.0003 (7)
C2A0.0264 (10)0.0216 (11)0.0257 (10)0.0030 (8)0.0025 (8)0.0063 (8)
C3A0.0233 (9)0.0151 (10)0.0325 (11)0.0017 (8)0.0054 (8)0.0011 (8)
C4A0.0342 (11)0.0205 (11)0.0248 (11)0.0007 (9)0.0000 (8)0.0048 (8)
C5A0.0281 (10)0.0199 (10)0.0172 (9)0.0021 (8)0.0035 (8)0.0014 (8)
C6A0.0116 (7)0.0163 (9)0.0169 (9)0.0007 (7)0.0025 (6)0.0007 (7)
C7A0.0097 (7)0.0166 (9)0.0129 (8)0.0008 (6)0.0004 (6)0.0017 (7)
C8A0.0196 (8)0.0139 (9)0.0113 (8)0.0011 (7)0.0020 (6)0.0023 (6)
C9A0.0233 (9)0.0242 (11)0.0150 (9)0.0021 (8)0.0021 (7)0.0024 (8)
C10A0.0366 (12)0.0296 (12)0.0182 (10)0.0110 (10)0.0091 (8)0.0058 (8)
C11A0.0682 (17)0.0205 (12)0.0149 (10)0.0140 (11)0.0021 (10)0.0006 (8)
C12A0.0540 (15)0.0186 (11)0.0242 (11)0.0014 (10)0.0103 (10)0.0036 (9)
C13A0.0288 (10)0.0192 (10)0.0217 (10)0.0007 (8)0.0068 (8)0.0001 (8)
C14A0.0118 (7)0.0141 (9)0.0126 (8)0.0006 (6)0.0008 (6)0.0012 (6)
C15A0.0108 (7)0.0171 (9)0.0125 (8)0.0032 (6)0.0023 (6)0.0010 (7)
C16A0.0156 (8)0.0136 (9)0.0152 (8)0.0030 (7)0.0021 (6)0.0012 (7)
C17A0.0213 (9)0.0199 (10)0.0143 (9)0.0041 (7)0.0002 (7)0.0017 (7)
C18A0.0208 (9)0.0199 (10)0.0149 (9)0.0063 (7)0.0022 (7)0.0036 (7)
C19A0.0196 (9)0.0147 (9)0.0224 (9)0.0006 (7)0.0035 (7)0.0025 (7)
C20A0.0157 (8)0.0192 (10)0.0163 (9)0.0014 (7)0.0022 (7)0.0002 (7)
Cl1B0.0310 (2)0.0175 (2)0.0218 (2)0.00232 (19)0.00480 (19)0.00196 (18)
Cl2B0.0515 (3)0.0325 (3)0.0269 (3)0.0077 (3)0.0011 (2)0.0155 (2)
Cl3B0.0337 (3)0.0162 (2)0.0388 (3)0.0046 (2)0.0087 (2)0.0030 (2)
O1B0.0105 (5)0.0190 (7)0.0202 (7)0.0003 (5)0.0017 (5)0.0006 (5)
N1B0.0090 (7)0.0190 (8)0.0166 (8)0.0003 (6)0.0006 (6)0.0040 (6)
C1B0.0356 (11)0.0189 (11)0.0294 (11)0.0075 (9)0.0040 (9)0.0025 (8)
C2B0.0474 (14)0.0222 (12)0.0457 (14)0.0140 (11)0.0154 (11)0.0112 (10)
C3B0.0407 (13)0.0121 (11)0.0743 (19)0.0034 (10)0.0377 (13)0.0022 (11)
C4B0.0315 (12)0.0209 (13)0.087 (2)0.0072 (10)0.0160 (13)0.0204 (13)
C5B0.0228 (10)0.0209 (11)0.0562 (15)0.0019 (9)0.0001 (10)0.0132 (10)
C6B0.0165 (8)0.0146 (9)0.0249 (10)0.0015 (7)0.0077 (7)0.0009 (7)
C7B0.0106 (7)0.0141 (9)0.0184 (9)0.0005 (6)0.0000 (6)0.0014 (7)
C8B0.0156 (8)0.0194 (10)0.0165 (9)0.0049 (7)0.0047 (7)0.0011 (7)
C9B0.0220 (9)0.0321 (12)0.0207 (10)0.0073 (8)0.0013 (8)0.0046 (8)
C10B0.0299 (11)0.0636 (19)0.0175 (10)0.0184 (11)0.0025 (9)0.0057 (11)
C11B0.0391 (13)0.068 (2)0.0196 (11)0.0304 (13)0.0111 (10)0.0171 (11)
C12B0.0428 (14)0.0407 (15)0.0404 (14)0.0151 (12)0.0165 (11)0.0225 (12)
C13B0.0303 (11)0.0264 (12)0.0319 (12)0.0005 (9)0.0056 (9)0.0088 (9)
C14B0.0116 (7)0.0102 (8)0.0180 (8)0.0024 (6)0.0000 (6)0.0023 (6)
C15B0.0119 (8)0.0171 (9)0.0162 (8)0.0017 (7)0.0006 (6)0.0023 (7)
C16B0.0170 (8)0.0159 (9)0.0178 (9)0.0007 (7)0.0006 (7)0.0005 (7)
C17B0.0261 (10)0.0240 (11)0.0158 (9)0.0009 (8)0.0028 (7)0.0017 (8)
C18B0.0253 (10)0.0233 (11)0.0178 (9)0.0051 (8)0.0037 (7)0.0071 (8)
C19B0.0180 (8)0.0164 (10)0.0257 (10)0.0001 (7)0.0074 (7)0.0020 (8)
C20B0.0128 (8)0.0194 (10)0.0211 (9)0.0014 (7)0.0022 (7)0.0005 (7)
Geometric parameters (Å, º) top
Cl1A—C16A1.7280 (19)Cl1B—C16B1.730 (2)
Cl2A—C18A1.7290 (19)Cl2B—C18B1.7255 (19)
Cl3A—C19A1.727 (2)Cl3B—C19B1.725 (2)
O1A—C14A1.230 (2)O1B—C14B1.236 (2)
N1A—C14A1.347 (2)N1B—C14B1.349 (2)
N1A—C15A1.422 (2)N1B—C15B1.417 (2)
N1A—H1NA0.78 (2)N1B—H1NB0.84 (2)
C1A—C6A1.387 (3)C1B—C2B1.390 (3)
C1A—C2A1.392 (3)C1B—C6B1.391 (3)
C1A—H1AA0.9500C1B—H1BA0.9500
C2A—C3A1.380 (3)C2B—C3B1.373 (4)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.389 (3)C3B—C4B1.371 (4)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.387 (3)C4B—C5B1.386 (3)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.398 (3)C5B—C6B1.383 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.527 (2)C6B—C7B1.515 (3)
C7A—C8A1.525 (2)C7B—C14B1.525 (2)
C7A—C14A1.531 (2)C7B—C8B1.530 (2)
C7A—H7AA1.0000C7B—H7BA1.0000
C8A—C13A1.392 (3)C8B—C13B1.389 (3)
C8A—C9A1.397 (3)C8B—C9B1.391 (3)
C9A—C10A1.395 (3)C9B—C10B1.394 (3)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.383 (3)C10B—C11B1.377 (4)
C10A—H10A0.9500C10B—H10B0.9500
C11A—C12A1.376 (3)C11B—C12B1.385 (4)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.394 (3)C12B—C13B1.385 (3)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
C15A—C20A1.393 (3)C15B—C20B1.389 (3)
C15A—C16A1.396 (2)C15B—C16B1.391 (2)
C16A—C17A1.389 (3)C16B—C17B1.387 (3)
C17A—C18A1.382 (3)C17B—C18B1.384 (3)
C17A—H17A0.9500C17B—H17B0.9500
C18A—C19A1.392 (3)C18B—C19B1.389 (3)
C19A—C20A1.392 (3)C19B—C20B1.386 (3)
C20A—H20A0.9500C20B—H20B0.9500
C14A—N1A—C15A122.86 (14)C14B—N1B—C15B121.26 (15)
C14A—N1A—H1NA121.7 (17)C14B—N1B—H1NB118.6 (15)
C15A—N1A—H1NA113.9 (17)C15B—N1B—H1NB117.9 (15)
C6A—C1A—C2A120.89 (18)C2B—C1B—C6B120.5 (2)
C6A—C1A—H1AA119.6C2B—C1B—H1BA119.7
C2A—C1A—H1AA119.6C6B—C1B—H1BA119.7
C3A—C2A—C1A120.80 (19)C3B—C2B—C1B119.9 (2)
C3A—C2A—H2AA119.6C3B—C2B—H2BA120.0
C1A—C2A—H2AA119.6C1B—C2B—H2BA120.0
C2A—C3A—C4A118.83 (19)C4B—C3B—C2B120.3 (2)
C2A—C3A—H3AA120.6C4B—C3B—H3BA119.9
C4A—C3A—H3AA120.6C2B—C3B—H3BA119.9
C5A—C4A—C3A120.55 (19)C3B—C4B—C5B119.8 (2)
C5A—C4A—H4AA119.7C3B—C4B—H4BA120.1
C3A—C4A—H4AA119.7C5B—C4B—H4BA120.1
C4A—C5A—C6A120.85 (18)C6B—C5B—C4B121.1 (2)
C4A—C5A—H5AA119.6C6B—C5B—H5BA119.4
C6A—C5A—H5AA119.6C4B—C5B—H5BA119.4
C1A—C6A—C5A118.08 (18)C5B—C6B—C1B118.3 (2)
C1A—C6A—C7A123.08 (16)C5B—C6B—C7B118.50 (18)
C5A—C6A—C7A118.76 (16)C1B—C6B—C7B123.21 (17)
C8A—C7A—C6A113.98 (14)C6B—C7B—C14B111.80 (15)
C8A—C7A—C14A107.78 (14)C6B—C7B—C8B114.76 (15)
C6A—C7A—C14A112.10 (14)C14B—C7B—C8B108.43 (14)
C8A—C7A—H7AA107.6C6B—C7B—H7BA107.2
C6A—C7A—H7AA107.6C14B—C7B—H7BA107.2
C14A—C7A—H7AA107.6C8B—C7B—H7BA107.2
C13A—C8A—C9A118.95 (18)C13B—C8B—C9B119.05 (19)
C13A—C8A—C7A119.73 (16)C13B—C8B—C7B118.58 (17)
C9A—C8A—C7A121.23 (16)C9B—C8B—C7B122.36 (18)
C10A—C9A—C8A119.9 (2)C8B—C9B—C10B119.9 (2)
C10A—C9A—H9AA120.0C8B—C9B—H9BA120.1
C8A—C9A—H9AA120.0C10B—C9B—H9BA120.1
C11A—C10A—C9A120.4 (2)C11B—C10B—C9B120.7 (2)
C11A—C10A—H10A119.8C11B—C10B—H10B119.7
C9A—C10A—H10A119.8C9B—C10B—H10B119.7
C12A—C11A—C10A120.1 (2)C10B—C11B—C12B119.6 (2)
C12A—C11A—H11A120.0C10B—C11B—H11B120.2
C10A—C11A—H11A120.0C12B—C11B—H11B120.2
C11A—C12A—C13A120.1 (2)C13B—C12B—C11B120.1 (2)
C11A—C12A—H12A120.0C13B—C12B—H12B120.0
C13A—C12A—H12A120.0C11B—C12B—H12B120.0
C8A—C13A—C12A120.6 (2)C12B—C13B—C8B120.7 (2)
C8A—C13A—H13A119.7C12B—C13B—H13B119.6
C12A—C13A—H13A119.7C8B—C13B—H13B119.6
O1A—C14A—N1A122.55 (16)O1B—C14B—N1B122.29 (16)
O1A—C14A—C7A121.42 (15)O1B—C14B—C7B122.34 (15)
N1A—C14A—C7A116.03 (14)N1B—C14B—C7B115.37 (14)
C20A—C15A—C16A118.39 (16)C20B—C15B—C16B119.08 (17)
C20A—C15A—N1A118.89 (16)C20B—C15B—N1B118.45 (16)
C16A—C15A—N1A122.68 (16)C16B—C15B—N1B122.46 (17)
C17A—C16A—C15A121.05 (17)C17B—C16B—C15B120.31 (18)
C17A—C16A—Cl1A117.62 (14)C17B—C16B—Cl1B119.22 (15)
C15A—C16A—Cl1A121.32 (14)C15B—C16B—Cl1B120.47 (14)
C18A—C17A—C16A119.91 (18)C18B—C17B—C16B120.06 (18)
C18A—C17A—H17A120.0C18B—C17B—H17B120.0
C16A—C17A—H17A120.0C16B—C17B—H17B120.0
C17A—C18A—C19A119.95 (17)C17B—C18B—C19B120.09 (17)
C17A—C18A—Cl2A118.41 (15)C17B—C18B—Cl2B118.85 (15)
C19A—C18A—Cl2A121.63 (15)C19B—C18B—Cl2B121.06 (16)
C20A—C19A—C18A119.87 (18)C20B—C19B—C18B119.56 (18)
C20A—C19A—Cl3A118.87 (15)C20B—C19B—Cl3B118.63 (15)
C18A—C19A—Cl3A121.26 (15)C18B—C19B—Cl3B121.79 (15)
C19A—C20A—C15A120.80 (17)C19B—C20B—C15B120.78 (18)
C19A—C20A—H20A119.6C19B—C20B—H20B119.6
C15A—C20A—H20A119.6C15B—C20B—H20B119.6
C6A—C1A—C2A—C3A0.4 (3)C6B—C1B—C2B—C3B0.2 (3)
C1A—C2A—C3A—C4A0.2 (3)C1B—C2B—C3B—C4B0.4 (3)
C2A—C3A—C4A—C5A0.5 (3)C2B—C3B—C4B—C5B0.6 (4)
C3A—C4A—C5A—C6A0.1 (3)C3B—C4B—C5B—C6B0.2 (4)
C2A—C1A—C6A—C5A0.8 (3)C4B—C5B—C6B—C1B0.4 (3)
C2A—C1A—C6A—C7A177.36 (17)C4B—C5B—C6B—C7B178.9 (2)
C4A—C5A—C6A—C1A0.5 (3)C2B—C1B—C6B—C5B0.6 (3)
C4A—C5A—C6A—C7A177.25 (17)C2B—C1B—C6B—C7B178.70 (18)
C1A—C6A—C7A—C8A134.20 (17)C5B—C6B—C7B—C14B150.94 (17)
C5A—C6A—C7A—C8A49.2 (2)C1B—C6B—C7B—C14B29.8 (2)
C1A—C6A—C7A—C14A11.4 (2)C5B—C6B—C7B—C8B85.0 (2)
C5A—C6A—C7A—C14A172.01 (16)C1B—C6B—C7B—C8B94.3 (2)
C6A—C7A—C8A—C13A134.90 (17)C6B—C7B—C8B—C13B172.77 (17)
C14A—C7A—C8A—C13A99.99 (19)C14B—C7B—C8B—C13B61.4 (2)
C6A—C7A—C8A—C9A48.6 (2)C6B—C7B—C8B—C9B8.2 (2)
C14A—C7A—C8A—C9A76.5 (2)C14B—C7B—C8B—C9B117.61 (18)
C13A—C8A—C9A—C10A1.4 (3)C13B—C8B—C9B—C10B1.3 (3)
C7A—C8A—C9A—C10A175.14 (17)C7B—C8B—C9B—C10B179.69 (17)
C8A—C9A—C10A—C11A1.0 (3)C8B—C9B—C10B—C11B0.8 (3)
C9A—C10A—C11A—C12A0.5 (3)C9B—C10B—C11B—C12B0.3 (3)
C10A—C11A—C12A—C13A1.4 (3)C10B—C11B—C12B—C13B0.9 (3)
C9A—C8A—C13A—C12A0.4 (3)C11B—C12B—C13B—C8B0.4 (3)
C7A—C8A—C13A—C12A176.15 (18)C9B—C8B—C13B—C12B0.7 (3)
C11A—C12A—C13A—C8A1.0 (3)C7B—C8B—C13B—C12B179.76 (18)
C15A—N1A—C14A—O1A3.2 (3)C15B—N1B—C14B—O1B6.1 (3)
C15A—N1A—C14A—C7A175.56 (16)C15B—N1B—C14B—C7B173.02 (16)
C8A—C7A—C14A—O1A53.7 (2)C6B—C7B—C14B—O1B77.7 (2)
C6A—C7A—C14A—O1A72.6 (2)C8B—C7B—C14B—O1B49.8 (2)
C8A—C7A—C14A—N1A125.16 (16)C6B—C7B—C14B—N1B103.22 (18)
C6A—C7A—C14A—N1A108.62 (17)C8B—C7B—C14B—N1B129.28 (16)
C14A—N1A—C15A—C20A113.08 (19)C14B—N1B—C15B—C20B110.5 (2)
C14A—N1A—C15A—C16A69.2 (2)C14B—N1B—C15B—C16B68.5 (2)
C20A—C15A—C16A—C17A0.6 (3)C20B—C15B—C16B—C17B3.6 (3)
N1A—C15A—C16A—C17A177.11 (16)N1B—C15B—C16B—C17B175.38 (17)
C20A—C15A—C16A—Cl1A179.03 (13)C20B—C15B—C16B—Cl1B176.16 (14)
N1A—C15A—C16A—Cl1A1.3 (2)N1B—C15B—C16B—Cl1B4.8 (2)
C15A—C16A—C17A—C18A0.9 (3)C15B—C16B—C17B—C18B1.2 (3)
Cl1A—C16A—C17A—C18A177.56 (14)Cl1B—C16B—C17B—C18B178.54 (15)
C16A—C17A—C18A—C19A2.0 (3)C16B—C17B—C18B—C19B2.1 (3)
C16A—C17A—C18A—Cl2A176.97 (14)C16B—C17B—C18B—Cl2B176.94 (15)
C17A—C18A—C19A—C20A1.5 (3)C17B—C18B—C19B—C20B3.1 (3)
Cl2A—C18A—C19A—C20A177.41 (14)Cl2B—C18B—C19B—C20B175.99 (14)
C17A—C18A—C19A—Cl3A179.15 (14)C17B—C18B—C19B—Cl3B178.72 (15)
Cl2A—C18A—C19A—Cl3A2.0 (2)Cl2B—C18B—C19B—Cl3B2.2 (2)
C18A—C19A—C20A—C15A0.1 (3)C18B—C19B—C20B—C15B0.6 (3)
Cl3A—C19A—C20A—C15A179.32 (13)Cl3B—C19B—C20B—C15B178.91 (14)
C16A—C15A—C20A—C19A1.1 (3)C16B—C15B—C20B—C19B2.7 (3)
N1A—C15A—C20A—C19A176.72 (16)N1B—C15B—C20B—C19B176.36 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.78 (2)2.09 (2)2.8379 (19)161 (2)
N1B—H1NB···O1A0.84 (2)1.94 (2)2.7684 (19)168 (2)
C7A—H7AA···O1Bi1.002.333.234 (2)151
C1B—H1BA···O1B0.952.483.116 (3)125
C3B—H3BA···O1Bii0.952.423.368 (3)172
C12B—H12B···Cl2Biii0.952.823.641 (3)145
C7B—H7BA···O1A1.002.463.341 (2)147
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H14Cl3NO
Mr390.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)18.6630 (16), 17.1713 (15), 22.5648 (19)
V3)7231.3 (11)
Z16
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.38 × 0.14 × 0.11
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.830, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
45180, 10676, 7536
Rint0.076
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.02
No. of reflections10676
No. of parameters459
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.78 (2)2.09 (2)2.8379 (19)161 (2)
N1B—H1NB···O1A0.84 (2)1.94 (2)2.7684 (19)168 (2)
C7A—H7AA···O1Bi1.002.333.234 (2)151
C1B—H1BA···O1B0.952.483.116 (3)125
C3B—H3BA···O1Bii0.952.423.368 (3)172
C12B—H12B···Cl2Biii0.952.823.641 (3)145
C7B—H7BA···O1A1.002.463.341 (2)147
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+5/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP-DRS-Phase 1 programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2659-o2660
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds