organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Meth­­oxy-N′-[(pyridin-4-yl)methyl­­idene]benzohydrazide monohydrate

aAtta-ur-Rahman Research Institute for Natural Products Discovery (RiND), Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, bFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 6 August 2012; accepted 8 August 2012; online 25 August 2012)

In the title compound, C14H13N3O2·H2O, the azomethine double bond adopts an E conformation and the N—N=C—C torsion angle is 178.37 (19)°. The dihedral angle between the benzene and pyridine rings is 5.58 (12)° and the C atom of the meth­oxy group is roughly coplanar with its attached ring [deviation = 0.157 (3) Å]. In the crystal, the components are linked by O—H⋯O, O—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds, forming (001) sheets. The water O atom accepts one N—H⋯O and two C—H⋯O inter­actions from the adjacent organic mol­ecule.

Related literature

For the biological activity of benzohydraazides, see: Bayrak et al. (2009[Bayrak, H., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362-4366.]). For the crystal structures of related benzohydrazides, see: Taha et al. (2012)[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012). Acta Cryst. E68, o2780.]; Fun et al. (2011[Fun, H.-K., Promdet, P., Chantrapromma, S., Horkaew, J. & Karalai, C. (2011). Acta Cryst. E67, o3370-o3371.]); Lu et al. (2009[Lu, J.-F., Min, S.-T., Ge, H.-G. & Ji, X.-H. (2009). Acta Cryst. E65, o2301.]); Zhang (2009a[Zhang, X. (2009a). Acta Cryst. E65, o1388.],b[Zhang, X. (2009b). Acta Cryst. E65, o2200.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O2·H2O

  • Mr = 273.29

  • Monoclinic, P 21 /c

  • a = 6.6878 (5) Å

  • b = 7.0420 (5) Å

  • c = 29.249 (2) Å

  • β = 94.233 (2)°

  • V = 1373.74 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.20 × 0.17 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.991

  • 7767 measured reflections

  • 2560 independent reflections

  • 1548 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.146

  • S = 1.03

  • 2560 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1⋯O1i 0.84 2.00 2.811 (2) 162
O1W—H2⋯N3ii 0.91 2.11 2.956 (3) 154
N1—H1A⋯O1W 0.86 2.08 2.911 (2) 161
C1—H1B⋯O1W 0.93 2.54 3.440 (3) 162
C8—H8A⋯O1W 0.93 2.48 3.272 (3) 143
C11—H11A⋯O2iii 0.93 2.47 3.375 (3) 165
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The diverse structural features and wide range of biological activities make Benzohydrazides as an importent class of organic compounds. The title compound is an structure analogue of Benzohydrazide, synthesize as a part of our ongoing research to study their varoius biological activities. The structure of title compound (Fig. 1) is similar to that of our recently published benzohydrazide derivative (E)-N'-(3,4-Dimethoxybenzylidene)-4-methoxybenzohydrazide (Taha et al., 2012, Pv2573) with the difference that 3,4-dimethoxy phenyl ring is replaced by pyridine ring (N3/C9–C13). The azomethine (C=N,1.269 (3) Å) double bond adopt an E conformation (Fig. 1) with the torsion angle of 178.3 (19)° (N1–N2–C8–C9). Phenyl and pyridine rings (C1–C6 and N3/C9–C13) have a dihedral angle of 5.58 (12)° between them and maximum deviation of 0.006 (3) Å for C13 atoms from the root mean square plane. The bond lengths and angle were found to be similar as in structurally realted compounds (Fun et al., 2011, Lu et al., 2009, Zhang et al., 2009). In the crystal structure molecules are consolidated by C11—H11A···O2 intermolecular hydrogen bonds (Fig.2) and extended to form a two-dimensional-network due to O1W—H1···O1 and O1W—H2···N3 (symmetry codes as in Table 2) intermolecular linkages made by water solvates (Fig. 2).

Related literature top

For the biological activity of benzohydraazides, see: Bayrak et al. (2009). For the crystal structures of related benzohydrazides, see: Taha et al. (2012); Fun et al. (2011); Lu et al. (2009); Zhang (2009a,b).

Experimental top

A mixture of 2 mmol of 4-methoxybenzohydrazide (0.332 g), 2 mmol isonicotinaldehyde (0.214 g) and catalytical amount of acetic acid was refluxed in methanol (20 ml) for 3 h. The progress of reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford the crude product, which was dissolved and recrystallized from methanol to obtain colourless blocks (0.418 g in 82% yield).

Refinement top

H atoms on Methyl, phenyl, methine, nitrogen and water were positioned geometrically with C—H = 0.95 Å, CH3 = 0.93 Å, NH = 0.86 Å and O–H = 0.83–0.90 Å and constrained to ride on their parent atoms with Uiso(H)= 1.5Ueq(CH3, OH) and 1.2Ueq(CH, NH). A rotating group model was applied to the methyl group.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at 30% probability level.

Fig. 2. The crystal packing of the title compound I. Only hydrogen atoms involved in hydrogen bonding are shown.
(E)-4-Methoxy-N'-[(pyridin-4-yl)methylidene]benzohydrazide monohydrate top
Crystal data top
C14H13N3O2·H2OF(000) = 576
Mr = 273.29Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6878 (5) ÅCell parameters from 1112 reflections
b = 7.0420 (5) Åθ = 2.8–22.8°
c = 29.249 (2) ŵ = 0.10 mm1
β = 94.233 (2)°T = 273 K
V = 1373.74 (17) Å3Block, colourless
Z = 40.20 × 0.17 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2560 independent reflections
Radiation source: fine-focus sealed tube1548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scanθmax = 25.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.981, Tmax = 0.991k = 78
7767 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
2560 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H13N3O2·H2OV = 1373.74 (17) Å3
Mr = 273.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6878 (5) ŵ = 0.10 mm1
b = 7.0420 (5) ÅT = 273 K
c = 29.249 (2) Å0.20 × 0.17 × 0.10 mm
β = 94.233 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2560 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1548 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.038
7767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.16 e Å3
2560 reflectionsΔρmin = 0.20 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0974 (2)0.3345 (3)0.05572 (5)0.0607 (6)
O20.6325 (2)0.1818 (3)0.10876 (5)0.0590 (5)
N10.3945 (3)0.3260 (3)0.09758 (6)0.0446 (5)
H1A0.52200.30830.09850.053*
N20.3018 (3)0.3646 (3)0.13646 (6)0.0436 (5)
N30.1587 (4)0.5223 (4)0.29858 (7)0.0662 (7)
C10.5874 (3)0.2320 (3)0.01504 (7)0.0413 (6)
H1B0.66400.22060.04280.050*
C20.6754 (3)0.1988 (3)0.02547 (7)0.0424 (6)
H2A0.81020.16590.02500.051*
C30.5623 (3)0.2146 (3)0.06665 (7)0.0424 (6)
C40.3619 (3)0.2658 (4)0.06705 (8)0.0513 (7)
H4A0.28580.27730.09480.062*
C50.2756 (3)0.2993 (3)0.02691 (8)0.0462 (6)
H5A0.14120.33400.02770.055*
C60.3867 (3)0.2821 (3)0.01516 (7)0.0380 (5)
C70.2800 (3)0.3160 (3)0.05702 (7)0.0411 (6)
C80.4126 (4)0.3827 (4)0.17334 (7)0.0469 (6)
H8A0.55060.36630.17320.056*
C90.3230 (3)0.4292 (3)0.21603 (7)0.0429 (6)
C100.4319 (4)0.4088 (4)0.25789 (8)0.0544 (7)
H10A0.56300.36390.25920.065*
C110.3438 (5)0.4556 (4)0.29754 (9)0.0650 (8)
H11A0.41890.43950.32530.078*
C120.0554 (4)0.5413 (4)0.25821 (9)0.0580 (7)
H12A0.07470.58800.25800.070*
C130.1279 (4)0.4965 (4)0.21676 (8)0.0499 (6)
H13A0.04760.51100.18960.060*
C140.8422 (4)0.1550 (5)0.11117 (9)0.0640 (8)
H14A0.87060.13330.14240.096*
H14B0.88520.04730.09290.096*
H14C0.91240.26630.09980.096*
O1W0.8218 (2)0.2877 (3)0.12291 (5)0.0657 (6)
H10.92240.29940.10780.098*
H20.87000.21030.14610.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0361 (10)0.1027 (16)0.0440 (10)0.0027 (10)0.0085 (7)0.0049 (9)
O20.0496 (10)0.0914 (15)0.0373 (9)0.0042 (10)0.0115 (8)0.0133 (9)
N10.0347 (10)0.0645 (15)0.0357 (11)0.0026 (10)0.0104 (8)0.0015 (9)
N20.0415 (11)0.0552 (13)0.0352 (11)0.0018 (10)0.0111 (9)0.0016 (9)
N30.0749 (17)0.0805 (18)0.0450 (14)0.0011 (14)0.0167 (12)0.0098 (12)
C10.0384 (13)0.0493 (15)0.0358 (12)0.0007 (11)0.0012 (10)0.0032 (10)
C20.0360 (13)0.0508 (16)0.0410 (13)0.0012 (11)0.0057 (10)0.0028 (11)
C30.0419 (13)0.0485 (15)0.0378 (13)0.0085 (11)0.0102 (10)0.0054 (11)
C40.0428 (14)0.075 (2)0.0359 (14)0.0049 (13)0.0009 (10)0.0017 (12)
C50.0340 (13)0.0624 (18)0.0424 (14)0.0034 (12)0.0034 (10)0.0007 (12)
C60.0378 (12)0.0403 (14)0.0366 (12)0.0053 (11)0.0068 (9)0.0025 (10)
C70.0370 (13)0.0488 (16)0.0379 (13)0.0027 (11)0.0057 (10)0.0049 (11)
C80.0394 (13)0.0605 (17)0.0416 (14)0.0046 (12)0.0084 (11)0.0005 (12)
C90.0454 (14)0.0469 (16)0.0370 (13)0.0016 (12)0.0074 (10)0.0001 (11)
C100.0537 (15)0.0636 (19)0.0456 (15)0.0042 (14)0.0016 (11)0.0006 (13)
C110.081 (2)0.077 (2)0.0368 (15)0.0004 (17)0.0010 (13)0.0006 (13)
C120.0553 (16)0.0642 (19)0.0560 (17)0.0004 (14)0.0137 (13)0.0108 (14)
C130.0504 (15)0.0574 (17)0.0423 (14)0.0025 (13)0.0059 (11)0.0048 (12)
C140.0565 (17)0.087 (2)0.0516 (16)0.0062 (16)0.0226 (13)0.0059 (14)
O1W0.0371 (9)0.1143 (17)0.0465 (10)0.0079 (10)0.0095 (7)0.0166 (10)
Geometric parameters (Å, º) top
O1—C71.226 (2)C5—H5A0.9300
O2—C31.370 (3)C6—C71.481 (3)
O2—C141.422 (3)C8—C91.462 (3)
N1—N21.362 (2)C8—H8A0.9300
N1—C71.365 (3)C9—C101.385 (3)
N1—H1A0.8600C9—C131.390 (3)
N2—C81.269 (3)C10—C111.379 (3)
N3—C111.326 (3)C10—H10A0.9300
N3—C121.330 (3)C11—H11A0.9300
C1—C21.382 (3)C12—C131.375 (3)
C1—C61.388 (3)C12—H12A0.9300
C1—H1B0.9300C13—H13A0.9300
C2—C31.379 (3)C14—H14A0.9600
C2—H2A0.9300C14—H14B0.9600
C3—C41.387 (3)C14—H14C0.9600
C4—C51.367 (3)O1W—H10.8361
C4—H4A0.9300O1W—H20.9098
C5—C61.395 (3)
C3—O2—C14118.14 (18)N1—C7—C6116.9 (2)
N2—N1—C7118.33 (18)N2—C8—C9119.9 (2)
N2—N1—H1A120.8N2—C8—H8A120.1
C7—N1—H1A120.8C9—C8—H8A120.1
C8—N2—N1117.12 (19)C10—C9—C13117.0 (2)
C11—N3—C12116.1 (2)C10—C9—C8120.7 (2)
C2—C1—C6121.2 (2)C13—C9—C8122.3 (2)
C2—C1—H1B119.4C11—C10—C9119.3 (2)
C6—C1—H1B119.4C11—C10—H10A120.3
C3—C2—C1119.6 (2)C9—C10—H10A120.3
C3—C2—H2A120.2N3—C11—C10124.1 (3)
C1—C2—H2A120.2N3—C11—H11A117.9
O2—C3—C2124.7 (2)C10—C11—H11A117.9
O2—C3—C4115.6 (2)N3—C12—C13124.5 (3)
C2—C3—C4119.7 (2)N3—C12—H12A117.8
C5—C4—C3120.5 (2)C13—C12—H12A117.8
C5—C4—H4A119.8C12—C13—C9119.0 (2)
C3—C4—H4A119.8C12—C13—H13A120.5
C4—C5—C6120.8 (2)C9—C13—H13A120.5
C4—C5—H5A119.6O2—C14—H14A109.5
C6—C5—H5A119.6O2—C14—H14B109.5
C1—C6—C5118.2 (2)H14A—C14—H14B109.5
C1—C6—C7124.6 (2)O2—C14—H14C109.5
C5—C6—C7117.2 (2)H14A—C14—H14C109.5
O1—C7—N1121.0 (2)H14B—C14—H14C109.5
O1—C7—C6122.1 (2)H1—O1W—H2101.5
C7—N1—N2—C8176.5 (2)C1—C6—C7—O1169.8 (2)
C6—C1—C2—C30.3 (3)C5—C6—C7—O19.2 (3)
C14—O2—C3—C29.1 (3)C1—C6—C7—N110.1 (3)
C14—O2—C3—C4171.4 (2)C5—C6—C7—N1170.9 (2)
C1—C2—C3—O2178.8 (2)N1—N2—C8—C9178.37 (19)
C1—C2—C3—C40.7 (4)N2—C8—C9—C10165.7 (2)
O2—C3—C4—C5179.1 (2)N2—C8—C9—C1314.8 (4)
C2—C3—C4—C50.4 (4)C13—C9—C10—C110.2 (4)
C3—C4—C5—C60.3 (4)C8—C9—C10—C11179.4 (2)
C2—C1—C6—C50.4 (3)C12—N3—C11—C100.8 (4)
C2—C1—C6—C7178.6 (2)C9—C10—C11—N30.7 (4)
C4—C5—C6—C10.7 (4)C11—N3—C12—C130.1 (4)
C4—C5—C6—C7178.4 (2)N3—C12—C13—C91.0 (4)
N2—N1—C7—O12.6 (3)C10—C9—C13—C121.0 (4)
N2—N1—C7—C6177.42 (18)C8—C9—C13—C12178.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O1i0.842.002.811 (2)162
O1W—H2···N3ii0.912.112.956 (3)154
N1—H1A···O1W0.862.082.911 (2)161
C1—H1B···O1W0.932.543.440 (3)162
C8—H8A···O1W0.932.483.272 (3)143
C11—H11A···O2iii0.932.473.375 (3)165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O2·H2O
Mr273.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)6.6878 (5), 7.0420 (5), 29.249 (2)
β (°) 94.233 (2)
V3)1373.74 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.17 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
7767, 2560, 1548
Rint0.038
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 1.03
No. of reflections2560
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O1i0.842.002.811 (2)162
O1W—H2···N3ii0.912.112.956 (3)154
N1—H1A···O1W0.862.082.911 (2)161
C1—H1B···O1W0.932.543.440 (3)162
C8—H8A···O1W0.932.483.272 (3)143
C11—H11A···O2iii0.932.473.375 (3)165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z+1/2.
 

References

First citationBayrak, H., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362–4366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Promdet, P., Chantrapromma, S., Horkaew, J. & Karalai, C. (2011). Acta Cryst. E67, o3370–o3371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ge, H.-G. & Ji, X.-H. (2009). Acta Cryst. E65, o2301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012). Acta Cryst. E68, o2780.  CrossRef IUCr Journals Google Scholar
First citationZhang, X. (2009a). Acta Cryst. E65, o1388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X. (2009b). Acta Cryst. E65, o2200.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds