organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(1,5-Di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)-2-[4-(methyl­sulfan­yl)phen­yl]acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 July 2012; accepted 3 August 2012; online 11 August 2012)

In the title compound, C20H21N3O2S, the 2,3-dihydro-1H-pyrazole ring is nearly planar (r.m.s. deviation = 0.023 Å) and forms dihedral angles of 16.96 (6) and 38.93 (6)° with the benzene and phenyl rings, respectively. The dihedral angle between the benzene and phenyl rings is 55.54 (6)°. The mol­ecular conformation is consolidated by an intra­molecular C—H⋯O hydrogen bond, which forms an S(6) ring. In the crystal, inversion dimers linked by pairs of N—H⋯Op (p = pyrazole) hydrogen bonds generate R22(10) loops. The dimers are linked by C—H⋯O hydrogen bonds into sheets lying parallel to (100).

Related literature

For general background to the title compound and for related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012a[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.],b[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.]). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H21N3O2S

  • Mr = 367.46

  • Monoclinic, P 21 /c

  • a = 14.9176 (8) Å

  • b = 6.6527 (4) Å

  • c = 19.5792 (10) Å

  • β = 110.689 (1)°

  • V = 1817.78 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 100 K

  • 0.37 × 0.18 × 0.07 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.931, Tmax = 0.987

  • 19714 measured reflections

  • 5302 independent reflections

  • 4231 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.03

  • 5302 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.880 (19) 1.956 (19) 2.7816 (14) 155.7 (19)
C1—H1A⋯O1 0.95 2.38 3.0185 (16) 124
C1—H1A⋯O1ii 0.95 2.51 3.2342 (16) 133
C7—H7A⋯O1iii 0.99 2.57 3.4960 (16) 155
C19—H19B⋯O2iv 0.98 2.55 3.4470 (17) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the 1H-pyrazol-4-yl ring (N2/N3/C9-C11) is nearly planar (r.m.s. deviation = 0.023 Å) and it forms dihedral angles of 16.96 (6) and 38.93 (6)° with the benzene (C1-C6) and phenyl (C12-C17) rings, respectively. The dihedral angle between the benzene and phenyl rings is 55.54 (6)°. Bond lengths and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a, 2011b, 2012a, 2012b). The molecular structure is stabilized by intramolecular C1–H1A···O1 hydrogen bond, forming an S(6) ring motif (Bernstein et al., 1995).

In the crystal structure, Fig. 2, molecules are linked via N1–H1N1···O2, C1–H1A···O1, C7–H7A···O1 and C19–H19B···O2 hydrogen bonds (Table 1) into two-dimensional plane parallel to (100) which contains R22 (10) ring motifs (Bernstein et al., 1995).

Related literature top

For general background to the title compound and for related structures, see: Fun et al. (2011a,b, 2012a,b). For the stability of the temperature controller used in the the data collection, see: Cosier & Glazer (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

[4-(Methylsulfanyl)phenyl]acetic acid (0.182 g, 1 mmol), 4-amino antipyrine (0.205 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring. The concoction was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Yellow plates were grown from an acetone and toluene (1:1) solvent mixture by the slow evaporation method (m.p.: 415-418 K).

Refinement top

Atom H1N1 was located in a difference Fourier map and refined freely [N–H = 0.878 (19) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.95-0.99 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N-(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)- 2-[4-(methylsulfanyl)phenyl]acetamide top
Crystal data top
C20H21N3O2SF(000) = 776
Mr = 367.46Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5722 reflections
a = 14.9176 (8) Åθ = 2.9–30.0°
b = 6.6527 (4) ŵ = 0.20 mm1
c = 19.5792 (10) ÅT = 100 K
β = 110.689 (1)°Plate, yellow
V = 1817.78 (17) Å30.37 × 0.18 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5302 independent reflections
Radiation source: fine-focus sealed tube4231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2021
Tmin = 0.931, Tmax = 0.987k = 99
19714 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.594P]
where P = (Fo2 + 2Fc2)/3
5302 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C20H21N3O2SV = 1817.78 (17) Å3
Mr = 367.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9176 (8) ŵ = 0.20 mm1
b = 6.6527 (4) ÅT = 100 K
c = 19.5792 (10) Å0.37 × 0.18 × 0.07 mm
β = 110.689 (1)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
5302 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4231 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.987Rint = 0.033
19714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.42 e Å3
5302 reflectionsΔρmin = 0.52 e Å3
242 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90518 (2)1.11552 (8)0.26045 (2)0.03908 (13)
O10.48783 (6)0.70169 (15)0.28728 (5)0.0201 (2)
O20.37745 (6)0.49368 (14)0.45147 (5)0.01838 (19)
N10.54078 (7)0.67806 (17)0.41084 (6)0.0162 (2)
N20.35044 (7)1.00817 (16)0.41536 (5)0.0153 (2)
N30.31713 (7)0.81906 (16)0.42879 (5)0.0155 (2)
C10.67740 (8)0.8798 (2)0.29532 (7)0.0182 (2)
H1A0.61350.92220.28660.022*
C20.73958 (9)1.0064 (2)0.27714 (7)0.0201 (3)
H2A0.71781.13440.25640.024*
C30.83366 (8)0.9474 (2)0.28906 (6)0.0210 (3)
C40.86425 (8)0.7580 (2)0.31933 (6)0.0215 (3)
H4A0.92780.71480.32710.026*
C50.80202 (8)0.6324 (2)0.33817 (7)0.0189 (3)
H5A0.82400.50500.35940.023*
C60.70736 (8)0.6908 (2)0.32626 (6)0.0162 (2)
C70.64106 (8)0.5462 (2)0.34610 (7)0.0184 (2)
H7A0.62510.43230.31130.022*
H7B0.67500.49140.39560.022*
C80.54900 (8)0.64688 (19)0.34457 (6)0.0155 (2)
C90.45856 (8)0.7725 (2)0.41579 (6)0.0153 (2)
C100.43573 (8)0.9695 (2)0.40415 (6)0.0154 (2)
C110.38429 (8)0.6706 (2)0.43345 (6)0.0154 (2)
C120.24277 (8)0.8087 (2)0.45811 (6)0.0158 (2)
C130.18356 (9)0.6400 (2)0.44282 (7)0.0200 (3)
H13A0.19340.53400.41370.024*
C140.10982 (10)0.6290 (2)0.47079 (8)0.0251 (3)
H14A0.06960.51380.46130.030*
C150.09484 (9)0.7850 (2)0.51241 (7)0.0261 (3)
H15A0.04390.77740.53080.031*
C160.15406 (9)0.9525 (2)0.52726 (7)0.0233 (3)
H16A0.14351.05930.55570.028*
C170.22911 (9)0.9648 (2)0.50060 (6)0.0194 (3)
H17A0.27041.07840.51140.023*
C181.02279 (10)1.0805 (3)0.32583 (8)0.0324 (3)
H18A1.06491.18770.32050.049*
H18B1.04780.94990.31770.049*
H18C1.02031.08460.37520.049*
C190.48791 (9)1.1329 (2)0.38237 (7)0.0186 (2)
H19A0.55651.10160.39980.028*
H19B0.47791.26010.40390.028*
H19C0.46381.14500.32910.028*
C200.27706 (9)1.1291 (2)0.36089 (7)0.0188 (2)
H20A0.30651.25110.35020.028*
H20B0.22701.16630.38010.028*
H20C0.24881.05060.31600.028*
H1N10.5810 (13)0.620 (3)0.4501 (10)0.031 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02042 (17)0.0570 (3)0.0355 (2)0.00826 (17)0.00457 (14)0.0233 (2)
O10.0176 (4)0.0252 (5)0.0164 (4)0.0004 (4)0.0046 (3)0.0015 (4)
O20.0222 (4)0.0140 (4)0.0196 (4)0.0002 (4)0.0083 (3)0.0024 (4)
N10.0167 (4)0.0162 (5)0.0159 (4)0.0036 (4)0.0061 (4)0.0030 (4)
N20.0169 (4)0.0120 (5)0.0180 (4)0.0002 (4)0.0074 (4)0.0023 (4)
N30.0175 (4)0.0124 (5)0.0193 (5)0.0008 (4)0.0098 (4)0.0018 (4)
C10.0162 (5)0.0194 (6)0.0187 (5)0.0012 (5)0.0058 (4)0.0004 (5)
C20.0193 (5)0.0208 (7)0.0190 (5)0.0003 (5)0.0054 (4)0.0011 (5)
C30.0164 (5)0.0305 (8)0.0156 (5)0.0043 (5)0.0049 (4)0.0005 (5)
C40.0148 (5)0.0324 (8)0.0169 (5)0.0016 (5)0.0051 (4)0.0004 (5)
C50.0181 (5)0.0220 (7)0.0163 (5)0.0031 (5)0.0056 (4)0.0004 (5)
C60.0166 (5)0.0173 (6)0.0155 (5)0.0002 (5)0.0067 (4)0.0020 (5)
C70.0181 (5)0.0166 (6)0.0232 (6)0.0017 (5)0.0104 (4)0.0003 (5)
C80.0155 (5)0.0132 (6)0.0188 (5)0.0020 (4)0.0071 (4)0.0012 (5)
C90.0166 (5)0.0157 (6)0.0147 (5)0.0007 (4)0.0068 (4)0.0007 (5)
C100.0161 (5)0.0168 (6)0.0138 (5)0.0003 (4)0.0058 (4)0.0001 (5)
C110.0167 (5)0.0155 (6)0.0135 (5)0.0004 (4)0.0050 (4)0.0002 (4)
C120.0153 (5)0.0188 (6)0.0140 (5)0.0006 (5)0.0060 (4)0.0021 (5)
C130.0210 (5)0.0186 (6)0.0218 (6)0.0016 (5)0.0092 (4)0.0007 (5)
C140.0227 (6)0.0248 (7)0.0309 (7)0.0054 (5)0.0133 (5)0.0023 (6)
C150.0232 (6)0.0341 (8)0.0258 (6)0.0004 (6)0.0147 (5)0.0036 (6)
C160.0245 (6)0.0299 (8)0.0180 (5)0.0018 (6)0.0108 (5)0.0033 (5)
C170.0193 (5)0.0220 (7)0.0167 (5)0.0014 (5)0.0060 (4)0.0024 (5)
C180.0195 (6)0.0420 (10)0.0339 (7)0.0062 (6)0.0071 (5)0.0014 (7)
C190.0197 (5)0.0159 (6)0.0227 (6)0.0010 (5)0.0105 (4)0.0020 (5)
C200.0191 (5)0.0170 (6)0.0199 (5)0.0021 (5)0.0063 (4)0.0036 (5)
Geometric parameters (Å, º) top
S1—C31.7679 (14)C7—H7B0.9900
S1—C181.7844 (14)C9—C101.3534 (18)
O1—C81.2251 (14)C9—C111.4413 (16)
O2—C111.2432 (15)C10—C191.4843 (17)
N1—C81.3617 (15)C12—C171.3898 (18)
N1—C91.4115 (15)C12—C131.3936 (18)
N1—H1N10.878 (19)C13—C141.3933 (17)
N2—C101.3893 (14)C13—H13A0.9500
N2—N31.4112 (14)C14—C151.386 (2)
N2—C201.4690 (15)C14—H14A0.9500
N3—C111.3867 (16)C15—C161.387 (2)
N3—C121.4194 (14)C15—H15A0.9500
C1—C21.3892 (18)C16—C171.3946 (17)
C1—C61.3985 (18)C16—H16A0.9500
C1—H1A0.9500C17—H17A0.9500
C2—C31.3952 (17)C18—H18A0.9800
C2—H2A0.9500C18—H18B0.9800
C3—C41.399 (2)C18—H18C0.9800
C4—C51.3919 (18)C19—H19A0.9800
C4—H4A0.9500C19—H19B0.9800
C5—C61.4024 (16)C19—H19C0.9800
C5—H5A0.9500C20—H20A0.9800
C6—C71.5252 (17)C20—H20B0.9800
C7—C81.5187 (16)C20—H20C0.9800
C7—H7A0.9900
C3—S1—C18103.92 (7)C9—C10—C19129.15 (11)
C8—N1—C9120.41 (10)N2—C10—C19120.82 (11)
C8—N1—H1N1120.2 (12)O2—C11—N3124.27 (11)
C9—N1—H1N1118.4 (12)O2—C11—C9131.34 (11)
C10—N2—N3105.49 (10)N3—C11—C9104.36 (10)
C10—N2—C20118.41 (10)C17—C12—C13120.95 (11)
N3—N2—C20113.73 (9)C17—C12—N3120.44 (11)
C11—N3—N2110.70 (9)C13—C12—N3118.60 (11)
C11—N3—C12126.05 (11)C14—C13—C12119.11 (13)
N2—N3—C12119.72 (10)C14—C13—H13A120.4
C2—C1—C6121.05 (11)C12—C13—H13A120.4
C2—C1—H1A119.5C15—C14—C13120.34 (13)
C6—C1—H1A119.5C15—C14—H14A119.8
C1—C2—C3120.65 (13)C13—C14—H14A119.8
C1—C2—H2A119.7C14—C15—C16120.13 (12)
C3—C2—H2A119.7C14—C15—H15A119.9
C2—C3—C4118.86 (12)C16—C15—H15A119.9
C2—C3—S1116.94 (11)C15—C16—C17120.30 (13)
C4—C3—S1124.14 (9)C15—C16—H16A119.8
C5—C4—C3120.31 (11)C17—C16—H16A119.8
C5—C4—H4A119.8C12—C17—C16119.15 (13)
C3—C4—H4A119.8C12—C17—H17A120.4
C4—C5—C6121.08 (13)C16—C17—H17A120.4
C4—C5—H5A119.5S1—C18—H18A109.5
C6—C5—H5A119.5S1—C18—H18B109.5
C1—C6—C5118.04 (11)H18A—C18—H18B109.5
C1—C6—C7122.72 (10)S1—C18—H18C109.5
C5—C6—C7119.23 (12)H18A—C18—H18C109.5
C8—C7—C6112.33 (11)H18B—C18—H18C109.5
C8—C7—H7A109.1C10—C19—H19A109.5
C6—C7—H7A109.1C10—C19—H19B109.5
C8—C7—H7B109.1H19A—C19—H19B109.5
C6—C7—H7B109.1C10—C19—H19C109.5
H7A—C7—H7B107.9H19A—C19—H19C109.5
O1—C8—N1122.58 (11)H19B—C19—H19C109.5
O1—C8—C7121.68 (11)N2—C20—H20A109.5
N1—C8—C7115.70 (10)N2—C20—H20B109.5
C10—C9—N1126.34 (11)H20A—C20—H20B109.5
C10—C9—C11109.09 (10)N2—C20—H20C109.5
N1—C9—C11124.57 (11)H20A—C20—H20C109.5
C9—C10—N2110.03 (11)H20B—C20—H20C109.5
C10—N2—N3—C116.12 (12)N1—C9—C10—C191.3 (2)
C20—N2—N3—C11137.50 (10)C11—C9—C10—C19177.91 (11)
C10—N2—N3—C12166.16 (10)N3—N2—C10—C94.81 (12)
C20—N2—N3—C1262.45 (13)C20—N2—C10—C9133.47 (11)
C6—C1—C2—C30.30 (19)N3—N2—C10—C19175.01 (10)
C1—C2—C3—C40.31 (19)C20—N2—C10—C1946.35 (16)
C1—C2—C3—S1177.43 (10)N2—N3—C11—O2173.15 (11)
C18—S1—C3—C2146.76 (11)C12—N3—C11—O214.66 (19)
C18—S1—C3—C436.29 (13)N2—N3—C11—C94.94 (12)
C2—C3—C4—C50.98 (19)C12—N3—C11—C9163.44 (11)
S1—C3—C4—C5177.88 (10)C10—C9—C11—O2176.02 (12)
C3—C4—C5—C61.06 (19)N1—C9—C11—O24.7 (2)
C2—C1—C6—C50.24 (18)C10—C9—C11—N31.88 (13)
C2—C1—C6—C7179.19 (11)N1—C9—C11—N3177.38 (10)
C4—C5—C6—C10.43 (18)C11—N3—C12—C17130.20 (13)
C4—C5—C6—C7178.55 (11)N2—N3—C12—C1726.55 (16)
C1—C6—C7—C812.81 (16)C11—N3—C12—C1350.36 (17)
C5—C6—C7—C8168.25 (11)N2—N3—C12—C13152.89 (11)
C9—N1—C8—O11.55 (19)C17—C12—C13—C140.03 (19)
C9—N1—C8—C7179.33 (11)N3—C12—C13—C14179.46 (11)
C6—C7—C8—O169.15 (15)C12—C13—C14—C150.9 (2)
C6—C7—C8—N1108.66 (12)C13—C14—C15—C160.8 (2)
C8—N1—C9—C1072.32 (17)C14—C15—C16—C170.1 (2)
C8—N1—C9—C11106.81 (14)C13—C12—C17—C160.90 (18)
N1—C9—C10—N2178.87 (10)N3—C12—C17—C16178.52 (11)
C11—C9—C10—N21.88 (13)C15—C16—C17—C120.99 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.880 (19)1.956 (19)2.7816 (14)155.7 (19)
C1—H1A···O10.952.383.0185 (16)124
C1—H1A···O1ii0.952.513.2342 (16)133
C7—H7A···O1iii0.992.573.4960 (16)155
C19—H19B···O2iv0.982.553.4470 (17)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H21N3O2S
Mr367.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.9176 (8), 6.6527 (4), 19.5792 (10)
β (°) 110.689 (1)
V3)1817.78 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.37 × 0.18 × 0.07
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
19714, 5302, 4231
Rint0.033
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.03
No. of reflections5302
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.52

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.880 (19)1.956 (19)2.7816 (14)155.7 (19)
C1—H1A···O10.952.383.0185 (16)124
C1—H1A···O1ii0.952.513.2342 (16)133
C7—H7A···O1iii0.992.573.4960 (16)155
C19—H19B···O2iv0.982.553.4470 (17)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase 1 programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds