metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1208-m1209

Tetra-μ3-hydroxido-tetra­kis­[tri­carbonyl­rhenium(I)] pyridine tetra­solvate

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa
*Correspondence e-mail: schuttem@ufs.ac.za

(Received 15 August 2012; accepted 16 August 2012; online 25 August 2012)

The title compound, [Re4(μ3-OH)4(CO)12]·4C5H5N, crystallizes with one tetranuclear rhenium(I) cubane-like molecule and four pyridine mol­ecules in the asymmetric unit. The coordination environment of each ReI atom is distorted octahedral. Four intra­molecular O—H⋯N and four inter­molecular C—H⋯O hydrogen-bond inter­actions are observed. Relatively strong hydrogen bonds are found between the hydrogen-bond donor (μ3-OH) and acceptor (basic N atom of pyridine), with N⋯O distances between 2.586 (10) and 2.628 (10) Å. Inter­cube distances of 9.873 (2) and 12.376 (3) Å are observed.

Related literature

For similar structures, see: Herberhold & Süss (1975[Herberhold, M. & Süss, G. (1975). Angew. Chem. 87, 710-712.]); Nuber et al. (1981[Nuber, B., Oberdorfer, F. & Ziegler, M. L. (1981). Acta Cryst. B37, 2062-2064.]); Copp et al. (1995[Copp, S. B., Holman, K. T., Sangster, J. O. S., Subramanian, S. & Zaworotko, M. J. (1995). J. Chem. Soc. Dalton Trans. pp. 2233-2243.]); Egli et al. (1997[Egli, A., Hegetschweiler, K., Alberto, R., Abram, U., Schibli, R., Hedinger, R., Gramlich, V., Kissner, R. & Schubiger, P. A. (1997). Organometallics, 16, 1833-1940.]). For the synthesis of the precursor, see: Alberto et al. (1996[Alberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079-1089.]).

[Scheme 1]

Experimental

Crystal data
  • [Re4(OH)4(CO)12]·4C5H5N

  • Mr = 1465.39

  • Monoclinic, P 21 /c

  • a = 11.895 (5) Å

  • b = 21.847 (5) Å

  • c = 16.245 (5) Å

  • β = 109.707 (5)°

  • V = 3974 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 12.22 mm−1

  • T = 100 K

  • 0.43 × 0.11 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]) Tmin = 0.211, Tmax = 0.271

  • 68439 measured reflections

  • 9594 independent reflections

  • 7966 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.099

  • S = 1.04

  • 9594 reflections

  • 516 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 7.00 e Å−3

  • Δρmin = −6.09 e Å−3

Table 1
Selected bond lengths (Å)

Re3—C32 1.886 (10)
Re3—C31 1.900 (9)
Re3—C33 1.906 (10)
Re3—O1 2.157 (6)
Re3—O3 2.168 (6)
Re3—O4 2.179 (6)
Re4—C43 1.893 (9)
Re4—C42 1.913 (10)
Re4—C41 1.918 (9)
Re4—O2 2.154 (7)
Re4—O3 2.172 (6)
Re4—O4 2.173 (6)
Re2—C23 1.891 (9)
Re2—C22 1.916 (9)
Re2—C21 1.918 (10)
Re2—O3 2.157 (6)
Re2—O2 2.165 (6)
Re2—O1 2.171 (6)
O1—Re1 2.178 (6)
O4—Re1 2.160 (6)
Re1—C12 1.888 (10)
Re1—C13 1.889 (10)
Re1—C11 1.907 (10)
Re1—O2 2.169 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C103—H103⋯O23i 0.93 2.59 3.249 (12) 128
C203—H203⋯O33ii 0.93 2.42 3.330 (13) 166
C303—H303⋯O42iii 0.93 2.49 3.321 (13) 149
C404—H404⋯O32iv 0.93 2.47 3.252 (12) 142
O1—H1⋯N2 0.85 (2) 1.76 (4) 2.600 (10) 170 (16)
O2—H2⋯N3 0.85 (2) 1.74 (3) 2.586 (10) 174 (11)
O3—H3⋯N1 0.85 (2) 1.79 (4) 2.627 (10) 165 (14)
O4—H4⋯N4 0.85 (2) 1.78 (4) 2.620 (10) 169 (15)
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+2; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. ]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The compound [Re4(CO)123-OH)4], which is a cubane-like molecule, crystallized with four pyridine ligands (hydrogen bond acceptor molecules or 'spacers') in the asymmetric unit. Four intramolecular hydrogen bonds are observed between the hydroxide bridges in the rhenium cluster and the pyridine molecules. These hydrogen interactions are also found by Copp et al. (1995) with benzene, toluene, p-xylene, p-fluorotoluene, naphthalene, 1-methylnaphthalene etc. surrounding the rhenium cluster as well as DMF and OPPh3 reported by Egli et al. (1997). Four intermolecular hydrogen interactions are reported between an aromatic carbon of the pyridine molecule to a carbonyl oxygen atom of the next rhenium cluster. The Re—O—Re angles (102.6 (3) ° to 104.7 (3) °) and the Re—O distances (2.154 (7) Å to 2.179 (6) Å) compare well to the structures of Herberhold & Süss (1975), Nuber et al. (1981), Copp et al. (1995) and Egli et al. (1997). The hydrogen bonds between the hydrogen-bond donor (µ3-OH) and acceptor (basic nitrogen of pyridine) are relatively strong with N···O distances ranging from 2.586 (10) Å to 2.628 (10) Å. This is comparable to the manganese structure by Copp et al. (1995) with a C···O distance of 2.74 Å from the bipyridine ligand to the bridging hydroxide oxygen. However, it does not correspond that well to the structure reported by Copp et al. (1995) with a distance of 3.58/3.59 Å for the C···O distance of the manganese structure with benzene as 'spacer'. Intercube distances of 9.873 (2) Å and 12.376 (3) Å are reported and fits well within the range found by Copp et al. (1995) (9.74 Å - 15.35 Å).

Related literature top

For similar structures, see: Herberhold & Süss (1975); Nuber et al. (1981); Copp et al. (1995); Egli et al. (1997). For the synthesis of the precursor, see: Alberto et al. (1996) for the synthesis of the precursor.

Experimental top

[NEt4]2[Re(CO)3Br3] (75 mg, 0.097 mmol), as prepared by Alberto et al. (1996), was dissolved in 20 ml of pyridine. The mixture was stirred at room temperature for 3 h and left to stand. The colourless cuboidal crystals formed by evaporation after a few days.

Refinement top

Aromatic and hydroxyl H atoms were positioned geometrically and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent) and Uiso(H) = 1.5Ueq(parent) of the parent atom with a C—H and O—H distance of 0.93 Å and 0.85 (2) Å respectively.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the title compound, showing the numbering scheme and displacement ellipsoids (50% probability).
[Figure 2] Fig. 2. Packing of the title compound in the unit cell.
Tetra-µ3-hydroxido-tetrakis[tricarbonylrhenium(I)] pyridine tetrasolvate top
Crystal data top
[Re4(OH)4(CO)12]·4C5H5NF(000) = 2688
Mr = 1465.39Dx = 2.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9793 reflections
a = 11.895 (5) Åθ = 2.7–28.1°
b = 21.847 (5) ŵ = 12.22 mm1
c = 16.245 (5) ÅT = 100 K
β = 109.707 (5)°Cuboid, colourless
V = 3974 (2) Å30.43 × 0.11 × 0.11 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 28°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1515
Tmin = 0.211, Tmax = 0.271k = 2828
68439 measured reflectionsl = 2021
9594 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0181P)2 + 118.6736P]
where P = (Fo2 + 2Fc2)/3
9594 reflections(Δ/σ)max = 0.001
516 parametersΔρmax = 7.00 e Å3
4 restraintsΔρmin = 6.09 e Å3
Crystal data top
[Re4(OH)4(CO)12]·4C5H5NV = 3974 (2) Å3
Mr = 1465.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.895 (5) ŵ = 12.22 mm1
b = 21.847 (5) ÅT = 100 K
c = 16.245 (5) Å0.43 × 0.11 × 0.11 mm
β = 109.707 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
9594 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
7966 reflections with I > 2σ(I)
Tmin = 0.211, Tmax = 0.271Rint = 0.064
68439 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0181P)2 + 118.6736P]
where P = (Fo2 + 2Fc2)/3
9594 reflectionsΔρmax = 7.00 e Å3
516 parametersΔρmin = 6.09 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re30.36392 (3)0.330517 (15)0.69816 (2)0.01378 (7)
Re40.36579 (3)0.431796 (15)0.85997 (2)0.01378 (7)
Re20.16248 (3)0.316708 (15)0.80536 (2)0.01277 (8)
O10.1755 (6)0.3368 (3)0.6780 (4)0.0146 (12)
O330.6355 (6)0.3461 (4)0.7514 (4)0.0299 (17)
C230.0056 (8)0.3095 (4)0.7695 (5)0.0146 (17)
O40.3333 (6)0.4265 (3)0.7203 (4)0.0154 (12)
O230.1098 (6)0.3044 (3)0.7458 (4)0.0235 (14)
Re10.14174 (3)0.434793 (15)0.66166 (2)0.01489 (8)
O30.3485 (5)0.3351 (3)0.8273 (4)0.0128 (12)
O410.3519 (6)0.5714 (3)0.8711 (5)0.0258 (15)
O420.3772 (6)0.4234 (3)1.0504 (4)0.0217 (14)
O430.6378 (6)0.4340 (3)0.9300 (4)0.0257 (15)
C430.5348 (8)0.4345 (4)0.9030 (5)0.0147 (17)
C420.3727 (8)0.4268 (4)0.9792 (6)0.0195 (19)
C410.3593 (8)0.5192 (4)0.8685 (6)0.0178 (18)
O310.3407 (7)0.3349 (3)0.5051 (4)0.0277 (16)
O210.1723 (7)0.3090 (4)0.9962 (4)0.0331 (18)
C310.3503 (8)0.3337 (4)0.5783 (6)0.0189 (18)
C210.1686 (9)0.3116 (4)0.9247 (6)0.022 (2)
C330.5327 (9)0.3392 (5)0.7306 (5)0.021 (2)
O220.1678 (7)0.1772 (3)0.7977 (5)0.0332 (17)
C220.1671 (8)0.2291 (4)0.8013 (6)0.0192 (18)
O320.3974 (7)0.1929 (3)0.6811 (4)0.0304 (17)
O110.1210 (8)0.5739 (3)0.6689 (6)0.045 (2)
C320.3824 (9)0.2454 (5)0.6885 (6)0.021 (2)
C110.1278 (9)0.5215 (5)0.6665 (7)0.027 (2)
O120.1361 (7)0.4482 (4)0.4735 (5)0.0336 (18)
C120.1361 (9)0.4431 (4)0.5446 (6)0.023 (2)
C130.0265 (9)0.4291 (4)0.6207 (6)0.0206 (19)
O130.1292 (7)0.4231 (3)0.5947 (5)0.0320 (17)
N10.5054 (7)0.2663 (4)0.9429 (5)0.0211 (17)
N20.0085 (8)0.2811 (4)0.5546 (5)0.0247 (18)
N30.0328 (7)0.4768 (4)0.8558 (5)0.0226 (17)
N40.4824 (7)0.4935 (4)0.6715 (5)0.0224 (17)
C3050.0787 (10)0.4596 (5)0.8305 (7)0.032 (2)
H3050.09920.42360.79840.038*
C3020.0225 (13)0.5632 (6)0.9231 (9)0.047 (3)
H3020.00030.59850.95660.056*
C3040.1692 (11)0.4915 (6)0.8484 (8)0.040 (3)
H3040.24720.47690.830.047*
C3030.1390 (11)0.5454 (6)0.8941 (9)0.042 (3)
H3030.19710.56930.9050.05*
C3010.0622 (11)0.5286 (5)0.9025 (8)0.035 (3)
H3010.14120.54170.92160.042*
C4030.6711 (9)0.5524 (5)0.6397 (7)0.026 (2)
H4030.73380.5720.62850.031*
C4020.6276 (9)0.4985 (5)0.5998 (6)0.024 (2)
H4020.66070.48070.56130.029*
C4010.5332 (9)0.4701 (5)0.6170 (6)0.027 (2)
H4010.50430.43320.58930.032*
C4040.6207 (10)0.5777 (5)0.6972 (7)0.029 (2)
H4040.64950.61420.72610.035*
C4050.5257 (10)0.5471 (5)0.7108 (7)0.028 (2)
H4050.49050.56440.74850.034*
C2050.0490 (10)0.2326 (5)0.5699 (7)0.033 (2)
H2050.02530.21640.62610.039*
C2010.0277 (11)0.3038 (5)0.4733 (7)0.035 (3)
H2010.01070.33820.4620.042*
C2040.1424 (11)0.2052 (6)0.5054 (9)0.048 (4)
H2040.1810.17150.51840.058*
C2030.1781 (12)0.2284 (7)0.4218 (9)0.052 (4)
H2030.24050.21050.37720.062*
C2020.1194 (13)0.2784 (7)0.4058 (8)0.053 (4)
H2020.14120.2950.350.063*
C1050.5525 (9)0.2822 (5)1.0269 (6)0.023 (2)
H1050.53080.31961.04430.027*
C1030.6650 (9)0.1902 (5)1.0643 (6)0.024 (2)
H1030.71840.16461.10480.029*
C1040.6325 (9)0.2455 (5)1.0898 (6)0.027 (2)
H1040.66330.25811.14770.032*
C1020.6167 (10)0.1732 (5)0.9773 (6)0.028 (2)
H1020.63720.1360.95830.034*
C1010.5376 (10)0.2124 (5)0.9189 (6)0.027 (2)
H1010.50550.20070.86060.032*
O20.1773 (6)0.4152 (3)0.7990 (4)0.0166 (13)
H30.395 (10)0.316 (6)0.871 (6)0.06 (4)*
H20.134 (8)0.436 (4)0.821 (6)0.02 (3)*
H10.127 (11)0.319 (6)0.634 (6)0.07 (5)*
H40.376 (11)0.452 (5)0.704 (9)0.07 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re30.01351 (13)0.01541 (12)0.01219 (11)0.00124 (9)0.00403 (9)0.00039 (8)
Re40.01351 (13)0.01541 (12)0.01219 (11)0.00124 (9)0.00403 (9)0.00039 (8)
Re20.01148 (17)0.01394 (16)0.01229 (15)0.00146 (12)0.00322 (12)0.00020 (12)
O10.014 (3)0.014 (3)0.010 (3)0.002 (2)0.003 (2)0.000 (2)
O330.013 (4)0.053 (5)0.023 (3)0.006 (3)0.004 (3)0.005 (3)
C230.017 (5)0.015 (4)0.010 (4)0.005 (3)0.003 (3)0.000 (3)
O40.019 (3)0.014 (3)0.016 (3)0.001 (3)0.009 (3)0.005 (2)
O230.016 (4)0.022 (3)0.032 (4)0.002 (3)0.008 (3)0.004 (3)
Re10.01131 (17)0.01397 (16)0.01761 (16)0.00153 (13)0.00254 (13)0.00234 (12)
O30.013 (3)0.013 (3)0.011 (3)0.001 (2)0.003 (2)0.000 (2)
O410.028 (4)0.012 (3)0.034 (4)0.006 (3)0.006 (3)0.004 (3)
O420.021 (4)0.029 (4)0.017 (3)0.006 (3)0.009 (3)0.003 (3)
O430.017 (4)0.030 (4)0.030 (4)0.007 (3)0.008 (3)0.001 (3)
C430.015 (4)0.014 (4)0.016 (4)0.004 (3)0.007 (3)0.004 (3)
C420.015 (5)0.013 (4)0.029 (5)0.003 (3)0.006 (4)0.001 (4)
C410.015 (4)0.016 (4)0.020 (4)0.001 (3)0.003 (4)0.002 (3)
O310.034 (4)0.034 (4)0.016 (3)0.005 (3)0.009 (3)0.002 (3)
O210.038 (5)0.049 (5)0.016 (3)0.012 (4)0.014 (3)0.002 (3)
C310.019 (5)0.022 (4)0.015 (4)0.004 (4)0.003 (3)0.001 (3)
C210.016 (5)0.019 (4)0.027 (5)0.005 (4)0.002 (4)0.002 (4)
C330.023 (5)0.031 (5)0.006 (4)0.008 (4)0.002 (3)0.001 (3)
O220.035 (4)0.018 (4)0.040 (4)0.001 (3)0.005 (3)0.000 (3)
C220.012 (4)0.018 (4)0.023 (4)0.000 (3)0.001 (4)0.000 (4)
O320.050 (5)0.017 (3)0.024 (3)0.008 (3)0.012 (3)0.000 (3)
O110.047 (5)0.013 (4)0.056 (5)0.003 (3)0.007 (4)0.003 (3)
C320.019 (5)0.029 (5)0.014 (4)0.004 (4)0.003 (4)0.002 (4)
C110.016 (5)0.025 (5)0.027 (5)0.003 (4)0.008 (4)0.005 (4)
O120.033 (4)0.039 (4)0.026 (4)0.006 (3)0.006 (3)0.016 (3)
C120.016 (5)0.023 (5)0.023 (5)0.004 (4)0.001 (4)0.010 (4)
C130.015 (5)0.020 (4)0.021 (4)0.004 (4)0.001 (4)0.000 (4)
O130.022 (4)0.029 (4)0.042 (4)0.002 (3)0.006 (3)0.005 (3)
N10.020 (4)0.027 (4)0.015 (3)0.004 (3)0.004 (3)0.003 (3)
N20.022 (4)0.022 (4)0.026 (4)0.000 (3)0.003 (3)0.007 (3)
N30.018 (4)0.022 (4)0.029 (4)0.003 (3)0.009 (3)0.005 (3)
N40.022 (4)0.024 (4)0.023 (4)0.003 (3)0.009 (3)0.003 (3)
C3050.029 (6)0.032 (6)0.038 (6)0.001 (5)0.016 (5)0.004 (5)
C3020.067 (10)0.029 (6)0.052 (7)0.015 (6)0.030 (7)0.011 (5)
C3040.025 (6)0.047 (7)0.052 (7)0.006 (5)0.020 (5)0.014 (6)
C3030.037 (7)0.041 (7)0.057 (8)0.015 (6)0.029 (6)0.000 (6)
C3010.031 (6)0.030 (6)0.047 (7)0.002 (5)0.016 (5)0.007 (5)
C4030.026 (5)0.025 (5)0.031 (5)0.000 (4)0.016 (4)0.011 (4)
C4020.019 (5)0.034 (5)0.022 (5)0.001 (4)0.010 (4)0.002 (4)
C4010.026 (6)0.031 (5)0.022 (5)0.008 (4)0.006 (4)0.006 (4)
C4040.031 (6)0.017 (5)0.042 (6)0.005 (4)0.015 (5)0.005 (4)
C4050.034 (6)0.025 (5)0.034 (5)0.007 (4)0.021 (5)0.002 (4)
C2050.030 (6)0.035 (6)0.034 (6)0.002 (5)0.011 (5)0.015 (5)
C2010.041 (7)0.031 (6)0.023 (5)0.013 (5)0.001 (5)0.005 (4)
C2040.033 (7)0.045 (7)0.069 (9)0.017 (6)0.020 (7)0.035 (7)
C2030.030 (7)0.062 (9)0.046 (7)0.010 (6)0.009 (6)0.039 (7)
C2020.054 (9)0.067 (9)0.024 (6)0.016 (7)0.005 (6)0.024 (6)
C1050.025 (5)0.023 (5)0.020 (4)0.003 (4)0.007 (4)0.001 (4)
C1030.025 (5)0.024 (5)0.022 (5)0.004 (4)0.006 (4)0.005 (4)
C1040.026 (6)0.033 (5)0.015 (4)0.001 (4)0.002 (4)0.003 (4)
C1020.035 (6)0.029 (5)0.022 (5)0.015 (5)0.010 (4)0.003 (4)
C1010.032 (6)0.026 (5)0.020 (5)0.001 (4)0.005 (4)0.003 (4)
O20.021 (3)0.015 (3)0.017 (3)0.001 (3)0.010 (3)0.002 (2)
Geometric parameters (Å, º) top
Re3—C321.886 (10)N2—C2011.339 (13)
Re3—C311.900 (9)N3—C3051.304 (14)
Re3—C331.906 (10)N3—C3011.342 (13)
Re3—O12.157 (6)N4—C4011.331 (13)
Re3—O32.168 (6)N4—C4051.349 (13)
Re3—O42.179 (6)C305—C3041.392 (16)
Re4—C431.893 (9)C305—H3050.93
Re4—C421.913 (10)C302—C3031.362 (19)
Re4—C411.918 (9)C302—C3011.386 (16)
Re4—O22.154 (7)C302—H3020.93
Re4—O32.172 (6)C304—C3031.373 (18)
Re4—O42.173 (6)C304—H3040.93
Re2—C231.891 (9)C303—H3030.93
Re2—C221.916 (9)C301—H3010.93
Re2—C211.918 (10)C403—C4021.359 (14)
Re2—O32.157 (6)C403—C4041.385 (14)
Re2—O22.165 (6)C403—H4030.93
Re2—O12.171 (6)C402—C4011.392 (14)
O1—Re12.178 (6)C402—H4020.93
O1—H10.85 (2)C401—H4010.93
O33—C331.164 (12)C404—C4051.392 (15)
C23—O231.173 (11)C404—H4040.93
O4—Re12.160 (6)C405—H4050.93
O4—H40.85 (2)C205—C2041.380 (16)
Re1—C121.888 (10)C205—H2050.93
Re1—C131.889 (10)C201—C2021.376 (16)
Re1—C111.907 (10)C201—H2010.93
Re1—O22.169 (6)C204—C2031.38 (2)
O3—H30.85 (2)C204—H2040.93
O41—C411.146 (11)C203—C2021.37 (2)
O42—C421.143 (11)C203—H2030.93
O43—C431.154 (11)C202—H2020.93
O31—C311.156 (11)C105—C1041.391 (13)
O21—C211.149 (11)C105—H1050.93
O22—C221.137 (11)C103—C1041.375 (14)
O32—C321.172 (12)C103—C1021.386 (13)
O11—C111.149 (12)C103—H1030.93
O12—C121.161 (12)C104—H1040.93
C13—O131.157 (12)C102—C1011.384 (14)
N1—C1051.334 (12)C102—H1020.93
N1—C1011.338 (13)C101—H1010.93
N2—C2051.328 (14)O2—H20.85 (2)
C32—Re3—C3185.6 (4)O42—C42—Re4179.5 (9)
C32—Re3—C3388.8 (4)O41—C41—Re4177.6 (8)
C31—Re3—C3389.8 (4)O31—C31—Re3178.9 (9)
C32—Re3—O1101.2 (3)O21—C21—Re2179.5 (9)
C31—Re3—O196.7 (3)O33—C33—Re3178.0 (9)
C33—Re3—O1168.4 (3)O22—C22—Re2178.7 (9)
C32—Re3—O3100.1 (3)O32—C32—Re3177.3 (9)
C31—Re3—O3169.7 (3)O11—C11—Re1178.9 (11)
C33—Re3—O398.8 (3)O12—C12—Re1178.1 (9)
O1—Re3—O373.8 (2)O13—C13—Re1177.2 (8)
C32—Re3—O4173.6 (3)C105—N1—C101117.7 (8)
C31—Re3—O499.9 (3)C205—N2—C201117.8 (9)
C33—Re3—O494.5 (3)C305—N3—C301117.7 (9)
O1—Re3—O475.0 (2)C401—N4—C405117.5 (9)
O3—Re3—O473.9 (2)N3—C305—C304124.5 (11)
C43—Re4—C4287.2 (4)N3—C305—H305117.8
C43—Re4—C4190.3 (4)C304—C305—H305117.8
C42—Re4—C4188.4 (4)C303—C302—C301119.8 (12)
C43—Re4—O2170.3 (3)C303—C302—H302120.1
C42—Re4—O298.0 (3)C301—C302—H302120.1
C41—Re4—O298.0 (3)C303—C304—C305117.5 (11)
C43—Re4—O397.0 (3)C303—C304—H304121.3
C42—Re4—O399.2 (3)C305—C304—H304121.3
C41—Re4—O3169.6 (3)C302—C303—C304118.9 (11)
O2—Re4—O374.1 (2)C302—C303—H303120.6
C43—Re4—O4100.4 (3)C304—C303—H303120.6
C42—Re4—O4170.3 (3)N3—C301—C302121.6 (11)
C41—Re4—O497.5 (3)N3—C301—H301119.2
O2—Re4—O473.7 (2)C302—C301—H301119.2
O3—Re4—O474.0 (2)C402—C403—C404119.0 (9)
C23—Re2—C2286.9 (4)C402—C403—H403120.5
C23—Re2—C2189.0 (4)C404—C403—H403120.5
C22—Re2—C2189.2 (4)C403—C402—C401119.7 (9)
C23—Re2—O3170.2 (3)C403—C402—H402120.2
C22—Re2—O398.7 (3)C401—C402—H402120.2
C21—Re2—O399.0 (3)N4—C401—C402122.7 (9)
C23—Re2—O299.4 (3)N4—C401—H401118.7
C22—Re2—O2170.9 (3)C402—C401—H401118.7
C21—Re2—O297.5 (3)C403—C404—C405118.3 (9)
O3—Re2—O274.2 (2)C403—C404—H404120.8
C23—Re2—O197.5 (3)C405—C404—H404120.8
C22—Re2—O199.0 (3)N4—C405—C404122.8 (9)
C21—Re2—O1169.8 (3)N4—C405—H405118.6
O3—Re2—O173.8 (2)C404—C405—H405118.6
O2—Re2—O173.8 (2)N2—C205—C204122.5 (12)
Re3—O1—Re2104.3 (2)N2—C205—H205118.8
Re3—O1—Re1102.7 (3)C204—C205—H205118.8
Re2—O1—Re1104.2 (2)N2—C201—C202122.7 (13)
Re3—O1—H1118 (10)N2—C201—H201118.6
Re2—O1—H1117 (10)C202—C201—H201118.6
Re1—O1—H1108 (10)C203—C204—C205119.4 (13)
O23—C23—Re2178.7 (8)C203—C204—H204120.3
Re1—O4—Re4104.2 (3)C205—C204—H204120.3
Re1—O4—Re3102.6 (3)C202—C203—C204118.3 (11)
Re4—O4—Re3104.0 (2)C202—C203—H203120.9
Re1—O4—H4117 (10)C204—C203—H203120.9
Re4—O4—H4112 (10)C203—C202—C201119.3 (13)
Re3—O4—H4116 (10)C203—C202—H202120.3
C12—Re1—C1388.7 (4)C201—C202—H202120.3
C12—Re1—C1188.4 (4)N1—C105—C104123.2 (9)
C13—Re1—C1189.0 (4)N1—C105—H105118.4
C12—Re1—O497.2 (3)C104—C105—H105118.4
C13—Re1—O4170.0 (3)C104—C103—C102118.7 (9)
C11—Re1—O499.1 (3)C104—C103—H103120.7
C12—Re1—O2169.5 (3)C102—C103—H103120.7
C13—Re1—O299.5 (3)C103—C104—C105118.6 (9)
C11—Re1—O298.2 (4)C103—C104—H104120.7
O4—Re1—O273.7 (2)C105—C104—H104120.7
C12—Re1—O199.2 (3)C101—C102—C103119.1 (9)
C13—Re1—O196.2 (3)C101—C102—H102120.5
C11—Re1—O1170.8 (3)C103—C102—H102120.5
O4—Re1—O175.0 (2)N1—C101—C102122.8 (9)
O2—Re1—O173.5 (2)N1—C101—H101118.6
Re2—O3—Re3104.4 (2)C102—C101—H101118.6
Re2—O3—Re4103.2 (2)Re4—O2—Re2103.5 (3)
Re3—O3—Re4104.4 (2)Re4—O2—Re1104.6 (3)
Re2—O3—H3112 (10)Re2—O2—Re1104.7 (2)
Re3—O3—H3123 (10)Re4—O2—H2114 (8)
Re4—O3—H3107 (10)Re2—O2—H2115 (8)
O43—C43—Re4177.6 (8)Re1—O2—H2113 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C103—H103···O23i0.932.593.249 (12)128
C203—H203···O33ii0.932.423.330 (13)166
C303—H303···O42iii0.932.493.321 (13)149
C404—H404···O32iv0.932.473.252 (12)142
O1—H1···N20.85 (2)1.76 (4)2.600 (10)170 (16)
O2—H2···N30.85 (2)1.74 (3)2.586 (10)174 (11)
O3—H3···N10.85 (2)1.79 (4)2.627 (10)165 (14)
O4—H4···N40.85 (2)1.78 (4)2.620 (10)169 (15)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1, z+2; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Re4(OH)4(CO)12]·4C5H5N
Mr1465.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.895 (5), 21.847 (5), 16.245 (5)
β (°) 109.707 (5)
V3)3974 (2)
Z4
Radiation typeMo Kα
µ (mm1)12.22
Crystal size (mm)0.43 × 0.11 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.211, 0.271
No. of measured, independent and
observed [I > 2σ(I)] reflections
68439, 9594, 7966
Rint0.064
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.04
No. of reflections9594
No. of parameters516
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0181P)2 + 118.6736P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)7.00, 6.09

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Re3—C321.886 (10)Re2—C231.891 (9)
Re3—C311.900 (9)Re2—C221.916 (9)
Re3—C331.906 (10)Re2—C211.918 (10)
Re3—O12.157 (6)Re2—O32.157 (6)
Re3—O32.168 (6)Re2—O22.165 (6)
Re3—O42.179 (6)Re2—O12.171 (6)
Re4—C431.893 (9)O1—Re12.178 (6)
Re4—C421.913 (10)O4—Re12.160 (6)
Re4—C411.918 (9)Re1—C121.888 (10)
Re4—O22.154 (7)Re1—C131.889 (10)
Re4—O32.172 (6)Re1—C111.907 (10)
Re4—O42.173 (6)Re1—O22.169 (6)
O1—Re3—O373.8 (2)Re1—O4—Re4104.2 (3)
O1—Re3—O475.0 (2)Re1—O4—Re3102.6 (3)
O3—Re3—O473.9 (2)Re4—O4—Re3104.0 (2)
O2—Re4—O374.1 (2)O4—Re1—O273.7 (2)
O2—Re4—O473.7 (2)O4—Re1—O175.0 (2)
O3—Re4—O474.0 (2)O2—Re1—O173.5 (2)
O3—Re2—O274.2 (2)Re2—O3—Re3104.4 (2)
O3—Re2—O173.8 (2)Re2—O3—Re4103.2 (2)
O2—Re2—O173.8 (2)Re3—O3—Re4104.4 (2)
Re3—O1—Re2104.3 (2)Re4—O2—Re2103.5 (3)
Re3—O1—Re1102.7 (3)Re4—O2—Re1104.6 (3)
Re2—O1—Re1104.2 (2)Re2—O2—Re1104.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C103—H103···O23i0.932.593.249 (12)127.9
C203—H203···O33ii0.932.423.330 (13)166.3
C303—H303···O42iii0.932.493.321 (13)149.4
C404—H404···O32iv0.932.473.252 (12)141.6
O1—H1···N20.85 (2)1.76 (4)2.600 (10)170 (16)
O2—H2···N30.85 (2)1.74 (3)2.586 (10)174 (11)
O3—H3···N10.85 (2)1.79 (4)2.627 (10)165 (14)
O4—H4···N40.85 (2)1.78 (4)2.620 (10)169 (15)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1, z+2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

The University of the Free State, the the Department of Chemistry at the University of the Free State, the NRF and Sasol Ltd. are gratefully acknowledged for funding and Theunis Muller for assistance with the refinement of the data.

References

First citationAlberto, R., Schibli, R. & Schubiger, P. A. (1996). Polyhedron, 15, 1079–1089.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCopp, S. B., Holman, K. T., Sangster, J. O. S., Subramanian, S. & Zaworotko, M. J. (1995). J. Chem. Soc. Dalton Trans. pp. 2233–2243.  CSD CrossRef Web of Science Google Scholar
First citationEgli, A., Hegetschweiler, K., Alberto, R., Abram, U., Schibli, R., Hedinger, R., Gramlich, V., Kissner, R. & Schubiger, P. A. (1997). Organometallics, 16, 1833–1940.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHerberhold, M. & Süss, G. (1975). Angew. Chem. 87, 710–712.  CrossRef CAS Google Scholar
First citationNuber, B., Oberdorfer, F. & Ziegler, M. L. (1981). Acta Cryst. B37, 2062–2064.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1208-m1209
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds