metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1210-m1211

Tri­chlorido[4-meth­­oxy-2,6-bis­­(2-pyrimidin-2-yl-κN)phenyl-κC1]platinum(IV) aceto­nitrile monosolvate

aCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People's Republic of China, and bSchool of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang, Shanghai 201620, People's Republic of China
*Correspondence e-mail: wsjin@dhu.edu.cn

(Received 8 June 2012; accepted 21 August 2012; online 25 August 2012)

In the title complex, [Pt(C15H11N4O)Cl3]·CH3CN, the PtIV ion adopts a distorted octa­hedral coordination geometry defined by a tridentate cyclo­metalated NCN ligand and three Cl atoms. In the crystal, individual mol­ecules are aggregated into a three-dimensional network by C—H⋯Cl hydrogen-bonding inter­actions and ππ stacking inter­actions between the tridentate ligands, the shortest ring centroid–centroid distance being 3.613 Å.

Related literature

For general background to the chemistry of the tridentate NCN ligand and its complexes, see: Williams (2009[Williams, J. A. G. (2009). Chem. Soc. Rev. 38, 1783-1801.]); Wang et al. (2010[Wang, Z., Turner, E., Mahoney, V., Madakuni, S., Groy, T. & Li, A. (2010). Inorg. Chem. 49, 11276-11286.]); Chen et al. (2009[Chen, Y., Li, K., Lu, W., Chui, S. S., Ma, C. & Che, C. (2009). Angew. Chem. Int. Ed. 48, 9909-9913.]); Lu et al. (2009[Lu, W., Chen, Y., Roy, V. A. L., Chui, S. S. & Che, C. (2009). Angew. Chem. Int. Ed. 48, 7621-7625.]). For the synthesis of related ligand, see: Avitia et al. (2011[Avitia, B., MacIntosh, E., Muhia, S. & Kelson, E. (2011). Tetrahedron Lett. 52, 1631-1634.]); Wakioka et al. (2010[Wakioka, M., Ikegami, M. & Ozawa, F. (2010). Macromolecules, 43, 6980-6985.]). For PtII complexes with tridentate NCN ligands, see: Kozhevnikov et al. (2008[Kozhevnikov, V. N., Donnio, B. & Bruce, D. W. (2008). Angew. Chem. Int. Ed. 47, 6286-6289.]); Tam et al. (2011[Tam, A. Y.-Y., Tsang, D. P.-K., Chan, M.-Y., Zhu, N. & Yam, V. W.-W. (2011). Chem. Commun. 47, 3383-3385.]). For Pt—Cl bond lengths in other PtIV complexes, see: Bagchi et al. (2007[Bagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m1940.]); Bokach et al. (2012[Bokach, N. A., Kukushkin, V. Y., Izotova, Y. A., Usenko, N. I. & Haukka, M. (2012). Acta Cryst. E68, m547-m548.]). For details of the preparation, see: Cardenas & Echavarren (1999[Cardenas, D. J. & Echavarren, A. M. (1999). Organometallics, 18, 3337-3341.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C15H11N4O)Cl3]·C2H3N

  • Mr = 605.77

  • Triclinic, [P \overline 1]

  • a = 8.5739 (8) Å

  • b = 10.3371 (10) Å

  • c = 12.6610 (12) Å

  • α = 68.955 (2)°

  • β = 80.033 (2)°

  • γ = 70.619 (2)°

  • V = 986.09 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 7.54 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.13 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.346, Tmax = 1.000

  • 5788 measured reflections

  • 3666 independent reflections

  • 3442 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.085

  • S = 1.04

  • 3666 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 1.63 e Å−3

  • Δρmin = −1.61 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—C5 1.944 (5)
Pt1—N3 2.038 (4)
Pt1—N1 2.046 (4)
Pt1—Cl3 2.3018 (16)
Pt1—Cl2 2.3528 (15)
Pt1—Cl1 2.4160 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl1i 0.93 2.61 3.330 (6) 135
C4—H4⋯Cl2ii 0.93 2.84 3.680 (6) 151
C12—H12⋯Cl3iii 0.93 2.78 3.509 (6) 136
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+1, -z+2; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Square planar PtII complexes with tridentate cyclometalating NCN ligands [e.g., m-di(2-pyridinyl)benzene (dpb) derivatives (Wang et al., 2010)] have attracted a great attention due to their potential application in wide ranges such as chemosensors, luminescent materials, as well as photovoltaic cells (Williams 2009; Chen et al., 2009; Lu et al., 2009). Recently, some PtII complex with novel tridentate NCN ligands have been reported (Tam et al., 2011; Kozhevnikov et al., 2008). In this point of view, we develop a novel tridentate NCN ligand (Avitia et al., 2011; Wakioka et al., 2010), 1,3-di(2'-pyrimidyl)-5-methoxybenzene. Interestingly, in an attempt to prepare square PtII complex by the reaction of K2PtCl4 with newly synthesized ligand, the neutral PtIV complex, [Pt(C15H11N4O)Cl3].CH3CN, was unexpected obtained as a byproduct along with the PtII complex, [Pt(C15H11N4O)Cl].

The asymmetric unit of the title compound, contains a neutral PtIV complex and one acetonitrile molecule (Fig. 1). The central platinum(IV) atom is coordinated by two nitrogen atoms and one carbon atom from tridentate ligand, and three chlorine atoms forming a distorted octahedral geometry. The angles C5—Pt1—Cl3, N3—Pt1—Cl3, N1—Pt1—Cl3, C5—Pt1—Cl2, Cl3—Pt1—Cl1, N3—Pt1—Cl2, N1—Pt1—Cl2 and Cl2—Pt1—Cl1 (88.14 (13)—92.288 (13)°, Table 1) are very close to the ideal 90°, the deviation from 90° of the angles C5—Pt1—N3 (80.3 (2)°) and C5—Pt1—N1 (80.7 (2)°) are owing to the formation of five-membered chelating rings. The bond lengths of Pt–N1, Pt–C5, Pt–N3, and Pt–Cl1 (Table 1) are similar to the literature reported Pt(II)dpbCl complexes (Wang et al., 2010). The bond lengths of Pt–Cl2 and Pt–Cl3 (Table 1) resemble those in other PtIV complexes, which have been published (Bagchi et al., 2007; Bokach et al., 2012). The title complex packed as head-to-tail dimers in the crystal, each molecular unit of the dimer related to the other by a center of inversion. They are further connected into three-dimension crystal structure via C—H···Cl hydrogen-bonding interactions and ππ stacking interactions between tridentate ligands, the shortest ring centroid-centroid distance is 3.613 Å (Table 2).

Related literature top

For general background to the chemistry of the tridentate NCN ligand and its complexes, see: Williams (2009); Wang et al. (2010); Chen et al. (2009); Lu et al. (2009). For the synthesis of related ligand, see: Avitia et al. (2011); Wakioka et al. (2010). For PtII complexes with tridentate NCN ligands, see: Kozhevnikov et al. (2008); Tam et al. (2011). For Pt—Cl bond lengths in other PtIV complexes, see: Bagchi et al. (2007); Bokach et al. (2012). For details of the preparation, see: Cardenas & Echavarren (1999).

Experimental top

A mixture of 1,3-di(2'-pyrimidyl)-5-methoxybenzene 200 mg (0.756 mmol) and K2PtCl4 314 mg (0.756 mmol) in CH3CN/H2O (v/v, 1/1, 60 ml) was stirred under reflux for 24 h in an argon atmosphere (Cardenas & Echavarren,, 1999). The resulted red solution was evaporated and the residue was extracted with CH2Cl2. The title complex was separated by flash column chromatography (SiO2, CH2Cl2 as eluent) from the mixture. The single-crystal was obtained by slow evaporation of an acetonitrile solution of the title complex.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 (methyl) Å [U iso (H) = 1.5U eq (C)], and C—H = 0.93 (aromatic) Å [U iso (H) = 1.2U eq (C)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents of the title complex.
Trichlorido[4-methoxy-2,6-bis(2-pyrimidin-2-yl-κN)phenyl- κC1]platinum(IV) acetonitrile monosolvate top
Crystal data top
[Pt(C15H11N4O)Cl3]·C2H3NZ = 2
Mr = 605.77F(000) = 576
Triclinic, P1Dx = 2.040 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5739 (8) ÅCell parameters from 3770 reflections
b = 10.3371 (10) Åθ = 4.6–56.4°
c = 12.6610 (12) ŵ = 7.54 mm1
α = 68.955 (2)°T = 293 K
β = 80.033 (2)°Prismatic, red
γ = 70.619 (2)°0.21 × 0.16 × 0.13 mm
V = 986.09 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3666 independent reflections
Radiation source: fine-focus sealed tube3442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 910
Tmin = 0.346, Tmax = 1.000k = 1211
5788 measured reflectionsl = 159
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0539P)2]
where P = (Fo2 + 2Fc2)/3
3666 reflections(Δ/σ)max = 0.002
246 parametersΔρmax = 1.63 e Å3
0 restraintsΔρmin = 1.61 e Å3
Crystal data top
[Pt(C15H11N4O)Cl3]·C2H3Nγ = 70.619 (2)°
Mr = 605.77V = 986.09 (16) Å3
Triclinic, P1Z = 2
a = 8.5739 (8) ÅMo Kα radiation
b = 10.3371 (10) ŵ = 7.54 mm1
c = 12.6610 (12) ÅT = 293 K
α = 68.955 (2)°0.21 × 0.16 × 0.13 mm
β = 80.033 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3666 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3442 reflections with I > 2σ(I)
Tmin = 0.346, Tmax = 1.000Rint = 0.026
5788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 1.63 e Å3
3666 reflectionsΔρmin = 1.61 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.69455 (2)0.665972 (19)0.713419 (15)0.03224 (10)
Cl10.6637 (2)0.92214 (17)0.62623 (15)0.0597 (5)
Cl20.52290 (17)0.70939 (16)0.87099 (12)0.0391 (3)
Cl30.8607 (2)0.6190 (2)0.55999 (15)0.0585 (4)
N10.9051 (5)0.6081 (5)0.7956 (4)0.0329 (9)
N21.1004 (5)0.4043 (5)0.9078 (4)0.0388 (10)
N30.5022 (5)0.6499 (5)0.6493 (4)0.0371 (10)
N40.3832 (6)0.4766 (6)0.6415 (4)0.0440 (11)
N50.0658 (16)0.0090 (12)0.7024 (13)0.160 (5)
O10.7849 (6)0.0280 (4)0.9438 (4)0.0601 (13)
C10.9599 (6)0.4644 (6)0.8559 (4)0.0356 (11)
C20.9942 (6)0.6958 (6)0.7895 (4)0.0374 (12)
H20.95760.79430.74940.045*
C31.1408 (7)0.6384 (7)0.8433 (5)0.0443 (14)
H31.20420.69700.84100.053*
C41.1898 (7)0.4928 (7)0.9001 (5)0.0453 (14)
H41.28960.45300.93510.054*
C50.7221 (7)0.4595 (5)0.7844 (5)0.0355 (12)
C60.8542 (6)0.3786 (6)0.8534 (5)0.0368 (11)
C70.8712 (7)0.2321 (6)0.9065 (5)0.0444 (13)
H70.95570.17410.95510.053*
C80.7599 (8)0.1731 (6)0.8860 (5)0.0451 (13)
C90.6325 (7)0.2562 (6)0.8115 (5)0.0442 (13)
H90.56220.21380.79650.053*
C100.6146 (7)0.4025 (6)0.7612 (5)0.0381 (12)
C110.4924 (6)0.5123 (6)0.6806 (5)0.0360 (11)
C120.2798 (7)0.5850 (7)0.5684 (5)0.0483 (14)
H120.20310.56350.53870.058*
C130.2806 (8)0.7262 (8)0.5348 (5)0.0498 (15)
H130.20530.79910.48460.060*
C140.3954 (7)0.7570 (6)0.5772 (5)0.0422 (13)
H140.39910.85190.55600.051*
C150.7049 (9)0.0469 (6)0.9062 (7)0.0591 (17)
H15A0.58710.00960.91790.089*
H15B0.74010.14850.94850.089*
H15C0.73360.03310.82700.089*
C160.2570 (14)0.1329 (11)0.7295 (10)0.100 (3)
H16A0.20500.23570.70680.150*
H16B0.35870.11230.68450.150*
H16C0.28000.09750.80810.150*
C170.1486 (13)0.0629 (10)0.7132 (9)0.092 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03207 (14)0.03471 (14)0.03470 (14)0.01178 (9)0.01267 (9)0.01011 (9)
Cl10.0748 (11)0.0444 (8)0.0617 (10)0.0267 (8)0.0317 (8)0.0017 (7)
Cl20.0331 (6)0.0485 (8)0.0416 (7)0.0113 (6)0.0103 (5)0.0183 (6)
Cl30.0460 (8)0.0979 (13)0.0518 (9)0.0305 (9)0.0021 (7)0.0415 (9)
N10.033 (2)0.038 (2)0.032 (2)0.0095 (18)0.0098 (17)0.0137 (18)
N20.033 (2)0.048 (3)0.038 (2)0.008 (2)0.0151 (18)0.015 (2)
N30.035 (2)0.040 (2)0.041 (2)0.0109 (19)0.0124 (19)0.012 (2)
N40.037 (2)0.054 (3)0.049 (3)0.011 (2)0.014 (2)0.024 (2)
N50.174 (11)0.130 (9)0.227 (14)0.102 (9)0.068 (10)0.101 (9)
O10.077 (3)0.035 (2)0.078 (3)0.019 (2)0.037 (3)0.012 (2)
C10.035 (3)0.042 (3)0.036 (3)0.008 (2)0.010 (2)0.020 (2)
C20.036 (3)0.042 (3)0.040 (3)0.016 (2)0.005 (2)0.014 (2)
C30.040 (3)0.066 (4)0.044 (3)0.026 (3)0.006 (2)0.027 (3)
C40.031 (3)0.064 (4)0.045 (3)0.009 (3)0.010 (2)0.025 (3)
C50.038 (3)0.027 (2)0.043 (3)0.008 (2)0.012 (2)0.011 (2)
C60.034 (3)0.037 (3)0.043 (3)0.006 (2)0.015 (2)0.015 (2)
C70.048 (3)0.040 (3)0.048 (3)0.008 (3)0.024 (3)0.014 (2)
C80.050 (3)0.032 (3)0.056 (4)0.009 (2)0.011 (3)0.017 (2)
C90.046 (3)0.039 (3)0.057 (4)0.017 (2)0.018 (3)0.016 (3)
C100.037 (3)0.041 (3)0.042 (3)0.012 (2)0.013 (2)0.014 (2)
C110.033 (3)0.040 (3)0.040 (3)0.012 (2)0.010 (2)0.014 (2)
C120.036 (3)0.069 (4)0.052 (4)0.021 (3)0.010 (3)0.026 (3)
C130.042 (3)0.061 (4)0.048 (3)0.011 (3)0.021 (3)0.014 (3)
C140.043 (3)0.043 (3)0.042 (3)0.013 (2)0.019 (2)0.008 (2)
C150.071 (4)0.032 (3)0.083 (5)0.014 (3)0.025 (4)0.022 (3)
C160.088 (6)0.098 (7)0.120 (8)0.039 (5)0.007 (6)0.033 (6)
C170.100 (7)0.063 (5)0.118 (8)0.041 (5)0.021 (6)0.032 (5)
Geometric parameters (Å, º) top
Pt1—C51.944 (5)C4—H40.9300
Pt1—N32.038 (4)C5—C101.364 (8)
Pt1—N12.046 (4)C5—C61.391 (7)
Pt1—Cl32.3018 (16)C6—C71.387 (8)
Pt1—Cl22.3528 (15)C7—C81.391 (8)
Pt1—Cl12.4160 (15)C7—H70.9300
N1—C21.342 (7)C8—C91.405 (8)
N1—C11.363 (7)C9—C101.380 (8)
N2—C11.324 (6)C9—H90.9300
N2—C41.345 (8)C10—C111.475 (7)
N3—C141.337 (7)C12—C131.368 (9)
N3—C111.360 (7)C12—H120.9300
N4—C111.334 (7)C13—C141.368 (8)
N4—C121.334 (8)C13—H130.9300
N5—C171.088 (14)C14—H140.9300
O1—C81.373 (7)C15—H15A0.9600
O1—C151.422 (8)C15—H15B0.9600
C1—C61.474 (7)C15—H15C0.9600
C2—C31.381 (8)C16—C171.431 (14)
C2—H20.9300C16—H16A0.9600
C3—C41.366 (9)C16—H16B0.9600
C3—H30.9300C16—H16C0.9600
C5—Pt1—N380.3 (2)C7—C6—C1129.5 (5)
C5—Pt1—N180.7 (2)C5—C6—C1113.2 (5)
N3—Pt1—N1160.70 (19)C6—C7—C8119.1 (5)
C5—Pt1—Cl389.32 (18)C6—C7—H7120.5
N3—Pt1—Cl388.69 (14)C8—C7—H7120.5
N1—Pt1—Cl388.14 (13)O1—C8—C7114.8 (5)
C5—Pt1—Cl289.57 (17)O1—C8—C9122.9 (5)
N3—Pt1—Cl290.54 (14)C7—C8—C9122.3 (5)
N1—Pt1—Cl292.28 (13)C10—C9—C8118.0 (5)
Cl3—Pt1—Cl2178.74 (5)C10—C9—H9121.0
C5—Pt1—Cl1179.24 (16)C8—C9—H9121.0
N3—Pt1—Cl1100.49 (13)C5—C10—C9118.9 (5)
N1—Pt1—Cl198.58 (13)C5—C10—C11112.4 (5)
Cl3—Pt1—Cl190.63 (7)C9—C10—C11128.6 (5)
Cl2—Pt1—Cl190.48 (6)N4—C11—N3123.5 (5)
C2—N1—C1119.4 (4)N4—C11—C10121.6 (5)
C2—N1—Pt1126.1 (4)N3—C11—C10114.8 (5)
C1—N1—Pt1114.4 (3)N4—C12—C13123.4 (5)
C1—N2—C4116.8 (5)N4—C12—H12118.3
C14—N3—C11119.1 (5)C13—C12—H12118.3
C14—N3—Pt1126.8 (4)C12—C13—C14118.1 (6)
C11—N3—Pt1114.0 (3)C12—C13—H13120.9
C11—N4—C12116.2 (5)C14—C13—H13120.9
C8—O1—C15117.5 (5)N3—C14—C13119.6 (6)
N2—C1—N1123.3 (5)N3—C14—H14120.2
N2—C1—C6122.2 (5)C13—C14—H14120.2
N1—C1—C6114.4 (4)O1—C15—H15A109.5
N1—C2—C3119.4 (5)O1—C15—H15B109.5
N1—C2—H2120.3H15A—C15—H15B109.5
C3—C2—H2120.3O1—C15—H15C109.5
C4—C3—C2118.0 (5)H15A—C15—H15C109.5
C4—C3—H3121.0H15B—C15—H15C109.5
C2—C3—H3121.0C17—C16—H16A109.5
N2—C4—C3123.1 (5)C17—C16—H16B109.5
N2—C4—H4118.5H16A—C16—H16B109.5
C3—C4—H4118.5C17—C16—H16C109.5
C10—C5—C6124.2 (5)H16A—C16—H16C109.5
C10—C5—Pt1118.4 (4)H16B—C16—H16C109.5
C6—C5—Pt1117.3 (4)N5—C17—C16179.0 (14)
C7—C6—C5117.3 (5)
C5—Pt1—N1—C2176.2 (5)Cl2—Pt1—C5—C690.5 (4)
N3—Pt1—N1—C2167.2 (5)Cl1—Pt1—C5—C64 (14)
Cl3—Pt1—N1—C286.5 (4)C10—C5—C6—C73.6 (9)
Cl2—Pt1—N1—C294.6 (4)Pt1—C5—C6—C7178.3 (4)
Cl1—Pt1—N1—C23.8 (4)C10—C5—C6—C1174.7 (5)
C5—Pt1—N1—C10.1 (4)Pt1—C5—C6—C13.4 (7)
N3—Pt1—N1—C18.9 (7)N2—C1—C6—C74.6 (9)
Cl3—Pt1—N1—C189.6 (4)N1—C1—C6—C7178.6 (6)
Cl2—Pt1—N1—C189.2 (4)N2—C1—C6—C5173.4 (5)
Cl1—Pt1—N1—C1179.9 (3)N1—C1—C6—C53.4 (7)
C5—Pt1—N3—C14178.9 (5)C5—C6—C7—C81.8 (9)
N1—Pt1—N3—C14169.9 (5)C1—C6—C7—C8176.2 (6)
Cl3—Pt1—N3—C1489.3 (5)C15—O1—C8—C7164.5 (6)
Cl2—Pt1—N3—C1491.7 (5)C15—O1—C8—C915.3 (10)
Cl1—Pt1—N3—C141.1 (5)C6—C7—C8—O1178.9 (6)
C5—Pt1—N3—C112.8 (4)C6—C7—C8—C91.2 (10)
N1—Pt1—N3—C116.2 (8)O1—C8—C9—C10177.5 (6)
Cl3—Pt1—N3—C1186.8 (4)C7—C8—C9—C102.7 (9)
Cl2—Pt1—N3—C1192.3 (4)C6—C5—C10—C92.2 (9)
Cl1—Pt1—N3—C11177.2 (4)Pt1—C5—C10—C9179.8 (4)
C4—N2—C1—N10.8 (8)C6—C5—C10—C11176.8 (5)
C4—N2—C1—C6177.2 (5)Pt1—C5—C10—C111.3 (7)
C2—N1—C1—N21.5 (8)C8—C9—C10—C51.0 (9)
Pt1—N1—C1—N2174.9 (4)C8—C9—C10—C11179.8 (6)
C2—N1—C1—C6178.2 (5)C12—N4—C11—N30.3 (8)
Pt1—N1—C1—C61.9 (6)C12—N4—C11—C10179.5 (5)
C1—N1—C2—C30.7 (8)C14—N3—C11—N41.4 (8)
Pt1—N1—C2—C3175.2 (4)Pt1—N3—C11—N4175.0 (4)
N1—C2—C3—C40.7 (8)C14—N3—C11—C10179.4 (5)
C1—N2—C4—C30.7 (8)Pt1—N3—C11—C104.2 (6)
C2—C3—C4—N21.5 (9)C5—C10—C11—N4175.7 (5)
N3—Pt1—C5—C100.7 (5)C9—C10—C11—N43.2 (9)
N1—Pt1—C5—C10176.3 (5)C5—C10—C11—N33.6 (7)
Cl3—Pt1—C5—C1088.0 (5)C9—C10—C11—N3177.5 (6)
Cl2—Pt1—C5—C1091.4 (5)C11—N4—C12—C130.9 (9)
Cl1—Pt1—C5—C10175 (25)N4—C12—C13—C141.1 (10)
N3—Pt1—C5—C6178.9 (5)C11—N3—C14—C131.2 (9)
N1—Pt1—C5—C61.9 (4)Pt1—N3—C14—C13174.7 (5)
Cl3—Pt1—C5—C690.1 (4)C12—C13—C14—N30.0 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1i0.932.613.330 (6)135
C4—H4···Cl2ii0.932.843.680 (6)151
C12—H12···Cl3iii0.932.783.509 (6)136
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Pt(C15H11N4O)Cl3]·C2H3N
Mr605.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.5739 (8), 10.3371 (10), 12.6610 (12)
α, β, γ (°)68.955 (2), 80.033 (2), 70.619 (2)
V3)986.09 (16)
Z2
Radiation typeMo Kα
µ (mm1)7.54
Crystal size (mm)0.21 × 0.16 × 0.13
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.346, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5788, 3666, 3442
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.085, 1.04
No. of reflections3666
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.63, 1.61

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pt1—C51.944 (5)Pt1—Cl32.3018 (16)
Pt1—N32.038 (4)Pt1—Cl22.3528 (15)
Pt1—N12.046 (4)Pt1—Cl12.4160 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1i0.932.613.330 (6)135.1
C4—H4···Cl2ii0.932.843.680 (6)151.4
C12—H12···Cl3iii0.932.783.509 (6)135.7
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+2; (iii) x1, y, z.
 

Acknowledgements

This work was sponsored by the Shanghai Pujiang Program (10PJ1400100).

References

First citationAvitia, B., MacIntosh, E., Muhia, S. & Kelson, E. (2011). Tetrahedron Lett. 52, 1631–1634.  Web of Science CrossRef CAS Google Scholar
First citationBagchi, V., Das, P. & Bandyopadhyay, D. (2007). Acta Cryst. E63, m1940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBokach, N. A., Kukushkin, V. Y., Izotova, Y. A., Usenko, N. I. & Haukka, M. (2012). Acta Cryst. E68, m547–m548.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardenas, D. J. & Echavarren, A. M. (1999). Organometallics, 18, 3337–3341.  CAS Google Scholar
First citationChen, Y., Li, K., Lu, W., Chui, S. S., Ma, C. & Che, C. (2009). Angew. Chem. Int. Ed. 48, 9909–9913.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozhevnikov, V. N., Donnio, B. & Bruce, D. W. (2008). Angew. Chem. Int. Ed. 47, 6286–6289.  Web of Science CrossRef CAS Google Scholar
First citationLu, W., Chen, Y., Roy, V. A. L., Chui, S. S. & Che, C. (2009). Angew. Chem. Int. Ed. 48, 7621–7625.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTam, A. Y.-Y., Tsang, D. P.-K., Chan, M.-Y., Zhu, N. & Yam, V. W.-W. (2011). Chem. Commun. 47, 3383–3385.  Web of Science CSD CrossRef CAS Google Scholar
First citationWakioka, M., Ikegami, M. & Ozawa, F. (2010). Macromolecules, 43, 6980–6985.  Web of Science CrossRef CAS Google Scholar
First citationWang, Z., Turner, E., Mahoney, V., Madakuni, S., Groy, T. & Li, A. (2010). Inorg. Chem. 49, 11276–11286.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWilliams, J. A. G. (2009). Chem. Soc. Rev. 38, 1783–1801.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1210-m1211
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds