organic compounds
N-Acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester
aDepartment of Environmental Toxicology and the Health Research Center, Southern University and A&M College, Baton Rouge, LA 70813, USA, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: rao_uppu@subr.edu
The title compound, C13H15ClN2O6, was synthesized by hypochlorous acid-mediated chlorination of N-acetyl-3-nitro-L-tyrosine ethyl ester. The OH group forms an intramolecular O—H⋯O hydrogen bond to the nitro group and the N—H group forms an intermolecular N—H⋯O hydrogen bonds to an amide O atom, linking the molecules into chains along [100]. The crystal studied was a non-merohedral twin, with a 0.907 (4):0.093 (4) domain ratio.
Related literature
For background to peroxynitrite and its reactions with amino acids, see: Alvarez et al. (1999); Beckman (2009); Ceriello (2002); Crow (1999); Dahaoui et al. (1999); Darwish et al. 2007; Janik et al. (2007, 2008); Koszelak & van der Helm (1981); Pieret et al. (1972); Pitt & Spickett (2008); Soriano-García (1993); Stout et al. (2000); Uppu & Pryor (1999); Uppu et al. (1996); Whiteman & Halliwell (1999); Winterbourn (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536812036380/hb6933sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812036380/hb6933Isup2.hkl
Chemicals and solvents used in the preparation and recrystallization of NACNTEE were obtained as follows: NANTEE, potassium phosphate monobasic, sodium phosphate dibasic, sodium hydroxide, sodium hypochlorite (chlorine content: ca. 5%), CD3OD from Sigma (St. Louis, MO); formic acid (88%) from Fishers chemicals (Fair Lawn, NJ); ammonium hydroxide (28–30%)from VWR (Goshen Parkway, PA); HPLC grade methanol from EMD Chemicals (Gibbstown, NJ). Water with resistance of 18 megaohms/cm or higher was used.
Oxidation of NANTEE was performed by reacting equimollar concentrations of NANTEE with hypochlorite/HOCl. Briefly, NANTEE (8.5 mg) was dissolved in 2.8 mL of 0.2 M phosphate buffer, pH 7.0 to make a 10 mM NANTEE solution. A solution of 56 µL of hypochlorite (stock solution) was added drop-wise to the 10 mM NANTEE solution while stirring. Aliquots (200 µL each) of the reaction mixture were analyzed by reversed phase HPLC using Supleco LC18 column (150 x 4.6 mm, particle size: 5µ) and an isocratic mobile phase consisting of 0.05M ammonium formate buffer solution (50%) and methanol (50%) at pH of 3.93 and a flow rate of 1 mL/min. The absorbance was set at 410 nm. The HPLC system used in this research was a Lab Alliance series II/III
equipped with Lab Alliance model 500 UV-Vis detector and Peak Simple 329 data system. The peaks corresponding to pure NANTEE and the product were collected and concentrated. The amorphous powder was recrystallized from methanol to give yellow needles of NACNTEE. For 1H-NMR spectrum, both NANTEE and NACNTEE were dissolved in CD3OD and analyzed on a Bruker AV-400-liquid spectrometer. The 1H-NMR data are reported in ppm downfield from TMS as an internal standard.N-acetyl-3-nitro-L-tyrosine ethyl ester (Fig. 3): 1H-NMR (400 MHz, CD3OD): δ 1.23 (t, J = 7.1 Hz, 3H), 1.91 (s, 3H), 2.95 (dd, J = 14.0, 8.7 Hz, 1H), 3.14 (dd, J = 14.0, 5.8 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 4.63 (dd, J = 8.8, 5.8 Hz, 1H), 7.08 (d, J = 8.6 Hz, 1H), 7.47 (dd, J = 8.6, 2.2 Hz, 1H), 7.92 (d, J = 2.1 Hz, 1H), 8.52 (s, 1H).
N-acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester (Fig. 4): 1H-NMR (400 MHz, CD3OD): δ 1.23 (t, J = 7.1 Hz, 3H), 1.92 (s, 3H), 2.92 (dd, J = 14.1, 8.7 Hz, 1H), 3.12 (dd, J = 14.1, 5.8 Hz, 1H), 4.16 (q, J = 7.0 Hz, 2H), 4.63 (dd, J = 8.6, 5.8 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.86 (d, J = 2.1 Hz, 1H), 8.43 (s, 1H) (Fig. 4). The chemical shifts derived from the proton NMR spectrum of the product are consistent with the structure of N-acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester, specifically, the doublet at 7.08 ppm corresponding to the proton at the ortho position of the OH group on the aromatic ring in the starting material disappears in the product due to chloride substitution.
H atoms on C were placed in idealized positions, with C—H distances 0.95–1.00 Å. A torsional parameter was refined for each methyl group. N—H and hydroxy H atom positions were refined. Uiso for H were assigned as 1.2 times Ueq of the attached atoms (1.5 for methyl and OH).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Ellipsoids at the 50% level, with H atoms having arbitrary radius. Fig. 2. Chlorination of N-acetyl-3-nitro-L-tyrosine ethyl ester by hypochlorite/hypochlorous acid Fig. 3. 1H-NMR spectrum of N-acetyl-3-nitro-L-tyrosine ethyl ester dissolved in CD3OD and analyzed on a Bruker AV-400-liquid spectrometer. Fig. 4. 1H-NMR spectrum of N-acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester in CD3OD and analyzed on a Bruker AV-400-liquid spectrometer. |
C13H15ClN2O6 | F(000) = 344 |
Mr = 330.72 | Dx = 1.506 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2yb | Cell parameters from 1900 reflections |
a = 5.1513 (4) Å | θ = 7.9–67.6° |
b = 10.6761 (9) Å | µ = 2.63 mm−1 |
c = 13.2849 (8) Å | T = 90 K |
β = 93.689 (4)° | Lath, yellow |
V = 729.10 (9) Å3 | 0.34 × 0.11 × 0.03 mm |
Z = 2 |
Bruker Kappa APEXII DUO area-detector diffractometer | 2307 independent reflections |
Radiation source: IµS microfocus | 2299 reflections with I > 2σ(I) |
QUAZAR multilayer optics monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 68.2°, θmin = 6.7° |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2002) | h = −6→6 |
Tmin = 0.468, Tmax = 0.925 | k = −12→12 |
7589 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.029P)2 + 0.4076P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2307 reflections | Δρmax = 0.32 e Å−3 |
208 parameters | Δρmin = −0.20 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 961 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.078 (17) |
C13H15ClN2O6 | V = 729.10 (9) Å3 |
Mr = 330.72 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 5.1513 (4) Å | µ = 2.63 mm−1 |
b = 10.6761 (9) Å | T = 90 K |
c = 13.2849 (8) Å | 0.34 × 0.11 × 0.03 mm |
β = 93.689 (4)° |
Bruker Kappa APEXII DUO area-detector diffractometer | 2307 independent reflections |
Absorption correction: multi-scan (TWINABS; Sheldrick, 2002) | 2299 reflections with I > 2σ(I) |
Tmin = 0.468, Tmax = 0.925 | Rint = 0.058 |
7589 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | Δρmax = 0.32 e Å−3 |
S = 1.07 | Δρmin = −0.20 e Å−3 |
2307 reflections | Absolute structure: Flack (1983), 961 Friedel pairs |
208 parameters | Absolute structure parameter: 0.078 (17) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. The crystal not single, and was treated as a nonmerohedral twin by rotation of 4.6 degrees about reciprocal axis 0.070 1.000 - 0.042 and real axis 0.300 1.000 - 0.019 The twin law is: (0.991, 0.000, -0.032, 0.006, 1.000, 0.014, 0.215, -0.021, 1.002) The structure was refined versus. TWIN5 data, yielding BASF=0.093 (4). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.24004 (11) | 0.34934 (7) | 0.34487 (4) | 0.02854 (18) | |
O1 | 0.6456 (4) | 0.53157 (19) | 0.31400 (14) | 0.0267 (4) | |
H1O | 0.792 (8) | 0.585 (4) | 0.330 (3) | 0.040* | |
O2 | 1.0367 (4) | 0.66367 (19) | 0.38081 (15) | 0.0331 (5) | |
O3 | 1.1791 (4) | 0.65600 (18) | 0.53520 (16) | 0.0286 (5) | |
O4 | 0.2148 (4) | 0.23412 (19) | 0.84645 (13) | 0.0267 (4) | |
O5 | 0.4182 (4) | 0.37138 (19) | 0.95279 (13) | 0.0316 (5) | |
O6 | 0.0002 (3) | 0.58322 (18) | 0.81904 (14) | 0.0245 (4) | |
N1 | 1.0294 (4) | 0.6262 (2) | 0.46967 (16) | 0.0248 (5) | |
N2 | 0.4220 (4) | 0.5472 (2) | 0.79647 (15) | 0.0175 (4) | |
H2N | 0.568 (4) | 0.579 (3) | 0.797 (2) | 0.021* | |
C1 | 0.4584 (5) | 0.4103 (3) | 0.43817 (19) | 0.0220 (6) | |
C2 | 0.6440 (5) | 0.4968 (2) | 0.41110 (19) | 0.0215 (5) | |
C3 | 0.8183 (5) | 0.5385 (2) | 0.4902 (2) | 0.0216 (5) | |
C4 | 0.8039 (5) | 0.4991 (2) | 0.58960 (18) | 0.0175 (5) | |
H4 | 0.9214 | 0.5319 | 0.6410 | 0.021* | |
C5 | 0.6194 (4) | 0.4125 (2) | 0.61350 (18) | 0.0163 (5) | |
C6 | 0.4450 (5) | 0.3693 (2) | 0.53587 (18) | 0.0190 (5) | |
H6 | 0.3147 | 0.3105 | 0.5510 | 0.023* | |
C7 | 0.6044 (4) | 0.3609 (2) | 0.71852 (17) | 0.0175 (5) | |
H7A | 0.7695 | 0.3792 | 0.7581 | 0.021* | |
H7B | 0.5847 | 0.2688 | 0.7146 | 0.021* | |
C8 | 0.3772 (4) | 0.4158 (2) | 0.77388 (18) | 0.0166 (5) | |
H8 | 0.2149 | 0.4085 | 0.7287 | 0.020* | |
C9 | 0.3412 (4) | 0.3398 (3) | 0.86964 (18) | 0.0202 (5) | |
C10 | 0.2262 (5) | 0.6225 (2) | 0.81958 (18) | 0.0194 (5) | |
C11 | 0.2946 (6) | 0.7547 (3) | 0.8436 (2) | 0.0266 (6) | |
H11A | 0.2472 | 0.8076 | 0.7849 | 0.040* | |
H11B | 0.4822 | 0.7612 | 0.8605 | 0.040* | |
H11C | 0.1998 | 0.7827 | 0.9011 | 0.040* | |
C12 | 0.1647 (7) | 0.1488 (3) | 0.9296 (2) | 0.0381 (7) | |
H12A | 0.1447 | 0.1969 | 0.9923 | 0.046* | |
H12B | 0.3119 | 0.0899 | 0.9414 | 0.046* | |
C13 | −0.0777 (7) | 0.0789 (3) | 0.9011 (3) | 0.0415 (8) | |
H13A | −0.2226 | 0.1379 | 0.8908 | 0.062* | |
H13B | −0.1142 | 0.0202 | 0.9551 | 0.062* | |
H13C | −0.0565 | 0.0323 | 0.8386 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0268 (3) | 0.0336 (3) | 0.0250 (3) | −0.0030 (3) | 0.0000 (2) | −0.0031 (3) |
O1 | 0.0312 (11) | 0.0286 (10) | 0.0207 (9) | 0.0023 (9) | 0.0058 (8) | 0.0033 (7) |
O2 | 0.0380 (12) | 0.0302 (11) | 0.0321 (11) | −0.0054 (9) | 0.0103 (9) | 0.0044 (8) |
O3 | 0.0221 (10) | 0.0241 (10) | 0.0401 (12) | −0.0107 (8) | 0.0066 (9) | −0.0074 (8) |
O4 | 0.0307 (10) | 0.0265 (10) | 0.0234 (9) | −0.0079 (8) | 0.0060 (7) | 0.0089 (8) |
O5 | 0.0478 (12) | 0.0295 (11) | 0.0175 (9) | 0.0062 (10) | 0.0015 (8) | −0.0004 (8) |
O6 | 0.0149 (9) | 0.0286 (10) | 0.0303 (10) | 0.0014 (8) | 0.0026 (7) | −0.0090 (8) |
N1 | 0.0261 (12) | 0.0275 (12) | 0.0221 (12) | 0.0139 (10) | 0.0115 (10) | 0.0057 (9) |
N2 | 0.0139 (10) | 0.0191 (10) | 0.0196 (10) | −0.0005 (8) | 0.0027 (8) | −0.0019 (8) |
C1 | 0.0225 (12) | 0.0236 (13) | 0.0200 (12) | 0.0036 (11) | 0.0024 (10) | −0.0037 (10) |
C2 | 0.0221 (12) | 0.0219 (12) | 0.0209 (13) | 0.0097 (10) | 0.0058 (9) | −0.0001 (10) |
C3 | 0.0183 (13) | 0.0170 (12) | 0.0306 (14) | 0.0038 (10) | 0.0113 (10) | 0.0040 (10) |
C4 | 0.0160 (12) | 0.0157 (11) | 0.0210 (12) | 0.0033 (9) | 0.0030 (9) | 0.0010 (9) |
C5 | 0.0148 (11) | 0.0151 (11) | 0.0196 (12) | 0.0035 (10) | 0.0051 (9) | −0.0009 (9) |
C6 | 0.0200 (11) | 0.0150 (12) | 0.0223 (11) | 0.0043 (10) | 0.0034 (8) | −0.0009 (9) |
C7 | 0.0158 (10) | 0.0185 (12) | 0.0188 (11) | 0.0015 (10) | 0.0049 (8) | 0.0011 (10) |
C8 | 0.0150 (11) | 0.0163 (11) | 0.0188 (12) | −0.0002 (10) | 0.0018 (9) | −0.0004 (9) |
C9 | 0.0178 (11) | 0.0210 (12) | 0.0225 (12) | 0.0088 (11) | 0.0063 (9) | 0.0025 (11) |
C10 | 0.0181 (13) | 0.0257 (13) | 0.0143 (11) | 0.0049 (10) | −0.0001 (9) | 0.0001 (9) |
C11 | 0.0296 (14) | 0.0239 (14) | 0.0264 (13) | 0.0019 (12) | 0.0012 (10) | −0.0039 (11) |
C12 | 0.0403 (18) | 0.0433 (18) | 0.0317 (16) | −0.0048 (15) | 0.0093 (13) | 0.0229 (14) |
C13 | 0.050 (2) | 0.0364 (17) | 0.0398 (17) | −0.0137 (16) | 0.0147 (14) | 0.0072 (15) |
Cl1—C1 | 1.745 (3) | C5—C6 | 1.402 (3) |
O1—C2 | 1.343 (3) | C5—C7 | 1.507 (3) |
O1—H1O | 0.96 (4) | C6—H6 | 0.9500 |
O2—N1 | 1.249 (3) | C7—C8 | 1.538 (3) |
O3—N1 | 1.169 (3) | C7—H7A | 0.9900 |
O4—C9 | 1.329 (4) | C7—H7B | 0.9900 |
O4—C12 | 1.467 (3) | C8—C9 | 1.530 (3) |
O5—C9 | 1.198 (3) | C8—H8 | 1.0000 |
O6—C10 | 1.237 (3) | C10—C11 | 1.485 (4) |
N1—C3 | 1.473 (4) | C11—H11A | 0.9800 |
N2—C10 | 1.341 (3) | C11—H11B | 0.9800 |
N2—C8 | 1.449 (3) | C11—H11C | 0.9800 |
N2—H2N | 0.823 (18) | C12—C13 | 1.483 (5) |
C1—C6 | 1.375 (4) | C12—H12A | 0.9900 |
C1—C2 | 1.393 (4) | C12—H12B | 0.9900 |
C2—C3 | 1.409 (4) | C13—H13A | 0.9800 |
C3—C4 | 1.393 (4) | C13—H13B | 0.9800 |
C4—C5 | 1.377 (4) | C13—H13C | 0.9800 |
C4—H4 | 0.9500 | ||
C2—O1—H1O | 91 (2) | H7A—C7—H7B | 107.8 |
C9—O4—C12 | 117.4 (2) | N2—C8—C9 | 111.5 (2) |
O3—N1—O2 | 123.9 (2) | N2—C8—C7 | 110.6 (2) |
O3—N1—C3 | 119.6 (2) | C9—C8—C7 | 109.38 (19) |
O2—N1—C3 | 116.5 (2) | N2—C8—H8 | 108.4 |
C10—N2—C8 | 121.0 (2) | C9—C8—H8 | 108.4 |
C10—N2—H2N | 117 (2) | C7—C8—H8 | 108.4 |
C8—N2—H2N | 122 (2) | O5—C9—O4 | 125.5 (2) |
C6—C1—C2 | 122.1 (2) | O5—C9—C8 | 124.5 (3) |
C6—C1—Cl1 | 118.9 (2) | O4—C9—C8 | 110.0 (2) |
C2—C1—Cl1 | 119.0 (2) | O6—C10—N2 | 121.1 (2) |
O1—C2—C1 | 118.5 (2) | O6—C10—C11 | 122.3 (2) |
O1—C2—C3 | 125.9 (2) | N2—C10—C11 | 116.6 (2) |
C1—C2—C3 | 115.6 (2) | C10—C11—H11A | 109.5 |
C4—C3—C2 | 122.8 (2) | C10—C11—H11B | 109.5 |
C4—C3—N1 | 116.9 (2) | H11A—C11—H11B | 109.5 |
C2—C3—N1 | 120.3 (2) | C10—C11—H11C | 109.5 |
C5—C4—C3 | 120.1 (2) | H11A—C11—H11C | 109.5 |
C5—C4—H4 | 120.0 | H11B—C11—H11C | 109.5 |
C3—C4—H4 | 120.0 | O4—C12—C13 | 107.8 (2) |
C4—C5—C6 | 118.1 (2) | O4—C12—H12A | 110.1 |
C4—C5—C7 | 122.4 (2) | C13—C12—H12A | 110.1 |
C6—C5—C7 | 119.5 (2) | O4—C12—H12B | 110.1 |
C1—C6—C5 | 121.4 (2) | C13—C12—H12B | 110.1 |
C1—C6—H6 | 119.3 | H12A—C12—H12B | 108.5 |
C5—C6—H6 | 119.3 | C12—C13—H13A | 109.5 |
C5—C7—C8 | 112.9 (2) | C12—C13—H13B | 109.5 |
C5—C7—H7A | 109.0 | H13A—C13—H13B | 109.5 |
C8—C7—H7A | 109.0 | C12—C13—H13C | 109.5 |
C5—C7—H7B | 109.0 | H13A—C13—H13C | 109.5 |
C8—C7—H7B | 109.0 | H13B—C13—H13C | 109.5 |
C6—C1—C2—O1 | 179.6 (2) | C4—C5—C6—C1 | 0.9 (3) |
Cl1—C1—C2—O1 | 0.9 (3) | C7—C5—C6—C1 | −177.4 (2) |
C6—C1—C2—C3 | 0.6 (4) | C4—C5—C7—C8 | 105.2 (3) |
Cl1—C1—C2—C3 | −178.02 (18) | C6—C5—C7—C8 | −76.6 (3) |
O1—C2—C3—C4 | 179.5 (2) | C10—N2—C8—C9 | −75.9 (3) |
C1—C2—C3—C4 | −1.6 (4) | C10—N2—C8—C7 | 162.1 (2) |
O1—C2—C3—N1 | −1.3 (4) | C5—C7—C8—N2 | −68.5 (3) |
C1—C2—C3—N1 | 177.5 (2) | C5—C7—C8—C9 | 168.3 (2) |
O3—N1—C3—C4 | 2.3 (4) | C12—O4—C9—O5 | 0.1 (4) |
O2—N1—C3—C4 | −178.1 (2) | C12—O4—C9—C8 | 179.6 (2) |
O3—N1—C3—C2 | −176.9 (2) | N2—C8—C9—O5 | −22.1 (3) |
O2—N1—C3—C2 | 2.6 (3) | C7—C8—C9—O5 | 100.6 (3) |
C2—C3—C4—C5 | 2.3 (4) | N2—C8—C9—O4 | 158.4 (2) |
N1—C3—C4—C5 | −176.9 (2) | C7—C8—C9—O4 | −78.9 (2) |
C3—C4—C5—C6 | −1.9 (3) | C8—N2—C10—O6 | −2.4 (4) |
C3—C4—C5—C7 | 176.4 (2) | C8—N2—C10—C11 | 178.7 (2) |
C2—C1—C6—C5 | −0.3 (4) | C9—O4—C12—C13 | 150.8 (3) |
Cl1—C1—C6—C5 | 178.34 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2 | 0.96 (4) | 1.63 (4) | 2.570 (3) | 168 (3) |
N2—H2N···O6i | 0.82 (2) | 2.23 (2) | 2.999 (3) | 156 (3) |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H15ClN2O6 |
Mr | 330.72 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 90 |
a, b, c (Å) | 5.1513 (4), 10.6761 (9), 13.2849 (8) |
β (°) | 93.689 (4) |
V (Å3) | 729.10 (9) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 2.63 |
Crystal size (mm) | 0.34 × 0.11 × 0.03 |
Data collection | |
Diffractometer | Bruker Kappa APEXII DUO area-detector diffractometer |
Absorption correction | Multi-scan (TWINABS; Sheldrick, 2002) |
Tmin, Tmax | 0.468, 0.925 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7589, 2307, 2299 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.091, 1.07 |
No. of reflections | 2307 |
No. of parameters | 208 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.20 |
Absolute structure | Flack (1983), 961 Friedel pairs |
Absolute structure parameter | 0.078 (17) |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2 | 0.96 (4) | 1.63 (4) | 2.570 (3) | 168 (3) |
N2—H2N···O6i | 0.823 (18) | 2.23 (2) | 2.999 (3) | 156 (3) |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
Upgrade of the diffractometer was made possible by grant No. LEQSF (2011–12)-ENH-TR-01, administered by the Louisiana Board of Regents. This publication was made possible by National Institutes of Health (NIH) grant No. P20RR16456 (the BRIN Program of the National Center for Research Resources), National Science Foundation (NSF) grant HRD-1043316 (the HBCU-UP ACE implementation program) and US Department of Education grant PO31B040030 (Title III, Part B - Strengthening Historically Black Graduate Institutions). The contents of this publication are solely the responsibility of authors and do not necessarily represent the official views of the NSF, NIH or US Department of Education.
References
Alvarez, B., Ferrer-Sueta, G., Freeman, B. A. & Radi, R. (1999). J. Biol. Chem. 274, 842–848. CrossRef CAS PubMed Google Scholar
Beckman, J. S. (2009). Arch. Biochem. Biophys. 484, 114–116. CrossRef PubMed CAS Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ceriello, A. (2002). Int. J. Clin. Pract. Suppl. 129, 51–58. PubMed CAS Google Scholar
Crow, J. P. (1999). Methods in Enzymology, Vol. 301, Nitric Oxide Part C: Biological and Antioxidant Activities, edited by L. Packer, pp. 151–160. New York: Academic Press. Google Scholar
Dahaoui, S., Jelsch, C., Howard, J. A. K. & Lecomte, C. (1999). Acta Cryst. B55, 226–230. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Darwish, R. S., Amiridze, N. & Aarabi, B. (2007). J. Trauma, 63, 439–442. CrossRef PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Janik, A., Chyra, A. & Stadnicka, K. (2007). Acta Cryst. C63, o572–o575. CrossRef IUCr Journals Google Scholar
Janik, A., Jarocha, M. & Stadnicka, K. (2008). Acta Cryst. B64, 223–229. CrossRef IUCr Journals Google Scholar
Koszelak, S. N. & van der Helm, D. (1981). Acta Cryst. B37, 1122–1124. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pieret, A. F., Durant, F., Germain, G. & Koch, M. (1972). Cryst. Struct. Commun. 1, 75–77. CAS Google Scholar
Pitt, A. R. & Spickett, C. M. (2008). Biochem. Soc. Trans. 36, 1077–1082. CrossRef PubMed CAS Google Scholar
Sheldrick, G. (2002). TWINABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Soriano-García, M. (1993). Acta Cryst. C49, 96–97. CSD CrossRef Web of Science IUCr Journals Google Scholar
Stout, K. L., Hallock, K. J., Kampf, J. W. & Ramamoorthy, A. (2000). Acta Cryst. C56, e100. CrossRef IUCr Journals Google Scholar
Uppu, R. M. & Pryor, W. A. (1999). J. Am. Chem. Soc. 121, 9738–9739. CrossRef CAS Google Scholar
Uppu, R. M., Squadrito, G. L. & Pryor, W. A. (1996). Arch. Biochem. Biophys. 327, 335-343. CrossRef CAS PubMed Google Scholar
Whiteman, M. & Halliwell, B. (1999). Biochem. Biophys. Res. Commun. 258, 168–172. CrossRef PubMed CAS Google Scholar
Winterbourn, C. C. (2002). Toxicology, 181–182, 223–227. CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Peroxynitrite (PN), an oxidant formed during the down-regulation of nitric oxide (.NO) (Uppu & Pryor, 1999), is known to cause oxidation of both free- and protein-bound amino acids (AAs) (Alverez et al., 1999; Beckman 2009; Uppu et al., 1996). The reactivity of PN towards AAs in proteins can be accounted for by the side chains of constituent AAs in particular those present in cysteine, methionine, tyrosine, tryptophan, and histidine. Among the various AAs with reactive side chains, the oxidation of Tyr by PN results in the formation of a characteristic nitro product, 3-nitroTyr (3-NO2Tyr) (Beckman, 2009; Ceriello, 2002; Crow, 1999; Darwish et al., 2007) which is often used as a marker of PN formation in vivo. Hypochlorous acid (HOCl) is another oxidant that can also be formed at sites of inflammation, catalyzed by the enzyme myeloperoxidase. Like PN, HOCl is mostly reactive towards the side chains of cysteine, methionine, tyrosine, tryptophan, and histidine and cause posttranslational modifications of proteins resulting in chlorinated products. 3-Chloro-L-tyrosine is one the products that has been well characterized and used as a biomarker of HOCl formation in vivo (Crow, 1999; Pitt & Spickett, 2008; Winterbourn, 2002). Now, a question that follows naturally but never addressed in detail is what happens when HOCl and PN are produced in the same biological milieu and react with AA side chains in proteins. The significance of these combined oxidations on the issue of biomarker validation could be truly overwhelming given the report by Whiteman and Halliwell (1999) wherein it was shown that the 3-NO2Tyr was in fact lost to some unknown product(s) following oxidation with HOCl. Another important consequence could be that we need additional biomarkers and their validation.
Herein, we report the synthesis and characterization of the oxidation product of HOCl reaction with N-acetyl-3-nitro-L-tyrosine ethyl ester (NANTEE), a model for protein-bound 3-NO2Tyr. When HOCl was a limiting reagent (hypochlorite/HOCl < NANTEE), the major product was found to be N-acetyl-5-chloro-3-nitro-L-tyrosine ethyl ester (NACNTEE). This product was purified by reversed phase (RP) high-performance liquid chromatography (HPLC). Its identification was based on single-crystal X-ray crystallographic analysis (Fig. 1) and 1H-NMR assignments (Figs. 2–4).
The structure is shown in Fig. 1. The absolute configuration at the asymmetric center C8 is S, in agreement with the known configuration of the starting material. Molecular geometry is normal, except for the nitro group, which has slightly long C3—N1 distance, 1.473 (4) Å and asymmetric N—O distances, N1—O2 1.249 (3) and N1—O3 1.169 (3) Å. The shape of the N1 ellipsoid is somewhat peculiar, while ellipsoids for other atoms in the molecule appear normal. The two C—C—N angles at the nitro-substituted C atom C3 also differ by 3.5 (3)°. These features suggest the possibility of a slight disorder involving rotation of the phenyl group, such that the Cl atom nearly superimposes upon N1 a small fraction of the time. This would lead to a slightly misplaced refined N1 position and account for the observed irregularities.
The nitro group lies nearly in the phenyl plane, with O2—N1—C3—C2 torsion angle 2.6 (3)°, and it accepts an intramolecular hydrogen bond from the OH group, having O1···O2 distance 2.570 (3) Å. The tyrosine N-acetyl NH group donates an intermolecular hydrogen bond to O6 (at x + 1, y, z), forming chains in the [1 0 0] direction.