organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-{(E)-[(3,4-di­methyl­phen­yl)imino]­meth­yl}phenol

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Pharmacy Services, Jinnah Hospital, Lahore, Pakistan, cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and dDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 August 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, C15H14BrNO, the dihedral angle between the aromatic rings is 4.10 (11)° and the mol­ecule is close to planar (r.m.s. deviation for the non-H atoms = 0.053 Å). An intra­molecular O—H⋯N hydrogen bond closes an S(6) ring. In the crystal, very weak C—H⋯π inter­actions are observed.

Related literature

For related structures, see: Unver et al. (2010[Unver, H., Karakas, A. & Durlu, T. N. (2010). Z. Naturforsch. Teil B, 65, 185-190.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14BrNO

  • Mr = 304.18

  • Monoclinic, P 21 /n

  • a = 12.2633 (10) Å

  • b = 7.4805 (6) Å

  • c = 14.5767 (11) Å

  • β = 101.576 (4)°

  • V = 1310.00 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.454, Tmax = 0.546

  • 9488 measured reflections

  • 2545 independent reflections

  • 1931 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.04

  • 2545 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.601 (2) 147
C7—H7BCg1i 0.96 2.95 3.668 (3) 133
C12—H12⋯Cg1ii 0.93 2.96 3.612 (2) 128
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound, (Fig. 1) has been synthesized as a possible ligand for forming different metal complexes. its sturcture is now described. The crystal structures of 3,4-dimethyl-N-(3-nitrobenzylidene)aniline and 3,4-dimethyl-N-(4-nitrobenzylidene) aniline (Unver et al., 2010) have been published which are related to the title compound.

The title compound is almost planar with r.m.s. deviation of 0.0487 Å, with maximum deviation of 0.1043 (11) Å for Br atom from the mean square plane. There exist intramolecular H-bonding of O—H···N type with S(6) ring motif (Bernstein et al., 1995). There exist weak C—H···π interactions (Table 1) in the crystal.

Related literature top

For related structures, see: Unver et al. (2010). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 3,4-dimethylaniline and 5-bromosalicylaldehyde were refluxed in methanol along with few drops of acetic acid as catalyst for 1 h. The solution was kept at room temperature which affoarded yellow prisms of the title compound after two days.

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O) where x = 1.5 for hydroxy & methyl and x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line represents the intramolecular hydrogen bond.
4-Bromo-2-{(E)-[(3,4-dimethylphenyl)imino]methyl}phenol top
Crystal data top
C15H14BrNOF(000) = 616
Mr = 304.18Dx = 1.542 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1931 reflections
a = 12.2633 (10) Åθ = 2.0–26.0°
b = 7.4805 (6) ŵ = 3.13 mm1
c = 14.5767 (11) ÅT = 296 K
β = 101.576 (4)°Prism, yellow
V = 1310.00 (18) Å30.30 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.00 pixels mm-1θmax = 26.0°, θmin = 2.0°
ω scansh = 1015
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 98
Tmin = 0.454, Tmax = 0.546l = 1717
9488 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.1325P]
where P = (Fo2 + 2Fc2)/3
2545 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H14BrNOV = 1310.00 (18) Å3
Mr = 304.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.2633 (10) ŵ = 3.13 mm1
b = 7.4805 (6) ÅT = 296 K
c = 14.5767 (11) Å0.30 × 0.25 × 0.22 mm
β = 101.576 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1931 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.546Rint = 0.026
9488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
2545 reflectionsΔρmin = 0.34 e Å3
166 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18394 (2)0.52508 (4)0.05809 (2)0.0611 (1)
O10.04873 (13)0.3558 (3)0.42252 (10)0.0649 (7)
N10.23707 (15)0.4902 (2)0.50899 (13)0.0433 (6)
C10.30890 (17)0.5327 (3)0.59525 (15)0.0377 (7)
C20.26822 (18)0.4991 (3)0.67585 (15)0.0402 (7)
C30.32937 (18)0.5327 (3)0.76461 (15)0.0386 (7)
C40.43689 (17)0.6028 (3)0.77377 (14)0.0413 (7)
C50.47658 (17)0.6376 (3)0.69271 (14)0.0445 (8)
C60.41546 (16)0.6041 (3)0.60481 (15)0.0437 (7)
C70.2812 (2)0.4915 (3)0.85007 (17)0.0559 (9)
C80.50899 (19)0.6368 (3)0.86868 (15)0.0595 (9)
C90.26191 (19)0.5199 (3)0.42938 (15)0.0411 (7)
C100.18689 (18)0.4725 (3)0.34246 (15)0.0384 (7)
C110.08370 (17)0.3910 (3)0.34249 (15)0.0442 (7)
C120.01435 (18)0.3464 (3)0.25816 (16)0.0495 (8)
C130.04434 (18)0.3849 (3)0.17425 (15)0.0462 (7)
C140.14496 (18)0.4672 (3)0.17412 (15)0.0407 (7)
C150.21649 (18)0.5098 (3)0.25677 (15)0.0406 (7)
H10.097040.385420.467390.0974*
H20.196950.452030.669870.0483*
H50.547560.685610.698310.0534*
H60.444890.628700.552140.0524*
H7A0.328810.408510.889460.0838*
H7B0.208510.440100.830780.0838*
H7C0.275800.599870.884180.0838*
H8A0.474120.724470.901360.0893*
H8B0.580390.680030.861200.0893*
H8C0.518380.527560.903950.0893*
H90.329780.573280.427000.0493*
H120.053160.289970.258350.0594*
H130.002910.355540.118030.0554*
H150.284580.563500.255520.0487*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0679 (2)0.0809 (2)0.0349 (2)0.0060 (1)0.0114 (1)0.0038 (1)
O10.0642 (11)0.0893 (14)0.0442 (9)0.0253 (10)0.0179 (8)0.0017 (9)
N10.0464 (10)0.0475 (11)0.0355 (10)0.0011 (8)0.0073 (8)0.0028 (8)
C10.0431 (12)0.0358 (11)0.0349 (11)0.0024 (9)0.0094 (9)0.0005 (9)
C20.0409 (12)0.0401 (13)0.0407 (12)0.0035 (9)0.0105 (10)0.0015 (9)
C30.0461 (12)0.0359 (12)0.0359 (11)0.0004 (10)0.0135 (9)0.0012 (9)
C40.0468 (12)0.0348 (12)0.0411 (12)0.0005 (10)0.0059 (10)0.0003 (10)
C50.0379 (12)0.0455 (14)0.0498 (14)0.0034 (10)0.0080 (10)0.0022 (10)
C60.0436 (13)0.0494 (13)0.0413 (12)0.0001 (10)0.0160 (10)0.0036 (10)
C70.0664 (16)0.0653 (17)0.0388 (13)0.0078 (12)0.0173 (12)0.0006 (10)
C80.0621 (15)0.0662 (18)0.0460 (14)0.0063 (13)0.0005 (12)0.0015 (12)
C90.0439 (12)0.0426 (13)0.0371 (12)0.0022 (10)0.0091 (9)0.0008 (9)
C100.0435 (12)0.0362 (12)0.0352 (12)0.0007 (9)0.0074 (9)0.0001 (9)
C110.0487 (13)0.0442 (13)0.0420 (12)0.0054 (11)0.0146 (10)0.0032 (10)
C120.0444 (13)0.0498 (15)0.0529 (14)0.0121 (10)0.0063 (11)0.0003 (11)
C130.0487 (13)0.0445 (13)0.0414 (12)0.0010 (11)0.0006 (10)0.0014 (10)
C140.0460 (13)0.0399 (12)0.0365 (12)0.0045 (10)0.0089 (10)0.0001 (9)
C150.0414 (12)0.0416 (13)0.0391 (12)0.0006 (9)0.0091 (10)0.0009 (9)
Geometric parameters (Å, º) top
Br1—C141.898 (2)C12—C131.377 (3)
O1—C111.347 (3)C13—C141.379 (3)
O1—H10.8200C14—C151.378 (3)
N1—C11.419 (3)C2—H20.9300
N1—C91.277 (3)C5—H50.9300
C1—C61.393 (3)C6—H60.9300
C1—C21.388 (3)C7—H7A0.9600
C2—C31.382 (3)C7—H7B0.9600
C3—C41.400 (3)C7—H7C0.9600
C3—C71.514 (3)C8—H8A0.9600
C4—C81.507 (3)C8—H8B0.9600
C4—C51.390 (3)C8—H8C0.9600
C5—C61.372 (3)C9—H90.9300
C9—C101.452 (3)C12—H120.9300
C10—C151.397 (3)C13—H130.9300
C10—C111.405 (3)C15—H150.9300
C11—C121.388 (3)
C11—O1—H1109.00C1—C2—H2119.00
C1—N1—C9123.19 (19)C3—C2—H2119.00
N1—C1—C6125.30 (19)C4—C5—H5119.00
C2—C1—C6118.3 (2)C6—C5—H5119.00
N1—C1—C2116.41 (19)C1—C6—H6120.00
C1—C2—C3122.7 (2)C5—C6—H6120.00
C2—C3—C7120.4 (2)C3—C7—H7A109.00
C4—C3—C7120.89 (19)C3—C7—H7B109.00
C2—C3—C4118.8 (2)C3—C7—H7C109.00
C3—C4—C8121.25 (19)H7A—C7—H7B110.00
C5—C4—C8120.53 (19)H7A—C7—H7C109.00
C3—C4—C5118.22 (19)H7B—C7—H7C109.00
C4—C5—C6122.8 (2)C4—C8—H8A109.00
C1—C6—C5119.3 (2)C4—C8—H8B109.00
N1—C9—C10121.7 (2)C4—C8—H8C109.00
C9—C10—C11121.2 (2)H8A—C8—H8B109.00
C9—C10—C15119.9 (2)H8A—C8—H8C109.00
C11—C10—C15118.9 (2)H8B—C8—H8C109.00
O1—C11—C10121.90 (19)N1—C9—H9119.00
O1—C11—C12118.36 (19)C10—C9—H9119.00
C10—C11—C12119.7 (2)C11—C12—H12120.00
C11—C12—C13120.8 (2)C13—C12—H12120.00
C12—C13—C14119.6 (2)C12—C13—H13120.00
Br1—C14—C13119.24 (16)C14—C13—H13120.00
C13—C14—C15121.0 (2)C10—C15—H15120.00
Br1—C14—C15119.77 (17)C14—C15—H15120.00
C10—C15—C14120.1 (2)
C9—N1—C1—C2177.4 (2)N1—C9—C10—C110.3 (3)
C9—N1—C1—C62.7 (3)N1—C9—C10—C15179.0 (2)
C1—N1—C9—C10179.2 (2)C9—C10—C11—O11.1 (3)
N1—C1—C2—C3179.5 (2)C9—C10—C11—C12179.6 (2)
C6—C1—C2—C30.4 (3)C15—C10—C11—O1178.2 (2)
N1—C1—C6—C5179.5 (2)C15—C10—C11—C121.1 (3)
C2—C1—C6—C50.4 (3)C9—C10—C15—C14179.2 (2)
C1—C2—C3—C40.3 (3)C11—C10—C15—C140.2 (3)
C1—C2—C3—C7179.3 (2)O1—C11—C12—C13177.8 (2)
C2—C3—C4—C50.8 (3)C10—C11—C12—C131.5 (3)
C2—C3—C4—C8178.0 (2)C11—C12—C13—C140.6 (3)
C7—C3—C4—C5179.9 (2)C12—C13—C14—Br1178.45 (17)
C7—C3—C4—C81.0 (3)C12—C13—C14—C150.7 (3)
C3—C4—C5—C60.8 (3)Br1—C14—C15—C10178.07 (17)
C8—C4—C5—C6178.1 (2)C13—C14—C15—C101.1 (3)
C4—C5—C6—C10.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.601 (2)147
C7—H7B···Cg1i0.962.953.668 (3)133
C12—H12···Cg1ii0.932.963.612 (2)128
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14BrNO
Mr304.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.2633 (10), 7.4805 (6), 14.5767 (11)
β (°) 101.576 (4)
V3)1310.00 (18)
Z4
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.454, 0.546
No. of measured, independent and
observed [I > 2σ(I)] reflections
9488, 2545, 1931
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections2545
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.34

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.872.601 (2)147
C7—H7B···Cg1i0.962.953.668 (3)133
C12—H12···Cg1ii0.932.963.612 (2)128
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUnver, H., Karakas, A. & Durlu, T. N. (2010). Z. Naturforsch. Teil B, 65, 185–190.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds