organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 4-cyano­pyridine N-oxide

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 21 August 2012; accepted 23 August 2012; online 31 August 2012)

In the title pyridine N-oxide derivative, C6H4N2O, the 4-cyano substituent almost lies in the mean plane of the pyridine ring (r.m.s deviation of all non-H atoms = 0.004 Å). This redetermination results in a crystal structure with significantly higher precision [N—O bond length is 1.2997 (15) compared with 1.303 (5) Å in the original] than the original determination, which was recorded using the multiple-film technique and visually estimated intensities [Hardcastle et al. (1974[Hardcastle, I., Laing, M. J., McGauley, T. J. & Lehner, C. F. (1974). J. Cryst. Mol. Struct. 4, 305-311.]). J. Cryst. Mol. Struct. 4, 305–311]. The crystal structure features weak C—H⋯O and C—H⋯N inter­actions, which lead to the formation of chains that inter­sect each other parallel to (001).

Related literature

For the synthesis of 4-cyano­pyridine N-oxide with metal ions, see: Piovesana & Selbin (1969[Piovesana, O. & Selbin, J. (1969). J. Inorg. Nucl. Chem. 31, 1671-1678.]). For luminiscent properties of 4-cyano­pyridine N-oxide lanthanide complexes, see: Eliseeva et al. (2006[Eliseeva, S. V., Ryazanov, M., Gumy, F., Troyanov, S. I., Lepnev, L. S., Bünzli, J. C. G. & Kuzmina, N. P. (2006). Eur. J. Inorg. Chem. pp. 4809-4820.], 2008[Eliseeva, S. V., Kotova, O. V., Kessler, V. G., Gumy, F., Bünzli, J. C. G. & Kuzmina, N. P. (2008). J. Alloys Compds, 451, 414-417.]). For the use of the title compound as a ligand to obtain metal-organic coordination polymers, see: Yang et al. (2009[Yang, W., Blake, A. J., Wilson, C., Hubberstey, P., Champness, N. R. & Schröder, M. (2009). CrystEngComm, 11, 67-81.]); Kapoor et al. (2012[Kapoor, S., Sachar, R., Singh, K., Gupta, V. K. & Rajnikant, V. (2012). J. Chem. Crystallogr. 42, 222-226.]). For details concerning thermodynamic studies of the title compound, see: Ribeiro et al. (1998[Ribeiro da Silva, M. D. M. C., Agostinha, M., Matos, R., Vaz, M. C., Santos, L. M. N. B. F., Pilcher, G., Acree, W. E. Jr & Powell, J. R. (1998). J. Chem. Thermodyn. 30, 869-878.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For the previous determination of the structure, see: Hardcastle et al. (1974[Hardcastle, I., Laing, M. J., McGauley, T. J. & Lehner, C. F. (1974). J. Cryst. Mol. Struct. 4, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4N2O

  • Mr = 120.11

  • Monoclinic, P 21 /c

  • a = 7.8743 (8) Å

  • b = 6.0582 (6) Å

  • c = 11.6278 (10) Å

  • β = 91.973 (6)°

  • V = 554.36 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.37 × 0.32 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 4336 measured reflections

  • 1224 independent reflections

  • 964 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.169

  • S = 1.10

  • 1224 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1i 0.93 2.35 3.200 (2) 152
C5—H5⋯O1ii 0.93 2.43 3.323 (2) 161
C2—H2⋯N2iii 0.93 2.68 3.530 (2) 153
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x+2, -y-1, -z+2.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The incorporation of 4-cyanopyridine N-oxide, (I) as ligand in the formation of diverse complexes with metal ions has been known for a long time (Piovesana & Selbin, 1969). This compound has also been used in the formation of dimeric lanthanide complexes showing luminiscent properties (Eliseeva et al., 2006 and Eliseeva et al., 2008). A series of metal-organic supramolecular co-ordinated polymers with the 4-cyanopyridine N-oxide as a ligand was also reported (Yang et al., 2009; Kapoor et al., 2012). Thermodynamic studies of diverse N-oxide components, including (I) compound, have also been reported (Ribeiro et al., 1998). As part of our studies on the substituent effects on the structures it was necessary to know the structural behavior of the 4-cyanopyridine N-oxide. The crystal and molecular structure of (I) had been determined before, but with low precision. Thus, the redetermination of the title compound (Fig. 1), results in a crystal structure with significantly higher precision than the original determination which was recorded using the multiple-film technique and visually estimated intensities (Hardcastle et al., (1974). Obtaining a more orthogonal cell compared with the original analysis, allows a more precise picture of the packing in the crystal structure. The pyridine ring is essentially planar (r.m.s. deviation of all non-hydrogen atoms = 0.004 Å) The plane formed by N2-C6-C3 atoms, which is part of the cyano group forms an angle of 2.7 (1) Å with the plane of pyridine. The pyridine ring bond lengths and bond angles of (I) are normal and are close to the values presented earlier for this same structure (Hardcastle et al., (1974). In the crystal, there are no classical hydrogen bonds. The crystal structure is stabilized by intermolecular C—H···O and C—H···N weak interactions, which lead to the formation of chains of molecules that intersect each other parallel to (001), (Table 1 and Fig. 2). Indeed, the chains of molecules are formed by weak C5—H5···O1 and C2—H2···N2 interactions (Nardelli, 1995). In turn, these chains are linked by C1—H1···O1 interactions.

Related literature top

For the synthesis of 4-cyanopyridine N-oxide with metallic ions, see: Piovesana & Selbin (1969). For luminiscent properties of 4-cyanopyridine N-oxide lanthanide complexes, see: Eliseeva et al. (2006, 2008). For the use of the title compound as a ligand to obtain metal-organic coordinated polymers, see: Yang et al. (2009); Kapoor et al. (2012). For details concerning thermodynamic studies of the title compound, see: Ribeiro et al. (1998). For hydrogen bonding, see: Nardelli (1995). For the previous low-precision determination of the structure, see: Hardcastle et al. (1974).

Experimental top

Commercial 4-cyanopyridine N-oxide [CAS-14906-59-3] (Aldrich) was recrystallized from acetonitrile.

Refinement top

All H-atoms were positioned at geometrically idealized positions with C—H distance of 0.93 Å and Uiso(H) = 1.2 times Ueq of the C-atoms to which they were bonded.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2. Part of the crystal structure of (I), showing the formation of chains which running parallel to (001). Symmetry code: (i) -x+1,+y-1/2,-z+3/2; (ii) -x+1,-y+1,-z+2; (iii) -x+2,-y-1,-z+2.
4-cyanopyridine N-oxide top
Crystal data top
C6H4N2OF(000) = 248
Mr = 120.11Dx = 1.439 Mg m3
Monoclinic, P21/cMelting point: 496(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.8743 (8) ÅCell parameters from 7553 reflections
b = 6.0582 (6) Åθ = 2.6–27.5°
c = 11.6278 (10) ŵ = 0.10 mm1
β = 91.973 (6)°T = 295 K
V = 554.36 (9) Å3Block, pale-green
Z = 40.37 × 0.32 × 0.30 mm
Data collection top
Nonius KappaCCD
diffractometer
964 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.6°, θmin = 2.6°
CCD rotation images, thick slices scansh = 910
4336 measured reflectionsk = 77
1224 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1003P)2 + 0.0643P]
where P = (Fo2 + 2Fc2)/3
1224 reflections(Δ/σ)max < 0.001
82 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H4N2OV = 554.36 (9) Å3
Mr = 120.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8743 (8) ŵ = 0.10 mm1
b = 6.0582 (6) ÅT = 295 K
c = 11.6278 (10) Å0.37 × 0.32 × 0.30 mm
β = 91.973 (6)°
Data collection top
Nonius KappaCCD
diffractometer
964 reflections with I > 2σ(I)
4336 measured reflectionsRint = 0.037
1224 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.10Δρmax = 0.25 e Å3
1224 reflectionsΔρmin = 0.21 e Å3
82 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.62819 (15)0.2012 (2)0.91581 (10)0.0456 (4)
O10.54449 (17)0.3499 (2)0.85653 (10)0.0671 (5)
C40.7599 (2)0.0848 (3)1.09136 (14)0.0500 (4)
H40.78850.11231.16830.060*
C60.90575 (19)0.2718 (2)1.10517 (13)0.0482 (4)
N20.9834 (2)0.4015 (2)1.15568 (14)0.0656 (5)
C30.80898 (17)0.1108 (2)1.04066 (12)0.0427 (4)
C20.7643 (2)0.1471 (3)0.92614 (13)0.0500 (4)
H20.79580.27750.89050.060*
C50.6695 (2)0.2377 (3)1.02802 (13)0.0504 (4)
H50.63600.36831.06260.061*
C10.6735 (2)0.0094 (2)0.86553 (13)0.0523 (5)
H10.64260.01620.78880.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0492 (7)0.0422 (7)0.0449 (7)0.0025 (5)0.0066 (5)0.0031 (5)
O10.0830 (9)0.0573 (8)0.0596 (7)0.0187 (6)0.0172 (6)0.0103 (6)
C40.0580 (9)0.0493 (9)0.0422 (8)0.0037 (7)0.0078 (7)0.0040 (6)
C60.0508 (8)0.0445 (8)0.0489 (8)0.0025 (6)0.0047 (7)0.0019 (7)
N20.0726 (10)0.0572 (9)0.0660 (10)0.0104 (7)0.0116 (7)0.0040 (7)
C30.0415 (7)0.0410 (8)0.0454 (8)0.0015 (5)0.0019 (6)0.0038 (6)
C20.0576 (9)0.0429 (8)0.0491 (9)0.0032 (6)0.0029 (7)0.0055 (6)
C50.0607 (9)0.0435 (8)0.0465 (8)0.0057 (7)0.0071 (7)0.0057 (6)
C10.0643 (10)0.0504 (9)0.0417 (8)0.0030 (7)0.0079 (7)0.0044 (7)
Geometric parameters (Å, º) top
N1—O11.2997 (15)C6—C31.4336 (19)
N1—C51.3520 (19)C3—C21.383 (2)
N1—C11.354 (2)C2—C11.368 (2)
C4—C51.368 (2)C2—H20.9300
C4—C31.385 (2)C5—H50.9300
C4—H40.9300C1—H10.9300
C6—N21.1453 (19)
O1—N1—C5119.96 (13)C1—C2—C3119.79 (14)
O1—N1—C1120.14 (13)C1—C2—H2120.1
C5—N1—C1119.90 (13)C3—C2—H2120.1
C5—C4—C3119.86 (14)N1—C5—C4120.84 (14)
C5—C4—H4120.1N1—C5—H5119.6
C3—C4—H4120.1C4—C5—H5119.6
N2—C6—C3179.31 (16)N1—C1—C2120.87 (14)
C2—C3—C4118.71 (14)N1—C1—H1119.6
C2—C3—C6120.58 (13)C2—C1—H1119.6
C4—C3—C6120.71 (13)
C5—C4—C3—C20.2 (2)C1—N1—C5—C41.4 (2)
C5—C4—C3—C6179.17 (14)C3—C4—C5—N10.5 (3)
N2—C6—C3—C4167 (14)O1—N1—C1—C2178.83 (15)
C4—C3—C2—C10.1 (2)C5—N1—C1—C21.4 (2)
C6—C3—C2—C1179.26 (14)C3—C2—C1—N10.7 (2)
O1—N1—C5—C4178.92 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.353.200 (2)152
C5—H5···O1ii0.932.433.323 (2)161
C2—H2···N2iii0.932.683.530 (2)153
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+2, y1, z+2.

Experimental details

Crystal data
Chemical formulaC6H4N2O
Mr120.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.8743 (8), 6.0582 (6), 11.6278 (10)
β (°) 91.973 (6)
V3)554.36 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.32 × 0.30
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4336, 1224, 964
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.169, 1.10
No. of reflections1224
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.932.353.200 (2)152.3
C5—H5···O1ii0.932.433.323 (2)160.6
C2—H2···N2iii0.932.683.530 (2)153.1
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+2, y1, z+2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database and also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationEliseeva, S. V., Kotova, O. V., Kessler, V. G., Gumy, F., Bünzli, J. C. G. & Kuzmina, N. P. (2008). J. Alloys Compds, 451, 414–417.  CrossRef CAS Google Scholar
First citationEliseeva, S. V., Ryazanov, M., Gumy, F., Troyanov, S. I., Lepnev, L. S., Bünzli, J. C. G. & Kuzmina, N. P. (2006). Eur. J. Inorg. Chem. pp. 4809–4820.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHardcastle, I., Laing, M. J., McGauley, T. J. & Lehner, C. F. (1974). J. Cryst. Mol. Struct. 4, 305–311.  CrossRef CAS Google Scholar
First citationKapoor, S., Sachar, R., Singh, K., Gupta, V. K. & Rajnikant, V. (2012). J. Chem. Crystallogr. 42, 222–226.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPiovesana, O. & Selbin, J. (1969). J. Inorg. Nucl. Chem. 31, 1671–1678.  CrossRef CAS Google Scholar
First citationRibeiro da Silva, M. D. M. C., Agostinha, M., Matos, R., Vaz, M. C., Santos, L. M. N. B. F., Pilcher, G., Acree, W. E. Jr & Powell, J. R. (1998). J. Chem. Thermodyn. 30, 869–878.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, W., Blake, A. J., Wilson, C., Hubberstey, P., Champness, N. R. & Schröder, M. (2009). CrystEngComm, 11, 67–81.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds