organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-N-(1,3-thia­zol-2-yl)acetamide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 31 July 2012; accepted 3 August 2012; online 11 August 2012)

In the title compound, C11H9ClN2OS, the thia­zole ring is nearly planar (r.m.s. deviation = 0.003 Å) and forms a dihedral angle of 64.18 (7)° with the bezene ring. In the crystal, inversion dimers linked by pairs of N—H⋯Nt (t = thia­zole) hydrogen bonds generate R22(8) loops.

Related literature

For general background to the title compound and for related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012a[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.],b[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9ClN2OS

  • Mr = 252.71

  • Monoclinic, P 21 /c

  • a = 13.9169 (13) Å

  • b = 5.5188 (5) Å

  • c = 15.1836 (14) Å

  • β = 100.311 (2)°

  • V = 1147.34 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.35 × 0.29 × 0.18 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.918

  • 11463 measured reflections

  • 3421 independent reflections

  • 2769 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.116

  • S = 1.02

  • 3421 reflections

  • 149 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯N1i 0.866 (18) 2.096 (18) 2.9606 (16) 176.2 (17)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of amides (Fun et al., 2011a, 2011b, 2012a, 2012b), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the thiazol-2-yl ring (S1/N1/C1-C3) is nearly planar (r.m.s. deviation = 0.003 Å) and it forms a dihedral angle of 64.18 (7)° with the bezene ring (C6-C11). Bond lengths and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a, 2011b, 2012a, 2012b).

In the crystal structure, Fig. 2, molecules are linked into an inversion dimer by pairs of N2–H1N2···N1 hydrogen bonds (Table 1), generating R22(8) ring motifs (Bernstein et al., 1995).

Related literature top

For general background to the title compound and for related structures, see: Fun et al. (2011a,b, 2012a,b). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-Chlorophenylacetic acid (0.170 g, 1 mmol), 2-aminothiazole (0.1 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring. The resulting solution was extracted thrice with dichloromethane. The organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Orange blocks were grown from an acetone and toluene (1:1) solvent mixture by the slow evaporation method (m.p.: 441K).

Refinement top

Atom H1N2 was located in a difference Fourier map and refined freely [N–H = 0.868 (19) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 or 0.97 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(4-Chlorophenyl)-N-(1,3-thiazol-2-yl)acetamide top
Crystal data top
C11H9ClN2OSF(000) = 520
Mr = 252.71Dx = 1.463 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4547 reflections
a = 13.9169 (13) Åθ = 2.7–30.3°
b = 5.5188 (5) ŵ = 0.49 mm1
c = 15.1836 (14) ÅT = 296 K
β = 100.311 (2)°Block, orange
V = 1147.34 (18) Å30.35 × 0.29 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3421 independent reflections
Radiation source: fine-focus sealed tube2769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.847, Tmax = 0.918k = 77
11463 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0629P)2 + 0.2113P]
where P = (Fo2 + 2Fc2)/3
3421 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H9ClN2OSV = 1147.34 (18) Å3
Mr = 252.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9169 (13) ŵ = 0.49 mm1
b = 5.5188 (5) ÅT = 296 K
c = 15.1836 (14) Å0.35 × 0.29 × 0.18 mm
β = 100.311 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
3421 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2769 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.918Rint = 0.020
11463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
3421 reflectionsΔρmin = 0.29 e Å3
149 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20822 (3)0.54220 (12)0.82496 (4)0.08193 (19)
S10.39710 (3)1.03306 (7)1.11917 (3)0.04855 (13)
O10.23806 (7)0.8565 (2)1.00294 (8)0.0547 (3)
N10.53067 (8)0.7454 (2)1.08411 (8)0.0444 (3)
N20.37558 (8)0.6335 (2)1.00962 (8)0.0410 (2)
C10.51611 (12)1.0855 (3)1.16882 (11)0.0530 (4)
H1A0.53651.21151.20850.064*
C20.57568 (11)0.9199 (3)1.14263 (11)0.0503 (3)
H2A0.64290.92231.16260.060*
C30.43688 (9)0.7846 (2)1.06618 (8)0.0370 (3)
C40.27847 (9)0.6768 (2)0.98005 (9)0.0409 (3)
C50.22953 (11)0.4817 (3)0.91743 (12)0.0508 (4)
H5A0.25470.49020.86190.061*
H5B0.24730.32480.94420.061*
C60.11993 (10)0.4988 (2)0.89603 (9)0.0396 (3)
C70.06207 (10)0.3160 (2)0.92138 (9)0.0425 (3)
H7A0.09160.18350.95310.051*
C80.03890 (11)0.3270 (3)0.90033 (10)0.0458 (3)
H8A0.07730.20370.91740.055*
C90.08118 (10)0.5259 (3)0.85331 (9)0.0457 (3)
C100.02621 (11)0.7100 (3)0.82739 (9)0.0501 (3)
H10A0.05620.84220.79580.060*
C110.07454 (11)0.6961 (3)0.84901 (9)0.0465 (3)
H11A0.11240.82040.83190.056*
H1N20.4009 (14)0.518 (3)0.9827 (12)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0398 (2)0.1231 (5)0.0797 (3)0.0207 (2)0.0020 (2)0.0027 (3)
S10.0515 (2)0.03917 (19)0.0564 (2)0.00832 (14)0.01343 (16)0.00790 (14)
O10.0402 (5)0.0473 (6)0.0736 (7)0.0117 (4)0.0022 (5)0.0138 (5)
N10.0366 (5)0.0441 (6)0.0521 (6)0.0018 (5)0.0068 (5)0.0104 (5)
N20.0334 (5)0.0361 (5)0.0530 (6)0.0044 (4)0.0067 (5)0.0074 (5)
C10.0612 (9)0.0455 (8)0.0523 (8)0.0065 (7)0.0099 (7)0.0129 (6)
C20.0433 (7)0.0531 (8)0.0529 (8)0.0051 (6)0.0044 (6)0.0103 (6)
C30.0374 (6)0.0328 (6)0.0418 (6)0.0036 (5)0.0098 (5)0.0006 (5)
C40.0347 (6)0.0398 (6)0.0480 (7)0.0047 (5)0.0069 (5)0.0009 (5)
C50.0387 (7)0.0504 (8)0.0615 (9)0.0064 (6)0.0041 (6)0.0147 (7)
C60.0377 (6)0.0405 (6)0.0388 (6)0.0062 (5)0.0016 (5)0.0073 (5)
C70.0460 (7)0.0368 (6)0.0422 (6)0.0087 (5)0.0012 (5)0.0007 (5)
C80.0445 (7)0.0466 (7)0.0465 (7)0.0006 (6)0.0085 (6)0.0025 (6)
C90.0369 (6)0.0582 (8)0.0395 (6)0.0115 (6)0.0003 (5)0.0069 (6)
C100.0560 (8)0.0472 (8)0.0421 (7)0.0150 (6)0.0051 (6)0.0032 (6)
C110.0524 (8)0.0415 (7)0.0437 (7)0.0003 (6)0.0033 (6)0.0019 (5)
Geometric parameters (Å, º) top
Cl1—C91.7455 (15)C5—C61.5045 (19)
S1—C11.7170 (17)C5—H5A0.9700
S1—C31.7300 (13)C5—H5B0.9700
O1—C41.2211 (16)C6—C71.388 (2)
N1—C31.3029 (17)C6—C111.3904 (19)
N1—C21.3820 (18)C7—C81.386 (2)
N2—C41.3666 (16)C7—H7A0.9300
N2—C31.3778 (17)C8—C91.382 (2)
N2—H1N20.868 (19)C8—H8A0.9300
C1—C21.341 (2)C9—C101.371 (2)
C1—H1A0.9300C10—C111.384 (2)
C2—H2A0.9300C10—H10A0.9300
C4—C51.515 (2)C11—H11A0.9300
C1—S1—C388.50 (7)C4—C5—H5B108.6
C3—N1—C2109.91 (12)H5A—C5—H5B107.6
C4—N2—C3124.38 (11)C7—C6—C11118.63 (13)
C4—N2—H1N2115.8 (12)C7—C6—C5120.71 (13)
C3—N2—H1N2118.8 (12)C11—C6—C5120.65 (14)
C2—C1—S1110.73 (12)C8—C7—C6121.25 (13)
C2—C1—H1A124.6C8—C7—H7A119.4
S1—C1—H1A124.6C6—C7—H7A119.4
C1—C2—N1115.61 (14)C9—C8—C7118.34 (14)
C1—C2—H2A122.2C9—C8—H8A120.8
N1—C2—H2A122.2C7—C8—H8A120.8
N1—C3—N2121.01 (11)C10—C9—C8121.92 (13)
N1—C3—S1115.24 (10)C10—C9—Cl1118.92 (11)
N2—C3—S1123.75 (10)C8—C9—Cl1119.15 (13)
O1—C4—N2121.81 (13)C9—C10—C11118.98 (13)
O1—C4—C5125.28 (12)C9—C10—H10A120.5
N2—C4—C5112.91 (11)C11—C10—H10A120.5
C6—C5—C4114.56 (11)C10—C11—C6120.88 (14)
C6—C5—H5A108.6C10—C11—H11A119.6
C4—C5—H5A108.6C6—C11—H11A119.6
C6—C5—H5B108.6
C3—S1—C1—C20.48 (13)C4—C5—C6—C7116.45 (15)
S1—C1—C2—N10.8 (2)C4—C5—C6—C1164.72 (19)
C3—N1—C2—C10.7 (2)C11—C6—C7—C80.3 (2)
C2—N1—C3—N2179.52 (13)C5—C6—C7—C8178.55 (13)
C2—N1—C3—S10.32 (16)C6—C7—C8—C90.1 (2)
C4—N2—C3—N1172.65 (13)C7—C8—C9—C100.0 (2)
C4—N2—C3—S18.23 (19)C7—C8—C9—Cl1179.30 (11)
C1—S1—C3—N10.08 (12)C8—C9—C10—C110.0 (2)
C1—S1—C3—N2179.09 (12)Cl1—C9—C10—C11179.33 (11)
C3—N2—C4—O10.6 (2)C9—C10—C11—C60.2 (2)
C3—N2—C4—C5179.13 (13)C7—C6—C11—C100.3 (2)
O1—C4—C5—C610.4 (2)C5—C6—C11—C10178.52 (13)
N2—C4—C5—C6169.89 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.866 (18)2.096 (18)2.9606 (16)176.2 (17)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H9ClN2OS
Mr252.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.9169 (13), 5.5188 (5), 15.1836 (14)
β (°) 100.311 (2)
V3)1147.34 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.35 × 0.29 × 0.18
Data collection
DiffractometerBruker SMART APEXII DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.847, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
11463, 3421, 2769
Rint0.020
(sin θ/λ)max1)0.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.116, 1.02
No. of reflections3421
No. of parameters149
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···N1i0.866 (18)2.096 (18)2.9606 (16)176.2 (17)
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN also thanks the UGC, New Delhi, and the Government of India for the purchase of chemicals through the SAP–DRS-Phase 1 programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o1385.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2461.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds