organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2769-o2770

(3′R)-3′-Benzyl-2′,3′-di­hydro-1H-spiro­[indole-3,1′-naphtho­[2,3-c]pyrrole]-2,4′,9′-trione

aDepartment of Chemistry, Karunya University, Coimbatore, India, bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, cMalaysian Institute of Pharmaceuticals and Nutraceuticals, Ministry of Science, Technology and Innovation, Halaman Bukit Gambir, 11700 Bayan Lepas, Penang, Malaysia, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 16 August 2012; accepted 19 August 2012; online 25 August 2012)

In the title compound, C26H18N2O3, the maximum deviations from planarity for the tetra­hydro-1H-naphtho­[2,3-c]pyrrole and indoline rings systems are 0.091 (1) and 0.012 (2) Å, respectively. These ring systems make a dihedral angle of 89.95 (6)° with each other and they make dihedral angles of 73.42 (8) and 71.28 (9)°, respectively, with the benzene ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops and C—H⋯O inter­actions connect the dimers into corrugated sheets lying parallel to the bc plane.

Related literature

For a related structure, see: Sharma et al. (2012[Sharma, G., Kumar, S. V., Wahab, H. A., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o2522-o2523.]). For the biological activity of naphtho­quinones, see: Babula et al. (2007[Babula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov. Farm. 56, 114-20.]). For 1,3-cyclo­addition reactions involving naphtho­quinones, see: Chen et al. (2011[Chen, H., Wang, S.-Y., Xu, X.-P. & Ji, S.-J. (2011). Synth. Commun. 41, 3280-3288.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C26H18N2O3

  • Mr = 406.42

  • Monoclinic, P 21 /c

  • a = 10.2317 (4) Å

  • b = 26.2823 (8) Å

  • c = 7.8406 (3) Å

  • β = 109.122 (2)°

  • V = 1992.10 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.36 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.992

  • 19577 measured reflections

  • 5742 independent reflections

  • 3338 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.178

  • S = 1.02

  • 5742 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O3i 0.95 (3) 1.92 (3) 2.840 (2) 164 (2)
C5—H5A⋯O1ii 0.95 2.41 3.038 (3) 123
Symmetry codes: (i) -x+2, -y, -z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

This is a continuation of our recently published work (Sharma et al., 2012). Naphthoquinones are known to possess various biological properties (Babula et al., 2007). Recently, there also have been a few efforts to conduct 1, 3-cycloaddition involving naphthoquinones (Chen et al., 2011).

In the title compound, Fig. 1, all parameters are within normal ranges and comparable with the previously reported structure (Sharma et al., 2012). The tetrahydro-1H-naphtho[2,3-c]pyrrole (N1/C8—C19) and indoline (N2/C19—C26) rings are close to planar with the maximum deviations of 0.091 (2) Å for atom C8 and 0.012 (2) Å for atom C26. The two rings make a dihedral angle of 89.95 (6)° with each other and these two rings make dihedral angles of 73.42 (8)° and 71.28 (9)° with the benzene ring(C1—C6), respectively.

In the crystal, N2—H1N2···O3i and C5—H5A···O1ii (Table 1) connect the molecules into corrugated sheets parallel to the bc-plane (Fig. 2).

Related literature top

For a related structure, see: Sharma et al. (2012). For the biological activity of naphthoquinones, see: Babula et al. (2007). For 1,3-cycloaddition reactions involving naphthoquinones, see: Chen et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of isatin (0.147 g, 1 mmol), L-phenylalanine (0.165 g, 1 mmol) and 1,4-naphthoquinone (0.158 g, 1 mmol) was refluxed in methanol (6 ml) until the starting material was completely utilized (monitored by thin layer chromatography). After leaving the resultant concoction to stand for 1 h, the reaction solid was washed with cool water (3 × 2.5 ml) and cool ethanol (3 × 0.5 ml). The crude reaction solid was re-crystallized from hot methanol to afford the pure product (80% yield) as yellow plates.

Refinement top

N bound H atom were located from a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2. The crystal packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
(3'R)-3'-Benzyl-2',3'-dihydro-1H-spiro[indole-3,1'- naphtho[2,3-c]pyrrole]-2,4',9'-trione top
Crystal data top
C26H18N2O3F(000) = 848
Mr = 406.42Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2917 reflections
a = 10.2317 (4) Åθ = 3.6–30.0°
b = 26.2823 (8) ŵ = 0.09 mm1
c = 7.8406 (3) ÅT = 100 K
β = 109.122 (2)°Plate, yellow
V = 1992.10 (12) Å30.36 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
5742 independent reflections
Radiation source: fine-focus sealed tube3338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.968, Tmax = 0.992k = 3636
19577 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.2374P]
where P = (Fo2 + 2Fc2)/3
5742 reflections(Δ/σ)max < 0.001
288 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C26H18N2O3V = 1992.10 (12) Å3
Mr = 406.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2317 (4) ŵ = 0.09 mm1
b = 26.2823 (8) ÅT = 100 K
c = 7.8406 (3) Å0.36 × 0.20 × 0.10 mm
β = 109.122 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5742 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3338 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.992Rint = 0.069
19577 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.45 e Å3
5742 reflectionsΔρmin = 0.27 e Å3
288 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63086 (17)0.24596 (6)0.1639 (2)0.0425 (4)
O20.99431 (16)0.12903 (5)0.32957 (19)0.0322 (3)
O30.90923 (16)0.05795 (5)0.09244 (19)0.0303 (3)
N10.6184 (2)0.08098 (7)0.0952 (2)0.0323 (4)
N20.89813 (19)0.01158 (6)0.1530 (2)0.0279 (4)
C10.2987 (2)0.10602 (8)0.0342 (3)0.0326 (5)
H1A0.27160.08060.12530.039*
C20.2518 (2)0.10324 (8)0.1128 (3)0.0350 (5)
H2A0.19160.07650.12040.042*
C30.2923 (2)0.13924 (8)0.2481 (3)0.0334 (5)
H3A0.26100.13720.34940.040*
C40.3785 (2)0.17823 (8)0.2351 (3)0.0358 (5)
H4A0.40740.20300.32830.043*
C50.4237 (2)0.18162 (8)0.0863 (3)0.0322 (5)
H5A0.48180.20900.07780.039*
C60.3846 (2)0.14535 (7)0.0502 (3)0.0277 (4)
C70.4355 (2)0.14789 (8)0.2108 (3)0.0326 (5)
H7A0.42260.18300.25880.039*
H7B0.37720.12520.30650.039*
C80.5876 (2)0.13280 (8)0.1709 (3)0.0292 (5)
H8A0.60770.13360.28740.035*
C90.6946 (2)0.16499 (7)0.0368 (3)0.0259 (4)
C100.7108 (2)0.22060 (8)0.0448 (3)0.0301 (5)
C110.8288 (2)0.24382 (7)0.0988 (3)0.0299 (5)
C120.8434 (3)0.29669 (8)0.1069 (3)0.0393 (6)
H12A0.77670.31750.02310.047*
C130.9546 (3)0.31879 (9)0.2366 (4)0.0457 (7)
H13A0.96320.35480.24310.055*
C141.0541 (3)0.28861 (9)0.3576 (3)0.0432 (6)
H14A1.13170.30400.44420.052*
C151.0407 (2)0.23625 (8)0.3524 (3)0.0351 (5)
H15A1.10870.21580.43580.042*
C160.9273 (2)0.21352 (7)0.2246 (3)0.0284 (4)
C170.9102 (2)0.15717 (7)0.2248 (3)0.0250 (4)
C180.7843 (2)0.13671 (7)0.0901 (3)0.0243 (4)
C190.7453 (2)0.08120 (7)0.0663 (3)0.0247 (4)
C200.7310 (2)0.05476 (7)0.2298 (3)0.0286 (4)
C210.6447 (2)0.06580 (8)0.3289 (3)0.0351 (5)
H21A0.58210.09360.29750.042*
C220.6529 (3)0.03456 (9)0.4769 (3)0.0410 (6)
H22A0.59560.04120.54840.049*
C230.7448 (3)0.00613 (9)0.5190 (3)0.0410 (6)
H23A0.74850.02700.61940.049*
C240.8312 (3)0.01737 (8)0.4200 (3)0.0348 (5)
H24A0.89330.04540.45010.042*
C250.8228 (2)0.01413 (7)0.2749 (3)0.0276 (4)
C260.8609 (2)0.04958 (7)0.0286 (3)0.0248 (4)
H1N10.551 (3)0.0684 (11)0.059 (4)0.065 (9)*
H1N20.968 (3)0.0123 (9)0.156 (3)0.045 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (10)0.0389 (9)0.0539 (10)0.0140 (7)0.0252 (8)0.0197 (7)
O20.0299 (9)0.0331 (8)0.0342 (8)0.0021 (6)0.0110 (7)0.0021 (6)
O30.0354 (9)0.0290 (7)0.0322 (8)0.0062 (6)0.0188 (7)0.0033 (5)
N10.0287 (10)0.0337 (10)0.0345 (10)0.0016 (8)0.0103 (8)0.0007 (7)
N20.0326 (10)0.0244 (9)0.0290 (9)0.0045 (7)0.0135 (8)0.0022 (6)
C10.0332 (13)0.0290 (11)0.0310 (11)0.0018 (9)0.0043 (9)0.0041 (8)
C20.0327 (13)0.0322 (11)0.0382 (12)0.0071 (9)0.0092 (10)0.0050 (9)
C30.0292 (12)0.0418 (12)0.0321 (11)0.0005 (9)0.0141 (9)0.0014 (9)
C40.0338 (13)0.0426 (12)0.0345 (12)0.0083 (10)0.0161 (10)0.0112 (9)
C50.0269 (12)0.0357 (11)0.0384 (12)0.0089 (9)0.0164 (10)0.0084 (9)
C60.0214 (10)0.0328 (10)0.0275 (10)0.0036 (8)0.0058 (8)0.0008 (8)
C70.0288 (12)0.0405 (12)0.0285 (11)0.0042 (9)0.0092 (9)0.0013 (8)
C80.0302 (12)0.0353 (11)0.0253 (10)0.0051 (9)0.0133 (9)0.0022 (8)
C90.0282 (11)0.0264 (10)0.0292 (10)0.0035 (8)0.0176 (8)0.0033 (7)
C100.0316 (12)0.0301 (10)0.0373 (11)0.0073 (9)0.0233 (10)0.0089 (8)
C110.0363 (12)0.0254 (10)0.0397 (12)0.0003 (8)0.0287 (10)0.0015 (8)
C120.0479 (15)0.0277 (11)0.0605 (15)0.0024 (10)0.0424 (13)0.0036 (9)
C130.0623 (18)0.0263 (11)0.0695 (17)0.0098 (11)0.0503 (15)0.0101 (11)
C140.0493 (15)0.0423 (13)0.0521 (15)0.0191 (11)0.0358 (13)0.0163 (11)
C150.0357 (13)0.0368 (12)0.0420 (12)0.0088 (9)0.0253 (10)0.0075 (9)
C160.0314 (11)0.0270 (10)0.0362 (11)0.0033 (8)0.0240 (10)0.0035 (8)
C170.0260 (11)0.0268 (10)0.0283 (10)0.0011 (8)0.0171 (8)0.0003 (7)
C180.0261 (11)0.0253 (9)0.0268 (10)0.0016 (8)0.0161 (8)0.0001 (7)
C190.0268 (11)0.0241 (9)0.0266 (10)0.0010 (8)0.0132 (8)0.0002 (7)
C200.0344 (12)0.0281 (10)0.0266 (10)0.0029 (8)0.0143 (9)0.0004 (8)
C210.0396 (14)0.0348 (11)0.0369 (12)0.0029 (10)0.0207 (10)0.0021 (9)
C220.0489 (16)0.0439 (13)0.0389 (13)0.0104 (11)0.0262 (11)0.0029 (10)
C230.0563 (17)0.0388 (12)0.0316 (12)0.0112 (11)0.0193 (11)0.0026 (9)
C240.0453 (14)0.0282 (10)0.0295 (11)0.0045 (9)0.0103 (10)0.0025 (8)
C250.0346 (12)0.0234 (9)0.0270 (10)0.0045 (8)0.0132 (9)0.0020 (7)
C260.0266 (11)0.0235 (9)0.0254 (10)0.0007 (8)0.0101 (8)0.0015 (7)
Geometric parameters (Å, º) top
O1—C101.219 (2)C9—C101.475 (3)
O2—C171.225 (2)C10—C111.485 (3)
O3—C261.225 (2)C11—C121.397 (3)
N1—C81.478 (3)C11—C161.404 (3)
N1—C191.487 (3)C12—C131.381 (4)
N1—H1N10.89 (3)C12—H12A0.9500
N2—C261.361 (2)C13—C141.390 (4)
N2—C251.413 (3)C13—H13A0.9500
N2—H1N20.95 (3)C14—C151.382 (3)
C1—C21.388 (3)C14—H14A0.9500
C1—C61.389 (3)C15—C161.395 (3)
C1—H1A0.9500C15—H15A0.9500
C2—C31.380 (3)C16—C171.491 (3)
C2—H2A0.9500C17—C181.474 (3)
C3—C41.378 (3)C18—C191.508 (3)
C3—H3A0.9500C19—C201.507 (3)
C4—C51.391 (3)C19—C261.552 (3)
C4—H4A0.9500C20—C211.384 (3)
C5—C61.391 (3)C20—C251.389 (3)
C5—H5A0.9500C21—C221.402 (3)
C6—C71.513 (3)C21—H21A0.9500
C7—C81.536 (3)C22—C231.390 (4)
C7—H7A0.9900C22—H22A0.9500
C7—H7B0.9900C23—C241.387 (3)
C8—C91.505 (3)C23—H23A0.9500
C8—H8A1.0000C24—C251.386 (3)
C9—C181.336 (3)C24—H24A0.9500
C8—N1—C19110.48 (16)C11—C12—H12A119.9
C8—N1—H1N1112.6 (19)C12—C13—C14120.3 (2)
C19—N1—H1N1106 (2)C12—C13—H13A119.8
C26—N2—C25111.33 (17)C14—C13—H13A119.8
C26—N2—H1N2122.5 (15)C15—C14—C13120.3 (2)
C25—N2—H1N2126.2 (15)C15—C14—H14A119.8
C2—C1—C6121.01 (19)C13—C14—H14A119.8
C2—C1—H1A119.5C14—C15—C16119.9 (2)
C6—C1—H1A119.5C14—C15—H15A120.0
C3—C2—C1120.3 (2)C16—C15—H15A120.0
C3—C2—H2A119.9C15—C16—C11119.91 (19)
C1—C2—H2A119.9C15—C16—C17119.7 (2)
C4—C3—C2119.5 (2)C11—C16—C17120.43 (19)
C4—C3—H3A120.3O2—C17—C18121.16 (17)
C2—C3—H3A120.3O2—C17—C16122.93 (19)
C3—C4—C5120.4 (2)C18—C17—C16115.90 (17)
C3—C4—H4A119.8C9—C18—C17123.79 (18)
C5—C4—H4A119.8C9—C18—C19110.90 (18)
C6—C5—C4120.7 (2)C17—C18—C19125.13 (17)
C6—C5—H5A119.6N1—C19—C20114.94 (17)
C4—C5—H5A119.6N1—C19—C18103.35 (15)
C1—C6—C5118.11 (19)C20—C19—C18115.91 (15)
C1—C6—C7120.54 (18)N1—C19—C26110.06 (15)
C5—C6—C7121.34 (19)C20—C19—C26101.98 (15)
C6—C7—C8114.88 (17)C18—C19—C26110.74 (16)
C6—C7—H7A108.5C21—C20—C25121.35 (19)
C8—C7—H7A108.5C21—C20—C19129.63 (19)
C6—C7—H7B108.5C25—C20—C19109.01 (17)
C8—C7—H7B108.5C20—C21—C22117.8 (2)
H7A—C7—H7B107.5C20—C21—H21A121.1
N1—C8—C9103.11 (16)C22—C21—H21A121.1
N1—C8—C7112.82 (18)C23—C22—C21119.9 (2)
C9—C8—C7116.98 (17)C23—C22—H22A120.0
N1—C8—H8A107.8C21—C22—H22A120.0
C9—C8—H8A107.8C24—C23—C22122.4 (2)
C7—C8—H8A107.8C24—C23—H23A118.8
C18—C9—C10121.58 (19)C22—C23—H23A118.8
C18—C9—C8111.86 (17)C25—C24—C23116.9 (2)
C10—C9—C8126.40 (18)C25—C24—H24A121.6
O1—C10—C9121.2 (2)C23—C24—H24A121.6
O1—C10—C11122.08 (19)C24—C25—C20121.6 (2)
C9—C10—C11116.72 (18)C24—C25—N2128.7 (2)
C12—C11—C16119.4 (2)C20—C25—N2109.71 (17)
C12—C11—C10119.4 (2)O3—C26—N2126.73 (19)
C16—C11—C10121.17 (18)O3—C26—C19125.32 (17)
C13—C12—C11120.1 (2)N2—C26—C19107.95 (16)
C13—C12—H12A119.9
C6—C1—C2—C31.3 (3)C10—C9—C18—C19179.17 (16)
C1—C2—C3—C40.7 (3)C8—C9—C18—C193.6 (2)
C2—C3—C4—C50.5 (3)O2—C17—C18—C9174.50 (18)
C3—C4—C5—C61.1 (3)C16—C17—C18—C95.6 (3)
C2—C1—C6—C50.7 (3)O2—C17—C18—C190.2 (3)
C2—C1—C6—C7179.80 (19)C16—C17—C18—C19179.66 (16)
C4—C5—C6—C10.5 (3)C8—N1—C19—C20130.56 (17)
C4—C5—C6—C7178.6 (2)C8—N1—C19—C183.3 (2)
C1—C6—C7—C8105.2 (2)C8—N1—C19—C26115.02 (17)
C5—C6—C7—C873.9 (3)C9—C18—C19—N10.2 (2)
C19—N1—C8—C95.1 (2)C17—C18—C19—N1175.10 (17)
C19—N1—C8—C7132.25 (18)C9—C18—C19—C20126.48 (19)
C6—C7—C8—N157.3 (2)C17—C18—C19—C2058.2 (2)
C6—C7—C8—C962.1 (2)C9—C18—C19—C26118.02 (18)
N1—C8—C9—C185.4 (2)C17—C18—C19—C2657.3 (2)
C7—C8—C9—C18129.81 (19)N1—C19—C20—C2161.8 (3)
N1—C8—C9—C10179.28 (18)C18—C19—C20—C2158.8 (3)
C7—C8—C9—C1054.8 (3)C26—C19—C20—C21179.2 (2)
C18—C9—C10—O1177.88 (19)N1—C19—C20—C25118.20 (19)
C8—C9—C10—O13.0 (3)C18—C19—C20—C25121.20 (19)
C18—C9—C10—C112.1 (3)C26—C19—C20—C250.8 (2)
C8—C9—C10—C11177.06 (17)C25—C20—C21—C220.0 (3)
O1—C10—C11—C125.0 (3)C19—C20—C21—C22180.0 (2)
C9—C10—C11—C12174.99 (17)C20—C21—C22—C230.5 (3)
O1—C10—C11—C16173.87 (18)C21—C22—C23—C240.4 (4)
C9—C10—C11—C166.1 (3)C22—C23—C24—C250.2 (3)
C16—C11—C12—C130.7 (3)C23—C24—C25—C200.6 (3)
C10—C11—C12—C13178.23 (18)C23—C24—C25—N2179.8 (2)
C11—C12—C13—C141.2 (3)C21—C20—C25—C240.5 (3)
C12—C13—C14—C151.7 (3)C19—C20—C25—C24179.47 (18)
C13—C14—C15—C160.4 (3)C21—C20—C25—N2179.80 (19)
C14—C15—C16—C111.5 (3)C19—C20—C25—N20.2 (2)
C14—C15—C16—C17177.37 (18)C26—N2—C25—C24179.7 (2)
C12—C11—C16—C152.0 (3)C26—N2—C25—C200.7 (2)
C10—C11—C16—C15176.84 (18)C25—N2—C26—O3178.67 (19)
C12—C11—C16—C17176.85 (17)C25—N2—C26—C191.2 (2)
C10—C11—C16—C174.3 (3)N1—C19—C26—O358.9 (3)
C15—C16—C17—O22.4 (3)C20—C19—C26—O3178.64 (19)
C11—C16—C17—O2178.71 (18)C18—C19—C26—O354.7 (3)
C15—C16—C17—C18177.45 (17)N1—C19—C26—N2121.22 (17)
C11—C16—C17—C181.4 (2)C20—C19—C26—N21.2 (2)
C10—C9—C18—C173.8 (3)C18—C19—C26—N2125.13 (17)
C8—C9—C18—C17171.80 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.95 (3)1.92 (3)2.840 (2)164 (2)
C5—H5A···O1ii0.952.413.038 (3)123
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H18N2O3
Mr406.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2317 (4), 26.2823 (8), 7.8406 (3)
β (°) 109.122 (2)
V3)1992.10 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.36 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
19577, 5742, 3338
Rint0.069
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.178, 1.02
No. of reflections5742
No. of parameters288
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3i0.95 (3)1.92 (3)2.840 (2)164 (2)
C5—H5A···O1ii0.952.413.038 (3)123
Symmetry codes: (i) x+2, y, z; (ii) x, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: habibahwahab@yahoo.co.uk.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HAW gratefully acknowledges the Malaysian Ministry of Science, Technology and Innovation for the synthesis work funded by grants Nos. 09–05-lfn-meb-004 and 304/PFARMASI/650545/I121. GS and SVK thank the management and administration of Karunya University for their encouragement and support. HKF thanks USM for a Research University grant (No. 1001/PFIZIK/811160).

References

First citationBabula, P., Adam, V., Havel, L. & Kizek, R. (2007). Ceska Slov. Farm. 56, 114–20.  PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H., Wang, S.-Y., Xu, X.-P. & Ji, S.-J. (2011). Synth. Commun. 41, 3280–3288.  Web of Science CSD CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSharma, G., Kumar, S. V., Wahab, H. A., Rosli, M. M. & Fun, H.-K. (2012). Acta Cryst. E68, o2522–o2523.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2769-o2770
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds