metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1187-m1188

Tri­carbonylbis­(tri­phenyl­phosphane-κP)iridium(I) hexa­fluoridophosphate methanol monosolvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
*Correspondence e-mail: EngelbrechtI@ufs.ac.za

(Received 7 August 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, [Ir(C18H15P)2(CO)3]PF6·CH3OH, the IrI atom is coordinated by two triphenyl­phosphine ligands in axial sites and three carbonyl ligands in the equatorial plane of a fairly regular trigonal bipyramid: the equatorial C—Ir—C angles range from 115.45 (9) to 126.42 (10)°. The small deviations from the ideal tetra­hedral geometry around the P atoms are illustrated by C—P—C angles ranging from 104.08 (9) to 106.46 (9)°. In the crystal, the mol­ecules are linked by weak C—H⋯F, C—H⋯O and C—H⋯π inter­actions.

Related literature

For related complexes, see: Randall et al. (1991[Randall, S. L., Thompson, J. S., Buttrey, L. A., Ziller, J. W., Churchill, M. R. & Atwood, J. D. (1991). Organometallics, 10, 683-688.], 1994[Randall, S. L., Miller, C. A., See, R. F., Churchill, M. R., Janik, T. S., Lake, C. H. & Atwood, J. D. (1994). Organometallics, 13, 5088-5095.]); Raper & McDonald (1973[Raper, G. & McDonald, W. S. (1973). Acta Cryst. B29, 2013-2014.]). For other P-donor ligands, see: Purcell et al. (1995[Purcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153-156.]); Otto & Roodt (2001[Otto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49-52.]); Otto et al. (2005[Otto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337-4342.]); Muller et al. (2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004[Haumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679-1686.]); Crous et al. (2005[Crous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108-1116.]); Booyens et al. (2007[Booyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508-5512.]); Ferreira et al. (2007[Ferreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273-2275.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C18H15P)2(CO)3]PF6·CH4O

  • Mr = 977.80

  • Monoclinic, P 21 /c

  • a = 16.487 (5) Å

  • b = 13.571 (4) Å

  • c = 20.903 (5) Å

  • β = 125.297 (5)°

  • V = 3817 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.69 mm−1

  • T = 100 K

  • 0.18 × 0.14 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.556, Tmax = 0.809

  • 68611 measured reflections

  • 9501 independent reflections

  • 8699 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.044

  • S = 1.03

  • 9501 reflections

  • 489 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯F3i 0.95 2.39 3.281 (3) 157
C16—H16⋯F6i 0.95 2.53 3.319 (3) 141
C42—H42⋯F6i 0.95 2.38 3.138 (3) 136
C43—H43⋯F2i 0.95 2.49 3.386 (3) 158
C45—H45⋯O01ii 0.95 2.50 3.281 (3) 139
C64—H64⋯F4iii 0.95 2.47 3.200 (3) 133
O01—H01⋯F3i 0.84 2.27 3.059 (3) 157
C53—H53⋯Cg1iv 0.95 2.68 3.523 (2) 148
C35—H35⋯Cg3iv 0.95 2.91 3.587 (2) 129
C13—H13⋯Cg2v 0.95 2.97 3.744 (2) 140
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+1, -z+1; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

P donor ligands (Muller et al., 2008; Purcell et al., 1995; Otto et al., 2005; Otto & Roodt, 2001) form part of ongoing research in different catalytic olefin transformation reactions such as hydroformylation (Haumann et al., 2004; Crous et al., 2005), metathesis (Booyens et al., 2007) and methoxycarbonylation (Ferreira et al., 2007). As part of our studies in this area, we now describe the structure of the title compound: all bond distances and angles fall within the range for similar complexes (Randall et al. 1991, 1994; Raper & McDonald, 1973).

The main fragment of the crystal structure of the title compound, [Ir(CO)3(PPh3)2](PF6).MeOH, was originally reported by Randall et al., 1991, in the trigonal form, crystallizing in the space group R3 with hydrogen sulfate as counter ion. In this case, the Ir(I) complex (Figure 1) crystallizes with one hexafluoridophosphate anion and a methanol solvent molecule in the P21/c spacegroup. The trigonal bipyramidal complex consists of three carbonyl groups in the equatorial plane and two triphenylphosphine ligands in the axial plane.

Similar Ir—P distances (2.3620 (8) and 2.3599 (8) Å) and P1—Ir—P2 angle of 177.047 (18) ° make the phosphine ligands equally trans. Ir—C3 distance of 1.947 (2) Å is slightly longer than for Ir—C1 and Ir—C2 distances, both equal to 1.938 (2) Å. Ir—C—O angles are close to linear (175.6 (2) - 178.8 (2) °) and C—O distances range from 1.107 (3) - 1.135 (3) Å, with C3—O3 distance the shortest. Angles between the equatorial ligands show some distortion with C2—Ir1—C3 = 115.45 (9) ° and C1—Ir1—C3 = 118.13 (9) ° compared to C2—Ir1—C1 = 126.42 (10) °. C—P—C angles range from 104.07 (9) - 106.46 (9) ° illustrating the distorted tetrahedral geometry around the P atoms.

In the crystal, weak C—H···F, C—H···O and C—H···π, interactions link the molecules into a supra-molecular network (Table 1).

Related literature top

For related complexes, see: Randall et al. (1991, 1994); Raper & McDonald (1973). For other P-donor ligands, see: Purcell et al. (1995); Otto & Roodt (2001); Otto et al. (2005); Muller et al. (2008). For their use in catalytic olefin transformation reactions, see: Haumann et al. (2004); Crous et al. (2005); Booyens et al. (2007); Ferreira et al. (2007).

Experimental top

CO was bubbled through a solution of [Ir(COD)(PPh3)2]PF6 (cod = 1,5-cyclooctadiene) (50.0 mg, 0.0515 mmol) in benzene while the mixture was vigorously stirred under gentle reflux. Rapid displacement of COD occurs after which all solvents were evaporated. The product was filtered after the addition of methanol and diethyl ether. Slow evaporation of methanol solution gave yellow blocks. (Yield: 40.1 mg, 82%)

Refinement top

The methine and aromatic H atoms were placed in geometrically idealized positions at C—H = 1.00 and 0.95 Å, respectively and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest peak is located 0.79 Å from Ir1 and the deepest hole is situated 0.79 Å from F4.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.
Tricarbonylbis(triphenylphosphane-κP)iridium(I) hexafluoridophosphate methanol monosolvate top
Crystal data top
[Ir(C18H15P)2(CO)3]PF6·CH4OF(000) = 1928
Mr = 977.80Dx = 1.701 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 9817 reflections
a = 16.487 (5) Åθ = 2.6–28.3°
b = 13.571 (4) ŵ = 3.69 mm1
c = 20.903 (5) ÅT = 100 K
β = 125.297 (5)°Block, yellow
V = 3817 (2) Å30.18 × 0.14 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
8699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2119
Tmin = 0.556, Tmax = 0.809k = 1815
68611 measured reflectionsl = 2727
9501 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0153P)2 + 4.3801P]
where P = (Fo2 + 2Fc2)/3
9501 reflections(Δ/σ)max = 0.004
489 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[Ir(C18H15P)2(CO)3]PF6·CH4OV = 3817 (2) Å3
Mr = 977.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.487 (5) ŵ = 3.69 mm1
b = 13.571 (4) ÅT = 100 K
c = 20.903 (5) Å0.18 × 0.14 × 0.06 mm
β = 125.297 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
9501 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
8699 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.809Rint = 0.037
68611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.044H-atom parameters constrained
S = 1.03Δρmax = 1.01 e Å3
9501 reflectionsΔρmin = 0.75 e Å3
489 parameters
Special details top

Experimental. The intensity data were collected on a Bruker X8 ApexII 4 K Kappa CCD diffractometer using an exposure time of ?? s/frame. A total of ??? frames were collected with a frame width of 0.5\ % covering up to θ = 28.0 ° with 99.9% completeness accomplished.

Spectroscopy data: 1H NMR (300 MHz, (CD3)2CO): δ = 7.5–7.8 (m, 30H). 31P NMR (121 MHz, (CD3)2CO): δ = -1.6 (s), -143.0 (m, PF6). ν(CO): 1989, 2008, 2025 cm-1.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.85491 (15)0.69659 (15)0.67007 (13)0.0193 (4)
C010.6389 (2)0.5239 (2)0.77777 (18)0.0440 (7)
H01A0.62370.59430.77390.066*
H01B0.57810.48730.740.066*
H01C0.68810.51320.76630.066*
C20.70334 (17)0.63622 (15)0.47318 (13)0.0203 (4)
C30.64299 (15)0.57286 (14)0.59226 (12)0.0171 (4)
C110.84576 (14)0.41711 (14)0.68487 (11)0.0147 (4)
C120.85577 (16)0.31492 (15)0.68521 (12)0.0183 (4)
H120.84980.28320.64220.022*
C130.87431 (16)0.25962 (15)0.74810 (13)0.0209 (4)
H130.88080.19010.74790.025*
C140.88347 (16)0.30508 (16)0.81104 (13)0.0216 (4)
H140.89630.26680.8540.026*
C150.87397 (17)0.40654 (17)0.81152 (13)0.0238 (5)
H150.88060.43780.8550.029*
C160.85477 (16)0.46261 (15)0.74836 (12)0.0194 (4)
H160.84780.53210.74860.023*
C210.95198 (14)0.51021 (14)0.62908 (12)0.0143 (4)
C221.03624 (15)0.46978 (15)0.69615 (13)0.0199 (4)
H221.03080.43530.73310.024*
C231.12827 (16)0.48030 (17)0.70857 (14)0.0257 (5)
H231.18590.45310.75430.031*
C241.13651 (16)0.52994 (16)0.65505 (14)0.0239 (5)
H241.19950.53580.66370.029*
C251.05332 (17)0.57136 (16)0.58874 (14)0.0227 (4)
H251.05940.60590.55220.027*
C260.96128 (16)0.56221 (15)0.57591 (12)0.0189 (4)
H260.90440.59140.53090.023*
C310.77070 (15)0.40644 (14)0.52184 (11)0.0153 (4)
C320.82977 (17)0.34357 (15)0.51186 (13)0.0186 (4)
H320.90010.3480.54610.022*
C330.78507 (18)0.27437 (16)0.45141 (14)0.0236 (5)
H330.82510.23130.44480.028*
C340.68332 (19)0.26832 (17)0.40143 (14)0.0273 (5)
H340.65330.22090.36050.033*
C350.62365 (18)0.33144 (17)0.41046 (13)0.0261 (5)
H350.55330.32740.37550.031*
C360.66749 (16)0.39985 (16)0.47064 (13)0.0207 (4)
H360.6270.44250.47710.025*
C410.60501 (15)0.81216 (14)0.60849 (12)0.0162 (4)
C420.66416 (16)0.78861 (16)0.68786 (12)0.0201 (4)
H420.72430.75320.70920.024*
C430.63557 (17)0.81664 (18)0.73602 (13)0.0254 (5)
H430.67610.80060.79020.03*
C440.54769 (18)0.86814 (17)0.70476 (15)0.0273 (5)
H440.52860.88810.73790.033*
C450.48746 (17)0.89072 (16)0.62554 (14)0.0250 (5)
H450.42670.92490.60430.03*
C460.51604 (16)0.86333 (15)0.57727 (13)0.0206 (4)
H460.47520.87930.52310.025*
C510.54265 (15)0.78888 (14)0.44876 (11)0.0160 (4)
C520.46604 (15)0.72272 (16)0.42633 (13)0.0212 (4)
H520.47040.67980.46410.025*
C530.38338 (17)0.71896 (17)0.34916 (13)0.0253 (5)
H530.33140.67350.3340.03*
C540.37697 (18)0.78165 (19)0.29442 (13)0.0298 (5)
H540.31950.78060.24180.036*
C550.4536 (2)0.8458 (2)0.31567 (14)0.0367 (6)
H550.44950.88740.27740.044*
C560.53717 (18)0.84969 (17)0.39324 (13)0.0273 (5)
H560.58990.89380.40780.033*
C610.72295 (15)0.89687 (14)0.56249 (11)0.0160 (4)
C620.69580 (16)0.98774 (15)0.57625 (13)0.0212 (4)
H620.6410.99160.57980.025*
C630.74831 (16)1.07195 (16)0.58478 (13)0.0247 (5)
H630.72931.13360.59380.03*
C640.82869 (17)1.06647 (16)0.58012 (13)0.0241 (5)
H640.86491.12440.58620.029*
C650.85644 (17)0.97694 (16)0.56662 (13)0.0232 (5)
H650.91170.97330.56370.028*
C660.80312 (17)0.89215 (15)0.55739 (13)0.0207 (4)
H660.82170.83080.54750.025*
O10.92145 (12)0.73141 (12)0.72421 (10)0.0309 (4)
O010.67752 (15)0.49056 (17)0.85393 (12)0.0471 (5)
H010.73280.51750.88580.071*
O20.67796 (14)0.63197 (12)0.40991 (10)0.0315 (4)
O30.58781 (12)0.53708 (12)0.59882 (10)0.0289 (4)
F10.9118 (2)0.70324 (13)0.40752 (13)0.0768 (7)
F20.80028 (14)0.79216 (18)0.41110 (11)0.0678 (6)
F30.88792 (15)0.92851 (11)0.43228 (10)0.0497 (5)
F40.99908 (15)0.8406 (2)0.42799 (15)0.0823 (8)
F50.95832 (15)0.79933 (13)0.51178 (9)0.0612 (6)
F60.83935 (13)0.83280 (13)0.32776 (9)0.0436 (4)
P10.82838 (4)0.48994 (3)0.60498 (3)0.01235 (9)
P20.65123 (4)0.78758 (4)0.54975 (3)0.01324 (10)
P30.90070 (4)0.81519 (4)0.41996 (3)0.02208 (12)
Ir10.737840 (5)0.637207 (5)0.578891 (4)0.01155 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0173 (10)0.0155 (9)0.0248 (11)0.0027 (8)0.0119 (9)0.0008 (8)
C010.0380 (16)0.0500 (17)0.0486 (17)0.0059 (13)0.0276 (14)0.0050 (14)
C20.0247 (11)0.0148 (9)0.0231 (11)0.0036 (8)0.0148 (9)0.0028 (8)
C30.0192 (10)0.0129 (9)0.0193 (10)0.0051 (7)0.0111 (8)0.0033 (7)
C110.0152 (9)0.0134 (9)0.0157 (9)0.0012 (7)0.0089 (8)0.0029 (7)
C120.0227 (10)0.0138 (9)0.0221 (10)0.0004 (8)0.0151 (9)0.0000 (8)
C130.0227 (11)0.0145 (9)0.0261 (11)0.0026 (8)0.0144 (9)0.0042 (8)
C140.0220 (11)0.0228 (11)0.0193 (10)0.0028 (8)0.0116 (9)0.0074 (8)
C150.0323 (12)0.0226 (11)0.0175 (10)0.0031 (9)0.0151 (9)0.0012 (8)
C160.0252 (11)0.0141 (9)0.0188 (10)0.0016 (8)0.0126 (9)0.0006 (8)
C210.0156 (9)0.0112 (8)0.0191 (9)0.0007 (7)0.0119 (8)0.0032 (7)
C220.0193 (10)0.0158 (9)0.0231 (10)0.0014 (8)0.0113 (9)0.0012 (8)
C230.0162 (10)0.0230 (11)0.0312 (12)0.0028 (8)0.0097 (9)0.0021 (9)
C240.0184 (10)0.0218 (11)0.0369 (13)0.0046 (8)0.0190 (10)0.0099 (9)
C250.0256 (11)0.0220 (10)0.0297 (11)0.0068 (8)0.0213 (10)0.0062 (9)
C260.0197 (10)0.0189 (10)0.0199 (10)0.0020 (8)0.0124 (9)0.0009 (8)
C310.0203 (10)0.0116 (8)0.0170 (9)0.0027 (7)0.0125 (8)0.0007 (7)
C320.0229 (11)0.0163 (9)0.0223 (10)0.0030 (8)0.0164 (9)0.0026 (8)
C330.0354 (13)0.0198 (10)0.0290 (11)0.0067 (9)0.0264 (11)0.0075 (9)
C340.0379 (13)0.0244 (11)0.0253 (11)0.0109 (10)0.0215 (11)0.0102 (9)
C350.0236 (11)0.0272 (11)0.0225 (11)0.0077 (9)0.0104 (10)0.0061 (9)
C360.0211 (10)0.0175 (10)0.0235 (10)0.0013 (8)0.0129 (9)0.0007 (8)
C410.0182 (10)0.0128 (9)0.0200 (10)0.0001 (7)0.0124 (8)0.0003 (7)
C420.0201 (10)0.0214 (10)0.0183 (10)0.0020 (8)0.0107 (9)0.0013 (8)
C430.0271 (12)0.0296 (12)0.0188 (10)0.0013 (9)0.0129 (9)0.0038 (9)
C440.0315 (13)0.0272 (12)0.0326 (13)0.0019 (9)0.0240 (11)0.0093 (10)
C450.0235 (11)0.0203 (10)0.0352 (13)0.0038 (8)0.0193 (10)0.0017 (9)
C460.0193 (10)0.0183 (10)0.0249 (11)0.0033 (8)0.0131 (9)0.0034 (8)
C510.0154 (9)0.0142 (9)0.0148 (9)0.0017 (7)0.0067 (8)0.0010 (7)
C520.0179 (10)0.0217 (10)0.0216 (10)0.0002 (8)0.0100 (9)0.0052 (8)
C530.0187 (11)0.0272 (11)0.0245 (11)0.0036 (9)0.0094 (9)0.0008 (9)
C540.0238 (12)0.0374 (13)0.0170 (10)0.0045 (10)0.0054 (9)0.0017 (9)
C550.0366 (14)0.0411 (15)0.0195 (11)0.0104 (11)0.0088 (11)0.0101 (10)
C560.0272 (12)0.0264 (11)0.0191 (11)0.0097 (9)0.0081 (10)0.0021 (9)
C610.0175 (10)0.0123 (9)0.0144 (9)0.0004 (7)0.0070 (8)0.0014 (7)
C620.0168 (10)0.0151 (9)0.0277 (11)0.0006 (8)0.0105 (9)0.0013 (8)
C630.0221 (11)0.0147 (10)0.0304 (12)0.0002 (8)0.0111 (10)0.0029 (8)
C640.0260 (11)0.0158 (10)0.0270 (11)0.0059 (8)0.0132 (10)0.0004 (8)
C650.0271 (11)0.0198 (10)0.0287 (11)0.0054 (9)0.0196 (10)0.0020 (9)
C660.0283 (11)0.0134 (9)0.0264 (11)0.0018 (8)0.0191 (10)0.0006 (8)
O10.0211 (8)0.0299 (9)0.0331 (9)0.0048 (7)0.0107 (7)0.0090 (7)
O010.0427 (12)0.0584 (14)0.0467 (12)0.0160 (10)0.0296 (10)0.0019 (10)
O20.0462 (11)0.0303 (9)0.0228 (9)0.0040 (8)0.0226 (8)0.0037 (7)
O30.0280 (9)0.0250 (8)0.0375 (10)0.0001 (7)0.0211 (8)0.0052 (7)
F10.136 (2)0.0262 (9)0.0671 (13)0.0119 (11)0.0580 (14)0.0049 (9)
F20.0527 (11)0.1141 (18)0.0538 (11)0.0414 (12)0.0407 (10)0.0299 (12)
F30.0909 (14)0.0237 (8)0.0456 (10)0.0033 (8)0.0458 (10)0.0005 (7)
F40.0368 (11)0.129 (2)0.0927 (17)0.0237 (12)0.0442 (12)0.0429 (15)
F50.0807 (14)0.0453 (10)0.0234 (8)0.0142 (9)0.0104 (9)0.0076 (7)
F60.0566 (11)0.0478 (9)0.0238 (8)0.0030 (8)0.0216 (8)0.0000 (7)
P10.0147 (2)0.0100 (2)0.0142 (2)0.00026 (17)0.00941 (19)0.00037 (17)
P20.0144 (2)0.0102 (2)0.0147 (2)0.00088 (17)0.0081 (2)0.00118 (18)
P30.0224 (3)0.0202 (3)0.0206 (3)0.0001 (2)0.0107 (2)0.0002 (2)
Ir10.01286 (4)0.00918 (4)0.01346 (4)0.00053 (3)0.00809 (3)0.00089 (3)
Geometric parameters (Å, º) top
Ir1—C11.938 (2)C35—H350.95
Ir1—C21.938 (2)C36—H360.95
Ir1—C31.947 (2)C41—C421.391 (3)
Ir1—P12.3620 (8)C41—C461.398 (3)
Ir1—P22.3599 (8)C41—P21.811 (2)
C1—O11.128 (3)C42—C431.389 (3)
C01—O011.405 (3)C42—H420.95
C01—H01A0.98C43—C441.386 (3)
C01—H01B0.98C43—H430.95
C01—H01C0.98C44—C451.386 (3)
C2—O21.135 (3)C44—H440.95
C3—O31.107 (3)C45—C461.388 (3)
C11—C161.392 (3)C45—H450.95
C11—C121.396 (3)C46—H460.95
C11—P11.815 (2)C51—C561.384 (3)
C12—C131.386 (3)C51—C521.392 (3)
C12—H120.95C51—P21.815 (2)
C13—C141.380 (3)C52—C531.386 (3)
C13—H130.95C52—H520.95
C14—C151.387 (3)C53—C541.380 (3)
C14—H140.95C53—H530.95
C15—C161.393 (3)C54—C551.379 (3)
C15—H150.95C54—H540.95
C16—H160.95C55—C561.396 (3)
C21—C221.395 (3)C55—H550.95
C21—C261.398 (3)C56—H560.95
C21—P11.815 (2)C61—C661.388 (3)
C22—C231.391 (3)C61—C621.397 (3)
C22—H220.95C61—P21.818 (2)
C23—C241.378 (3)C62—C631.382 (3)
C23—H230.95C62—H620.95
C24—C251.386 (3)C63—C641.386 (3)
C24—H240.95C63—H630.95
C25—C261.386 (3)C64—C651.384 (3)
C25—H250.95C64—H640.95
C26—H260.95C65—C661.392 (3)
C31—C361.394 (3)C65—H650.95
C31—C321.398 (3)C66—H660.95
C31—P11.816 (2)O01—H010.84
C32—C331.395 (3)P3—F11.5698 (19)
C32—H320.95P3—F21.5870 (19)
C33—C341.374 (3)P3—F31.5933 (17)
C33—H330.95P3—F41.569 (2)
C34—C351.397 (3)P3—F51.5890 (17)
C34—H340.95P3—F61.5943 (16)
C35—C361.384 (3)
O1—C1—Ir1177.8 (2)C45—C46—C41119.9 (2)
O01—C01—H01A109.5C45—C46—H46120
O01—C01—H01B109.5C41—C46—H46120
H01A—C01—H01B109.5C56—C51—C52119.69 (19)
O01—C01—H01C109.5C56—C51—P2121.59 (16)
H01A—C01—H01C109.5C52—C51—P2118.61 (16)
H01B—C01—H01C109.5C53—C52—C51120.4 (2)
O2—C2—Ir1175.6 (2)C53—C52—H52119.8
O3—C3—Ir1178.8 (2)C51—C52—H52119.8
C16—C11—C12119.26 (18)C54—C53—C52119.7 (2)
C16—C11—P1120.58 (15)C54—C53—H53120.2
C12—C11—P1120.06 (15)C52—C53—H53120.2
C13—C12—C11120.23 (19)C55—C54—C53120.3 (2)
C13—C12—H12119.9C55—C54—H54119.8
C11—C12—H12119.9C53—C54—H54119.8
C14—C13—C12120.3 (2)C54—C55—C56120.3 (2)
C14—C13—H13119.8C54—C55—H55119.9
C12—C13—H13119.8C56—C55—H55119.9
C13—C14—C15120.0 (2)C51—C56—C55119.6 (2)
C13—C14—H14120C51—C56—H56120.2
C15—C14—H14120C55—C56—H56120.2
C14—C15—C16120.0 (2)C66—C61—C62119.29 (19)
C14—C15—H15120C66—C61—P2121.26 (16)
C16—C15—H15120C62—C61—P2119.44 (16)
C11—C16—C15120.14 (19)C63—C62—C61120.3 (2)
C11—C16—H16119.9C63—C62—H62119.8
C15—C16—H16119.9C61—C62—H62119.8
C22—C21—C26119.65 (19)C62—C63—C64120.0 (2)
C22—C21—P1121.71 (16)C62—C63—H63120
C26—C21—P1118.50 (15)C64—C63—H63120
C23—C22—C21119.5 (2)C65—C64—C63120.2 (2)
C23—C22—H22120.2C65—C64—H64119.9
C21—C22—H22120.2C63—C64—H64119.9
C24—C23—C22120.5 (2)C64—C65—C66119.8 (2)
C24—C23—H23119.8C64—C65—H65120.1
C22—C23—H23119.8C66—C65—H65120.1
C23—C24—C25120.4 (2)C61—C66—C65120.3 (2)
C23—C24—H24119.8C61—C66—H66119.9
C25—C24—H24119.8C65—C66—H66119.9
C26—C25—C24119.8 (2)C01—O01—H01109.5
C26—C25—H25120.1C11—P1—C21105.79 (9)
C24—C25—H25120.1C11—P1—C31104.93 (9)
C25—C26—C21120.2 (2)C21—P1—C31104.07 (9)
C25—C26—H26119.9C11—P1—Ir1114.58 (7)
C21—C26—H26119.9C21—P1—Ir1113.22 (7)
C36—C31—C32119.51 (19)C31—P1—Ir1113.28 (7)
C36—C31—P1120.43 (16)C41—P2—C51105.55 (10)
C32—C31—P1119.92 (16)C41—P2—C61104.08 (9)
C33—C32—C31119.8 (2)C51—P2—C61106.46 (9)
C33—C32—H32120.1C41—P2—Ir1114.40 (7)
C31—C32—H32120.1C51—P2—Ir1110.59 (7)
C34—C33—C32120.2 (2)C61—P2—Ir1114.98 (7)
C34—C33—H33119.9F4—P3—F191.02 (14)
C32—C33—H33119.9F4—P3—F2178.61 (15)
C33—C34—C35120.4 (2)F1—P3—F290.22 (14)
C33—C34—H34119.8F4—P3—F592.35 (13)
C35—C34—H34119.8F1—P3—F591.35 (11)
C36—C35—C34119.7 (2)F2—P3—F588.26 (12)
C36—C35—H35120.2F4—P3—F389.76 (12)
C34—C35—H35120.2F1—P3—F3179.21 (13)
C35—C36—C31120.4 (2)F2—P3—F388.99 (12)
C35—C36—H36119.8F5—P3—F388.74 (9)
C31—C36—H36119.8F4—P3—F689.48 (12)
C42—C41—C46119.6 (2)F1—P3—F689.89 (11)
C42—C41—P2119.11 (16)F2—P3—F689.89 (10)
C46—C41—P2120.93 (16)F5—P3—F6177.78 (11)
C43—C42—C41120.3 (2)F3—P3—F690.00 (9)
C43—C42—H42119.9C2—Ir1—C1126.42 (10)
C41—C42—H42119.9C2—Ir1—C3115.45 (9)
C44—C43—C42119.8 (2)C1—Ir1—C3118.13 (9)
C44—C43—H43120.1C2—Ir1—P288.65 (6)
C42—C43—H43120.1C1—Ir1—P290.26 (6)
C43—C44—C45120.4 (2)C3—Ir1—P290.49 (6)
C43—C44—H44119.8C2—Ir1—P189.28 (6)
C45—C44—H44119.8C1—Ir1—P189.27 (6)
C44—C45—C46120.0 (2)C3—Ir1—P192.30 (6)
C44—C45—H45120P2—Ir1—P1177.047 (18)
C46—C45—H45120
C16—C11—C12—C130.1 (3)C12—C11—P1—C3126.42 (19)
P1—C11—C12—C13176.57 (16)C16—C11—P1—Ir132.28 (19)
C11—C12—C13—C140.3 (3)C12—C11—P1—Ir1151.30 (14)
C12—C13—C14—C150.1 (3)C22—C21—P1—C112.27 (19)
C13—C14—C15—C160.3 (3)C26—C21—P1—C11177.92 (16)
C12—C11—C16—C150.3 (3)C22—C21—P1—C31108.02 (17)
P1—C11—C16—C15176.18 (17)C26—C21—P1—C3167.63 (17)
C14—C15—C16—C110.5 (3)C22—C21—P1—Ir1128.54 (15)
C26—C21—C22—C231.1 (3)C26—C21—P1—Ir155.80 (17)
P1—C21—C22—C23174.49 (16)C36—C31—P1—C1191.01 (18)
C21—C22—C23—C240.2 (3)C32—C31—P1—C1184.74 (18)
C22—C23—C24—C251.0 (3)C36—C31—P1—C21158.07 (17)
C23—C24—C25—C260.5 (3)C32—C31—P1—C2126.19 (19)
C24—C25—C26—C210.9 (3)C36—C31—P1—Ir134.68 (18)
C22—C21—C26—C251.7 (3)C32—C31—P1—Ir1149.57 (14)
P1—C21—C26—C25174.07 (16)C42—C41—P2—C51161.74 (16)
C36—C31—C32—C330.6 (3)C46—C41—P2—C5124.91 (19)
P1—C31—C32—C33175.17 (16)C42—C41—P2—C6186.35 (18)
C31—C32—C33—C340.4 (3)C46—C41—P2—C6186.99 (18)
C32—C33—C34—C350.2 (4)C42—C41—P2—Ir139.93 (18)
C33—C34—C35—C360.6 (4)C46—C41—P2—Ir1146.72 (15)
C34—C35—C36—C310.4 (3)C56—C51—P2—C41124.9 (2)
C32—C31—C36—C350.2 (3)C52—C51—P2—C4158.94 (19)
P1—C31—C36—C35175.57 (17)C56—C51—P2—C6114.6 (2)
C46—C41—C42—C430.7 (3)C52—C51—P2—C61169.15 (17)
P2—C41—C42—C43172.75 (17)C56—C51—P2—Ir1110.90 (19)
C41—C42—C43—C440.1 (3)C52—C51—P2—Ir165.30 (18)
C42—C43—C44—C450.9 (4)C66—C61—P2—C41151.24 (17)
C43—C44—C45—C461.2 (4)C62—C61—P2—C4129.95 (19)
C44—C45—C46—C410.6 (3)C66—C61—P2—C5197.51 (18)
C42—C41—C46—C450.3 (3)C62—C61—P2—C5181.29 (18)
P2—C41—C46—C45173.00 (17)C66—C61—P2—Ir125.32 (19)
C56—C51—C52—C531.5 (3)C62—C61—P2—Ir1155.87 (15)
P2—C51—C52—C53177.75 (18)C41—P2—Ir1—C2154.66 (10)
C51—C52—C53—C540.3 (4)C51—P2—Ir1—C235.65 (10)
C52—C53—C54—C551.9 (4)C61—P2—Ir1—C284.94 (10)
C53—C54—C55—C561.7 (4)C41—P2—Ir1—C178.91 (10)
C52—C51—C56—C551.6 (4)C51—P2—Ir1—C1162.08 (10)
P2—C51—C56—C55177.8 (2)C61—P2—Ir1—C141.48 (10)
C54—C55—C56—C510.0 (4)C41—P2—Ir1—C339.22 (10)
C66—C61—C62—C630.1 (3)C51—P2—Ir1—C379.79 (10)
P2—C61—C62—C63178.91 (17)C61—P2—Ir1—C3159.61 (9)
C61—C62—C63—C640.3 (3)C11—P1—Ir1—C2156.99 (10)
C62—C63—C64—C650.3 (4)C21—P1—Ir1—C281.56 (10)
C63—C64—C65—C660.3 (4)C31—P1—Ir1—C236.64 (10)
C62—C61—C66—C650.6 (3)C11—P1—Ir1—C176.58 (10)
P2—C61—C66—C65179.41 (17)C21—P1—Ir1—C144.87 (10)
C64—C65—C66—C610.7 (3)C31—P1—Ir1—C1163.08 (10)
C16—C11—P1—C2193.15 (18)C11—P1—Ir1—C341.55 (9)
C12—C11—P1—C2183.26 (18)C21—P1—Ir1—C3163.00 (9)
C16—C11—P1—C31157.16 (17)C31—P1—Ir1—C378.80 (10)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···F3i0.952.393.281 (3)157
C16—H16···F6i0.952.533.319 (3)141
C42—H42···F6i0.952.383.138 (3)136
C43—H43···F2i0.952.493.386 (3)158
C45—H45···O01ii0.952.503.281 (3)139
C64—H64···F4iii0.952.473.200 (3)133
O01—H01···F3i0.842.273.059 (3)157
C53—H53···Cg1iv0.952.683.523 (2)148
C35—H35···Cg3iv0.952.913.587 (2)129
C13—H13···Cg2v0.952.973.744 (2)140
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ir(C18H15P)2(CO)3]PF6·CH4O
Mr977.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.487 (5), 13.571 (4), 20.903 (5)
β (°) 125.297 (5)
V3)3817 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.69
Crystal size (mm)0.18 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.556, 0.809
No. of measured, independent and
observed [I > 2σ(I)] reflections
68611, 9501, 8699
Rint0.037
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.044, 1.03
No. of reflections9501
No. of parameters489
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 0.75

Computer programs: APEX2 (Bruker, 2011), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C11–C16, C21–C26 and C41–C46 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···F3i0.952.393.281 (3)157
C16—H16···F6i0.952.533.319 (3)141
C42—H42···F6i0.952.383.138 (3)136
C43—H43···F2i0.952.493.386 (3)158
C45—H45···O01ii0.952.503.281 (3)139
C64—H64···F4iii0.952.473.200 (3)133
O01—H01···F3i0.842.273.059 (3)157
C53—H53···Cg1iv0.952.683.523 (2)148
C35—H35···Cg3iv0.952.913.587 (2)129
C13—H13···Cg2v0.952.973.744 (2)140
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+2, y1/2, z+3/2.
 

Acknowledgements

Financial assistance from the Department of Science and Technology (DST) of South Africa, the South African National Research Foundation (SA-NRF/THRIP), the DST–NRF centre of excellence (c*change), the University of the Free State and INKABA yeAfrica funding projects are gratefully acknowledged.

References

First citationBooyens, S., Roodt, A. & Wendt, O. F. (2007). J. Organomet. Chem. 692, 5508–5512.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrous, R., Datt, M., Foster, D., Bennie, L., Steenkamp, C., Huyser, J., Kirsten, L., Steyl, G. & Roodt, A. (2005). Dalton Trans. pp. 1108–1116.  Web of Science CSD CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, A. C., Crous, R., Bennie, L., Meij, A. M. M., Blann, K., Bezuidenhoudt, B. C. B., Young, D. A., Green, M. J. & Roodt, A. (2007). Angew. Chem. Int. Ed. 46, 2273–2275.  Web of Science CrossRef CAS Google Scholar
First citationHaumann, M., Meijboom, R., Moss, J. R. & Roodt, A. (2004). Dalton Trans. pp. 1679–1686.  Web of Science CSD CrossRef Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S., Ionescu, A. & Roodt, A. (2005). J. Organomet. Chem. 690, 4337–4342.  Web of Science CrossRef CAS Google Scholar
First citationOtto, S. & Roodt, A. (2001). Inorg. Chem. Commun. 4, 49–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationPurcell, W., Basson, S. S., Leipoldt, J. G., Roodt, A. & Preston, H. (1995). Inorg. Chim. Acta, 234, 153–156.  CSD CrossRef CAS Web of Science Google Scholar
First citationRandall, S. L., Miller, C. A., See, R. F., Churchill, M. R., Janik, T. S., Lake, C. H. & Atwood, J. D. (1994). Organometallics, 13, 5088–5095.  CSD CrossRef CAS Web of Science Google Scholar
First citationRandall, S. L., Thompson, J. S., Buttrey, L. A., Ziller, J. W., Churchill, M. R. & Atwood, J. D. (1991). Organometallics, 10, 683–688.  CSD CrossRef CAS Web of Science Google Scholar
First citationRaper, G. & McDonald, W. S. (1973). Acta Cryst. B29, 2013–2014.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1187-m1188
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds