metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[tri­ethyl­ammonium [[tetra-μ-acetato-κ8O:O′-dicuprate(II)]-μ-acetato-κ2O:O′] tetra­hydro­furan monosolvate]

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, and bInstitute for Physical Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
*Correspondence e-mail: prosenc@chemie.uni-kl.de

(Received 25 June 2012; accepted 24 July 2012; online 1 August 2012)

In the title compound, {[(C2H5)3NH][Cu2(CH3COO)5]·C4H8O}n, the two different CuII atoms are coordinated in a pseudo-square-pyramidal environment by five O atoms from the acetate ligands. Neighbouring pairs of CuII atoms are linked by four basally coordinating bridging acetate ligands as in the crystal structure of copper acetate monohydrate. The fifth, apically coordinating ligand links two of the dicopper tetra­acetate paddlewheel-units together, thus building a linear coordination polymer which extends along [10-1]. Each apical acetate ligand is linked by an N—H⋯O hydrogen bond to a triethyl­ammonium cation. Weak C—H⋯O hydrogen bonding interactions also occur.

Related literature

For the crystal structure of dicoppertetra­acetate dihydrate, see: van Niekerk & Schoening (1953[Niekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227-232.]); de Meester et al. (1973[Meester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575-2578.]). For copper-based coordination polymers, see: Furukawa et al. (2008[Furukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. (2008). J. Am. Chem. Soc. 130, 11650-11661.]). The title compound was obtained as a minor byproduct in the synthesis of a copper–salene compound, see: Kleij et al. (2005[Kleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. 22, 4626-4634.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[Cu2(C2H3O2)5]·C4H8O

  • Mr = 596.60

  • Monoclinic, P 21 /c

  • a = 12.1520 (2) Å

  • b = 12.2726 (2) Å

  • c = 18.7306 (3) Å

  • β = 112.956 (1)°

  • V = 2572.19 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 100 K

  • 0.25 × 0.09 × 0.06 mm

Data collection
  • Bruker APEX II CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.681, Tmax = 0.747

  • 102874 measured reflections

  • 4713 independent reflections

  • 4047 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.062

  • S = 1.13

  • 4713 reflections

  • 319 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9664 (14)
Cu1—O4 1.9717 (15)
Cu1—O3i 1.9738 (15)
Cu1—O2 1.9777 (15)
Cu1—O5 2.1216 (13)
Cu2—O7 1.9735 (14)
Cu2—O9 1.9804 (14)
Cu2—O8 1.9806 (14)
Cu2—O10 1.9839 (14)
Cu2—O6 2.1204 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.85 (2) 2.59 (2) 3.212 (2) 130.7 (19)
N1—H1⋯O6 0.85 (2) 1.89 (2) 2.737 (2) 173 (2)
C6—H6C⋯O1 0.98 2.42 3.3238 (18) 153
C13—H13B⋯O3i 0.99 2.51 3.2956 (19) 137
C15—H15B⋯O10 0.99 2.43 3.3041 (19) 147
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrik, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrik, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound, catena-poly[[triethylammonium [[tetra-µ-acetato-κ8O:O'-dicuprate(II)]-m-acetato-κ2O:O'] tetrahydrofuran monosolvate], was obtained as a minor byproduct in the synthesis of a copper-salene compound (Kleij et al., 2005). The crystal structure consists of dicoppertetraacetate-paddlewheel-units with copper in a pseudo square-pyramidal coordination environment (Fig. 2). These monomeric units are interconnected by bridging, apically coordinating acetato-ligands, thus forming infinite zigzag chains along the [1 0 - 1] plane with an angle of about 165.4 ° with respect to the Cu—Cu bond-vectors (Fig. 3). Additionally, the monomers are skewed in respect to each other as indicated by the torsion-angle O1—Cu1—Cu2—O7 = -39.67 (7)° (see Fig.3, Table 1). One triethylammonium cation per dicoppertetraacetate monomer is present in the crystal structure. A hydrogen-bond between this cation and an oxygen-atom of the bridging acetato-ligand (O6) can be observed (d(N1—H1···O6) = 2.737 (2) Å, Table 2, Fig. 2). Two additional contacts are present between the coordination-chain and the alkyle-residues of the triethylammonium-cations (d(C15—H15B···O10) = 3.3041 (19) Å and d(C13—H13B···O3) = 3.2956 (19) Å, table 2). One short intra-chain contact is found between the methyl group of the bridging acetato-ligand (C6) and oxygen atom O1 of the monomeric unit with a distance of d(C6—H6C···O1) = 3.3238 (18) Å. However, no direct inter-chain contact could be observed. Furthermore, one molecule of tetrahydrofuran per dicoppertetraacetate-unit is present in the crystal structure. In spite of hydrogen-bonds being detected around this solvate-molecule, its orientation could be modeled unequivocally. The Cu—Cu distances in the monomers are d(Cu1—Cu1') = 2.6498 (4) Å and d(Cu2—Cu2') = 2.6542 (4) Å, respectively. This is significantly longer than the distance of 2.616 (1) Å found in dicoppertetraacetate-dihydrate (de Meester et al., 1973). To the contrary, the apical Cu—O bonds in the title-compound are shorter (d(Cu1—O5) = 2.1216 (13) Å and d(Cu2—O6) = 2.1204 (13) Å) than the bond between copper and the aqua-ligand in dicoppertetraacetate-dihydrate (d(Cu—O(H2)) = 2.156 (4) Å). Finally it is to mention that, indicated by the slight differences in the Cu—Cu distances and the Cu—O bond-lengths and the Cu—Cu—O difference of the bond angles to the apically coordinating acetato-ligands mentioned in table 1, two neighbouring monomers exhibit a minor asymmetry. The aforementioned skewing and the position of the triethylammonoium-cation, especially the N—H···O hydrogen bond, are further indicators of this.

Related literature top

For the related structure of dicoppertetraacetate dihydrate, see: van Niekerk & Schoening (1953); de Meester et al. (1973). For copper-based coordination polymers, see: Furukawa et al. (2008). The title compound was obtained as a minor byproduct in the synthesis of a copper–salene compound, see: Kleij et al. (2005).

Refinement top

C-bound hydrogen atoms were placed in calculated positions with C—H distance of 0.99 - 1.00 Å and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms. H atoms on N atoms were located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrik, 2008); program(s) used to refine structure: SHELXL97 (Sheldrik, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. : Asymmertic unit of he title compound including the triethylammonium-cation and the co-crystallized THF-Molecule. Thermal ellipsoids are drawn at 50% probability.
[Figure 2] Fig. 2. : Two units of dicoppertetraacetate linked by a bridging acetato-ligand. The three hydrogen-bonds between the triethylammonium-cation and the acetato-ligand as well as the short intramolecular contact between H6c and O1 are shown as red dashed lines. The THF-molecule has been omitted for clarity.
[Figure 3] Fig. 3. : Packing of the polymeric chains. The solvate-molecule, the cation and the hydrogen-atoms have been omitted for clarity. No direct inter-chain contact could be observed.
catena-Poly[triethylammonium [[tetra-µ-acetato-κ8O:O'-dicuprate(II)]- µ-acetato-κ2O:O'] tetrahydrofuran monosolvate] top
Crystal data top
(C6H16N)[Cu2(C2H3O2)5]·C4H8OF(000) = 1248
Mr = 596.60Dx = 1.541 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9902 reflections
a = 12.1520 (2) Åθ = 2.4–34.0°
b = 12.2726 (2) ŵ = 1.71 mm1
c = 18.7306 (3) ÅT = 100 K
β = 112.956 (1)°Block, clear dark blue
V = 2572.19 (7) Å30.25 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker APEX II CCD area-detector
diffractometer
4713 independent reflections
Radiation source: micro-focus4047 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.040
Detector resolution: 8 pixels mm-1θmax = 25.4°, θmin = 1.8°
ω and ϕ scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1414
Tmin = 0.681, Tmax = 0.747l = 2222
102874 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0203P)2 + 2.3331P]
where P = (Fo2 + 2Fc2)/3
4713 reflections(Δ/σ)max = 0.004
319 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C6H16N)[Cu2(C2H3O2)5]·C4H8OV = 2572.19 (7) Å3
Mr = 596.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1520 (2) ŵ = 1.71 mm1
b = 12.2726 (2) ÅT = 100 K
c = 18.7306 (3) Å0.25 × 0.09 × 0.06 mm
β = 112.956 (1)°
Data collection top
Bruker APEX II CCD area-detector
diffractometer
4713 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4047 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.747Rint = 0.040
102874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.32 e Å3
4713 reflectionsΔρmin = 0.36 e Å3
319 parameters
Special details top

Experimental. Absorption correction: SADABS-2008/1 (Bruker, 2009) was used for absorption correction. wR2(int) was 0.1027 before and 0.0524 after correction. The Ratio of minimum to maximum transmission is 0.9107. The λ/2 correction factor is 0.0000.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.58451 (2)0.505128 (19)0.570813 (12)0.01381 (7)
Cu20.937948 (19)0.502200 (18)0.923936 (12)0.01216 (7)
O10.45990 (12)0.43975 (12)0.59966 (8)0.0217 (3)
O20.51683 (14)0.65182 (12)0.57030 (8)0.0275 (4)
O30.31686 (13)0.43082 (15)0.48086 (8)0.0336 (4)
O40.62799 (13)0.35832 (13)0.54785 (9)0.0295 (4)
O50.72384 (12)0.52443 (11)0.68184 (7)0.0169 (3)
O60.85592 (12)0.52508 (11)0.80224 (7)0.0154 (3)
O70.80423 (12)0.54543 (12)0.95269 (8)0.0211 (3)
O80.90257 (13)0.34674 (11)0.93393 (8)0.0203 (3)
O91.09120 (12)0.45715 (12)0.91883 (8)0.0211 (3)
O100.99288 (13)0.65590 (11)0.93776 (8)0.0203 (3)
C10.35629 (17)0.41637 (16)0.55266 (11)0.0170 (4)
C20.27189 (19)0.36747 (18)0.58551 (12)0.0231 (5)
H2A0.31710.34470.63920.035*
H2B0.23170.30410.55440.035*
H2C0.21210.42190.58420.035*
C30.42955 (17)0.69004 (16)0.51461 (11)0.0177 (4)
C40.3902 (2)0.80429 (18)0.52395 (13)0.0259 (5)
H4A0.34870.80300.55950.039*
H4B0.33600.83200.47340.039*
H4C0.46030.85180.54500.039*
C50.75337 (16)0.49915 (14)0.75148 (10)0.0123 (4)
C60.66926 (17)0.43909 (17)0.77852 (11)0.0179 (4)
H6A0.65130.48420.81580.027*
H6B0.70640.37080.80340.027*
H6C0.59510.42300.73400.027*
C70.81493 (17)0.55813 (16)1.02184 (11)0.0158 (4)
C80.70571 (18)0.59690 (18)1.03438 (12)0.0210 (4)
H8A0.69980.67641.02930.032*
H8B0.71250.57591.08640.032*
H8C0.63400.56350.99560.032*
C90.94290 (17)0.30002 (16)0.99907 (11)0.0150 (4)
C100.91147 (18)0.18182 (16)1.00283 (12)0.0199 (4)
H10A0.85070.17621.02500.030*
H10B0.98320.14161.03550.030*
H10C0.88010.15080.95050.030*
N10.95203 (15)0.68314 (14)0.74095 (9)0.0157 (3)
C110.89976 (19)0.78890 (17)0.75415 (12)0.0216 (4)
H11A0.91460.84650.72200.026*
H11B0.94090.81040.80920.026*
C120.76660 (19)0.78157 (18)0.73454 (13)0.0250 (5)
H12A0.75200.73160.77080.037*
H12B0.72600.75430.68150.037*
H12C0.73570.85400.73870.037*
C130.92652 (18)0.66676 (16)0.65642 (11)0.0178 (4)
H13A0.96630.72520.63880.021*
H13B0.83940.67300.62620.021*
C140.96895 (19)0.55746 (17)0.64007 (12)0.0230 (5)
H14A0.93900.49970.66390.034*
H14B1.05650.55600.66180.034*
H14C0.93880.54580.58390.034*
C151.08264 (18)0.67378 (18)0.79283 (12)0.0208 (4)
H15A1.11320.60290.78320.025*
H15B1.09120.67490.84760.025*
C161.15768 (19)0.76417 (18)0.78030 (13)0.0259 (5)
H16A1.24150.75360.81510.039*
H16B1.12960.83450.79140.039*
H16C1.15060.76300.72640.039*
O110.68670 (15)0.43535 (14)0.26275 (10)0.0376 (4)
C170.6524 (2)0.36448 (19)0.31112 (13)0.0279 (5)
H17A0.65610.40380.35820.034*
H17B0.70720.30130.32740.034*
C180.52537 (19)0.32611 (18)0.26465 (13)0.0255 (5)
H18A0.46630.37160.27540.031*
H18B0.51460.24900.27590.031*
C190.5144 (2)0.34046 (19)0.18108 (13)0.0293 (5)
H19A0.54310.27500.16260.035*
H19B0.43080.35550.14580.035*
C200.5939 (2)0.4374 (2)0.18684 (15)0.0346 (6)
H20A0.62840.43270.14700.041*
H20B0.54760.50590.17880.041*
H10.918 (2)0.632 (2)0.7560 (13)0.021 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01246 (12)0.01771 (13)0.00901 (12)0.00095 (9)0.00175 (9)0.00001 (9)
Cu20.01315 (12)0.01314 (12)0.00850 (12)0.00060 (9)0.00238 (9)0.00073 (9)
O10.0174 (7)0.0319 (8)0.0128 (7)0.0052 (6)0.0027 (6)0.0026 (6)
O20.0324 (9)0.0187 (8)0.0196 (8)0.0037 (7)0.0027 (7)0.0015 (6)
O30.0194 (8)0.0648 (12)0.0126 (7)0.0166 (8)0.0020 (6)0.0037 (8)
O40.0259 (8)0.0317 (9)0.0204 (8)0.0122 (7)0.0022 (6)0.0061 (7)
O50.0154 (7)0.0231 (7)0.0085 (6)0.0025 (6)0.0007 (5)0.0013 (5)
O60.0148 (7)0.0179 (7)0.0096 (6)0.0037 (5)0.0007 (5)0.0013 (5)
O70.0167 (7)0.0308 (8)0.0147 (7)0.0024 (6)0.0050 (6)0.0011 (6)
O80.0247 (7)0.0162 (7)0.0137 (7)0.0020 (6)0.0007 (6)0.0017 (6)
O90.0178 (7)0.0307 (8)0.0139 (7)0.0050 (6)0.0051 (6)0.0018 (6)
O100.0275 (8)0.0158 (7)0.0141 (7)0.0045 (6)0.0043 (6)0.0002 (6)
C10.0183 (10)0.0164 (10)0.0170 (10)0.0010 (8)0.0076 (8)0.0008 (8)
C20.0226 (11)0.0275 (12)0.0210 (11)0.0034 (9)0.0103 (9)0.0004 (9)
C30.0181 (10)0.0191 (10)0.0185 (10)0.0008 (8)0.0101 (8)0.0024 (8)
C40.0281 (12)0.0214 (11)0.0282 (12)0.0028 (9)0.0109 (10)0.0006 (9)
C50.0139 (9)0.0083 (9)0.0140 (9)0.0010 (7)0.0046 (8)0.0016 (7)
C60.0157 (10)0.0205 (10)0.0143 (9)0.0019 (8)0.0024 (8)0.0008 (8)
C70.0188 (10)0.0113 (9)0.0176 (10)0.0024 (8)0.0074 (8)0.0002 (8)
C80.0193 (10)0.0240 (11)0.0212 (10)0.0010 (8)0.0094 (9)0.0000 (9)
C90.0136 (9)0.0157 (10)0.0156 (10)0.0020 (8)0.0057 (8)0.0009 (8)
C100.0218 (10)0.0161 (10)0.0189 (10)0.0013 (8)0.0047 (8)0.0015 (8)
N10.0184 (8)0.0137 (8)0.0157 (8)0.0030 (7)0.0073 (7)0.0003 (7)
C110.0292 (11)0.0154 (10)0.0214 (11)0.0020 (8)0.0111 (9)0.0018 (8)
C120.0281 (12)0.0214 (11)0.0290 (12)0.0048 (9)0.0149 (10)0.0011 (9)
C130.0208 (10)0.0182 (10)0.0132 (9)0.0015 (8)0.0053 (8)0.0002 (8)
C140.0260 (11)0.0220 (11)0.0224 (11)0.0005 (9)0.0110 (9)0.0035 (9)
C150.0193 (10)0.0253 (11)0.0159 (10)0.0025 (9)0.0047 (8)0.0016 (9)
C160.0238 (11)0.0251 (12)0.0305 (12)0.0058 (9)0.0124 (10)0.0032 (10)
O110.0344 (9)0.0347 (10)0.0437 (10)0.0099 (8)0.0151 (8)0.0029 (8)
C170.0300 (12)0.0254 (12)0.0281 (12)0.0035 (9)0.0110 (10)0.0050 (10)
C180.0254 (12)0.0222 (11)0.0295 (12)0.0057 (9)0.0114 (10)0.0024 (9)
C190.0284 (12)0.0298 (12)0.0281 (12)0.0012 (10)0.0091 (10)0.0000 (10)
C200.0373 (14)0.0307 (13)0.0414 (14)0.0035 (11)0.0216 (12)0.0080 (11)
Geometric parameters (Å, º) top
Cu1—O11.9664 (14)C9—O10ii1.258 (2)
Cu1—O41.9717 (15)C9—C101.509 (3)
Cu1—O3i1.9738 (15)C10—H10A0.9800
Cu1—O21.9777 (15)C10—H10B0.9800
Cu1—O52.1216 (13)C10—H10C0.9800
Cu1—Cu1i2.6498 (4)N1—C131.504 (2)
Cu2—O71.9735 (14)N1—C111.507 (3)
Cu2—O91.9804 (14)N1—C151.508 (3)
Cu2—O81.9806 (14)N1—H10.85 (2)
Cu2—O101.9839 (14)C11—C121.516 (3)
Cu2—O62.1204 (13)C11—H11A0.9900
Cu2—Cu2ii2.6542 (4)C11—H11B0.9900
O1—C11.256 (2)C12—H12A0.9800
O2—C31.253 (2)C12—H12B0.9800
O3—C11.252 (2)C12—H12C0.9800
O3—Cu1i1.9739 (15)C13—C141.511 (3)
O4—C3i1.254 (2)C13—H13A0.9900
O5—C51.250 (2)C13—H13B0.9900
O6—C51.278 (2)C14—H14A0.9800
O7—C71.260 (2)C14—H14B0.9800
O8—C91.261 (2)C14—H14C0.9800
O9—C7ii1.258 (2)C15—C161.511 (3)
O10—C9ii1.258 (2)C15—H15A0.9900
C1—C21.511 (3)C15—H15B0.9900
C2—H2A0.9800C16—H16A0.9800
C2—H2B0.9800C16—H16B0.9800
C2—H2C0.9800C16—H16C0.9800
C3—O4i1.254 (2)O11—C201.429 (3)
C3—C41.513 (3)O11—C171.430 (3)
C4—H4A0.9800C17—C181.521 (3)
C4—H4B0.9800C17—H17A0.9900
C4—H4C0.9800C17—H17B0.9900
C5—C61.499 (3)C18—C191.529 (3)
C6—H6A0.9800C18—H18A0.9900
C6—H6B0.9800C18—H18B0.9900
C6—H6C0.9800C19—C201.510 (3)
C7—O9ii1.258 (2)C19—H19A0.9900
C7—C81.512 (3)C19—H19B0.9900
C8—H8A0.9800C20—H20A0.9900
C8—H8B0.9800C20—H20B0.9900
C8—H8C0.9800
O1—Cu1—O489.30 (7)O10ii—C9—O8125.38 (18)
O1—Cu1—O3i167.73 (6)O10ii—C9—C10116.43 (17)
O4—Cu1—O3i89.50 (8)O8—C9—C10118.18 (17)
O1—Cu1—O290.54 (7)C9—C10—H10A109.5
O4—Cu1—O2167.71 (6)C9—C10—H10B109.5
O3i—Cu1—O288.05 (8)H10A—C10—H10B109.5
O1—Cu1—O5100.48 (5)C9—C10—H10C109.5
O4—Cu1—O597.85 (6)H10A—C10—H10C109.5
O3i—Cu1—O591.78 (6)H10B—C10—H10C109.5
O2—Cu1—O594.27 (6)C13—N1—C11111.15 (15)
O1—Cu1—Cu1i82.90 (4)C13—N1—C15113.66 (15)
O4—Cu1—Cu1i84.68 (4)C11—N1—C15111.40 (16)
O3i—Cu1—Cu1i84.83 (4)C13—N1—H1108.7 (15)
O2—Cu1—Cu1i83.10 (4)C11—N1—H1106.9 (16)
O5—Cu1—Cu1i175.77 (4)C15—N1—H1104.5 (15)
O7—Cu2—O9167.99 (6)N1—C11—C12112.80 (17)
O7—Cu2—O890.06 (6)N1—C11—H11A109.0
O9—Cu2—O888.77 (6)C12—C11—H11A109.0
O7—Cu2—O1088.84 (6)N1—C11—H11B109.0
O9—Cu2—O1089.82 (6)C12—C11—H11B109.0
O8—Cu2—O10167.95 (6)H11A—C11—H11B107.8
O7—Cu2—O699.55 (5)C11—C12—H12A109.5
O9—Cu2—O692.39 (5)C11—C12—H12B109.5
O8—Cu2—O6101.58 (5)H12A—C12—H12B109.5
O10—Cu2—O690.44 (5)C11—C12—H12C109.5
O7—Cu2—Cu2ii84.03 (4)H12A—C12—H12C109.5
O9—Cu2—Cu2ii83.96 (4)H12B—C12—H12C109.5
O8—Cu2—Cu2ii86.12 (4)N1—C13—C14112.69 (16)
O10—Cu2—Cu2ii81.83 (4)N1—C13—H13A109.1
O6—Cu2—Cu2ii171.44 (4)C14—C13—H13A109.1
C1—O1—Cu1124.71 (13)N1—C13—H13B109.1
C3—O2—Cu1124.07 (13)C14—C13—H13B109.1
C1—O3—Cu1i122.14 (13)H13A—C13—H13B107.8
C3i—O4—Cu1122.47 (13)C13—C14—H14A109.5
C5—O5—Cu1142.18 (12)C13—C14—H14B109.5
C5—O6—Cu2132.82 (12)H14A—C14—H14B109.5
C7—O7—Cu2123.23 (13)C13—C14—H14C109.5
C9—O8—Cu2120.83 (13)H14A—C14—H14C109.5
C7ii—O9—Cu2123.01 (13)H14B—C14—H14C109.5
C9ii—O10—Cu2125.84 (13)N1—C15—C16113.03 (17)
O3—C1—O1125.42 (18)N1—C15—H15A109.0
O3—C1—C2117.23 (18)C16—C15—H15A109.0
O1—C1—C2117.35 (17)N1—C15—H15B109.0
C1—C2—H2A109.5C16—C15—H15B109.0
C1—C2—H2B109.5H15A—C15—H15B107.8
H2A—C2—H2B109.5C15—C16—H16A109.5
C1—C2—H2C109.5C15—C16—H16B109.5
H2A—C2—H2C109.5H16A—C16—H16B109.5
H2B—C2—H2C109.5C15—C16—H16C109.5
O2—C3—O4i125.63 (19)H16A—C16—H16C109.5
O2—C3—C4116.98 (18)H16B—C16—H16C109.5
O4i—C3—C4117.39 (18)C20—O11—C17109.24 (17)
C3—C4—H4A109.5O11—C17—C18107.89 (18)
C3—C4—H4B109.5O11—C17—H17A110.1
H4A—C4—H4B109.5C18—C17—H17A110.1
C3—C4—H4C109.5O11—C17—H17B110.1
H4A—C4—H4C109.5C18—C17—H17B110.1
H4B—C4—H4C109.5H17A—C17—H17B108.4
O5—C5—O6120.95 (17)C17—C18—C19102.34 (18)
O5—C5—C6121.24 (16)C17—C18—H18A111.3
O6—C5—C6117.81 (16)C19—C18—H18A111.3
C5—C6—H6A109.5C17—C18—H18B111.3
C5—C6—H6B109.5C19—C18—H18B111.3
H6A—C6—H6B109.5H18A—C18—H18B109.2
C5—C6—H6C109.5C20—C19—C18102.71 (19)
H6A—C6—H6C109.5C20—C19—H19A111.2
H6B—C6—H6C109.5C18—C19—H19A111.2
O9ii—C7—O7125.74 (18)C20—C19—H19B111.2
O9ii—C7—C8117.27 (17)C18—C19—H19B111.2
O7—C7—C8116.98 (17)H19A—C19—H19B109.1
C7—C8—H8A109.5O11—C20—C19106.94 (19)
C7—C8—H8B109.5O11—C20—H20A110.3
H8A—C8—H8B109.5C19—C20—H20A110.3
C7—C8—H8C109.5O11—C20—H20B110.3
H8A—C8—H8C109.5C19—C20—H20B110.3
H8B—C8—H8C109.5H20A—C20—H20B108.6
O4—Cu1—O1—C184.84 (17)O8—Cu2—O9—C7ii85.90 (16)
O3i—Cu1—O1—C10.4 (4)O10—Cu2—O9—C7ii82.13 (16)
O2—Cu1—O1—C182.87 (17)O6—Cu2—O9—C7ii172.55 (16)
O5—Cu1—O1—C1177.31 (16)Cu2ii—Cu2—O9—C7ii0.33 (15)
Cu1i—Cu1—O1—C10.12 (16)O7—Cu2—O10—C9ii83.93 (16)
O1—Cu1—O2—C381.93 (17)O9—Cu2—O10—C9ii84.13 (16)
O4—Cu1—O2—C37.2 (4)O8—Cu2—O10—C9ii0.9 (4)
O3i—Cu1—O2—C385.87 (17)O6—Cu2—O10—C9ii176.52 (16)
O5—Cu1—O2—C3177.52 (17)Cu2ii—Cu2—O10—C9ii0.21 (15)
Cu1i—Cu1—O2—C30.85 (16)Cu1i—O3—C1—O10.0 (3)
O1—Cu1—O4—C3i80.50 (17)Cu1i—O3—C1—C2179.53 (14)
O3i—Cu1—O4—C3i87.28 (17)Cu1—O1—C1—O30.1 (3)
O2—Cu1—O4—C3i8.8 (4)Cu1—O1—C1—C2179.43 (14)
O5—Cu1—O4—C3i179.01 (16)Cu1—O2—C3—O4i0.8 (3)
Cu1i—Cu1—O4—C3i2.43 (16)Cu1—O2—C3—C4179.51 (14)
O1—Cu1—O5—C510.1 (2)Cu1—O5—C5—O6175.75 (13)
O4—Cu1—O5—C580.6 (2)Cu1—O5—C5—C65.2 (3)
O3i—Cu1—O5—C5170.3 (2)Cu2—O6—C5—O5178.19 (12)
O2—Cu1—O5—C5101.5 (2)Cu2—O6—C5—C60.9 (3)
Cu1i—Cu1—O5—C5153.0 (5)Cu2—O7—C7—O9ii1.9 (3)
O7—Cu2—O6—C545.10 (17)Cu2—O7—C7—C8177.02 (13)
O9—Cu2—O6—C5136.17 (16)Cu2—O8—C9—O10ii0.0 (3)
O8—Cu2—O6—C546.94 (17)Cu2—O8—C9—C10179.31 (13)
O10—Cu2—O6—C5133.99 (16)C13—N1—C11—C1278.9 (2)
Cu2ii—Cu2—O6—C5159.3 (2)C15—N1—C11—C12153.20 (17)
O9—Cu2—O7—C73.0 (4)C11—N1—C13—C14175.42 (17)
O8—Cu2—O7—C787.31 (16)C15—N1—C13—C1457.9 (2)
O10—Cu2—O7—C780.69 (16)C13—N1—C15—C1666.7 (2)
O6—Cu2—O7—C7170.94 (15)C11—N1—C15—C1659.8 (2)
Cu2ii—Cu2—O7—C71.21 (15)C20—O11—C17—C184.7 (2)
O7—Cu2—O8—C983.88 (15)O11—C17—C18—C1923.3 (2)
O9—Cu2—O8—C984.17 (15)C17—C18—C19—C2031.8 (2)
O10—Cu2—O8—C90.8 (4)C17—O11—C20—C1916.4 (2)
O6—Cu2—O8—C9176.36 (14)C18—C19—C20—O1130.4 (2)
Cu2ii—Cu2—O8—C90.14 (14)O1—Cu1—Cu2—O739.67 (7)
O7—Cu2—O9—C7ii1.4 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.85 (2)2.59 (2)3.212 (2)130.7 (19)
N1—H1···O60.85 (2)1.89 (2)2.737 (2)173 (2)
C6—H6C···O10.982.423.3238 (18)153
C13—H13B···O3i0.992.513.2956 (19)137
C15—H15B···O100.992.433.3041 (19)147
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C6H16N)[Cu2(C2H3O2)5]·C4H8O
Mr596.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1520 (2), 12.2726 (2), 18.7306 (3)
β (°) 112.956 (1)
V3)2572.19 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.25 × 0.09 × 0.06
Data collection
DiffractometerBruker APEX II CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.681, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
102874, 4713, 4047
Rint0.040
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.13
No. of reflections4713
No. of parameters319
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrik, 2008), SHELXL97 (Sheldrik, 2008), OLEX2 (Dolomanov et al., 2009).

Selected bond lengths (Å) top
Cu1—O11.9664 (14)Cu2—O71.9735 (14)
Cu1—O41.9717 (15)Cu2—O91.9804 (14)
Cu1—O3i1.9738 (15)Cu2—O81.9806 (14)
Cu1—O21.9777 (15)Cu2—O101.9839 (14)
Cu1—O52.1216 (13)Cu2—O62.1204 (13)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.85 (2)2.59 (2)3.212 (2)130.7 (19)
N1—H1···O60.85 (2)1.89 (2)2.737 (2)173 (2)
C6—H6C···O10.982.423.3238 (18)153
C13—H13B···O3i0.992.513.2956 (19)137
C15—H15B···O100.992.433.3041 (19)147
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The DFG is gratefiully acknowledged for financial support (SFB 668 - TP A4).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFurukawa, H., Kim, J., Ockwig, N. W., O'Keeffe, M. & Yaghi, O. (2008). J. Am. Chem. Soc. 130, 11650–11661.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKleij, A. W., Tooke, D. M., Spek, A. L. & Reek, J. N. H. (2005). Eur. J. Inorg. Chem. 22, 4626–4634.  Web of Science CSD CrossRef Google Scholar
First citationMeester, P. de, Fletcher, S. R. & Skapski, A. C. (1973). J. Chem. Soc. Dalton Trans. pp. 2575–2578.  Google Scholar
First citationNiekerk, J. N. van & Schoening, F. R. L. (1953). Acta Cryst. 6, 227–232.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds