metal-organic compounds
catena-Poly[disilver(I)(Ag–Ag)-bis(μ3-quinoline-3-carboxylato)-1:2:1′κ3O:O′:N;2:1′′:2′′κ3N:O:O′]
aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn
In the title compound, [Ag2(C10H6NO2)2]n, the AgI atom is coordinated by one N atom and two O atoms from three quinoline-3-carboxylate ligands in a T-shaped fashion, with an additional Ag⋯Ag distance of 2.9468 (6) Å. The ligands connect the AgI atoms into a double-chain structure along [010]. Weak Ag⋯O interactions [Ag⋯O = 2.802 (3) and 2.877 (4) Å] link the double-chains into a layer network parallel to (101). π–π interactions are also observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].
Related literature
For background to the design and applications of structures with metal-organic frameworks and of AgI complexes, see: Sun et al. (2010); Wei et al. (2006); Yilmaz et al. (2008). For related structures, see: Baenziger et al. (1986); Yang et al. (2004); Yeşiilel et al. (2011); You et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812035209/hy2558sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035209/hy2558Isup2.hkl
HL was purchased commercially and used without further purification. A mixture of AgCl (14.33 mg, 0.1 mmol) and HL (17.30 mg, 0.1 mmol) was dissolved in a 10 ml of water with pH = 6. The resulting mixture was heated in a 15 ml Teflon-lined autoclave at 438 K for three days. Then the autoclave was slowly cooled to room temperature and colourless block-shaped crystals were obtained in a yield of 50%.
H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ag2(C10H6NO2)2] | Z = 2 |
Mr = 560.06 | F(000) = 544 |
Triclinic, P1 | Dx = 2.189 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0583 (15) Å | Cell parameters from 7499 reflections |
b = 8.4824 (15) Å | θ = 1.6–27.5° |
c = 12.934 (2) Å | µ = 2.34 mm−1 |
α = 93.225 (2)° | T = 293 K |
β = 94.812 (2)° | Block, colourless |
γ = 104.640 (2)° | 0.13 × 0.11 × 0.10 mm |
V = 849.6 (3) Å3 |
Bruker APEX CCD diffractometer | 2962 independent reflections |
Radiation source: fine-focus sealed tube | 2298 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.745, Tmax = 0.792 | k = −10→10 |
6197 measured reflections | l = −15→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0428P)2] where P = (Fo2 + 2Fc2)/3 |
2962 reflections | (Δ/σ)max = 0.001 |
253 parameters | Δρmax = 0.51 e Å−3 |
168 restraints | Δρmin = −0.52 e Å−3 |
[Ag2(C10H6NO2)2] | γ = 104.640 (2)° |
Mr = 560.06 | V = 849.6 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.0583 (15) Å | Mo Kα radiation |
b = 8.4824 (15) Å | µ = 2.34 mm−1 |
c = 12.934 (2) Å | T = 293 K |
α = 93.225 (2)° | 0.13 × 0.11 × 0.10 mm |
β = 94.812 (2)° |
Bruker APEX CCD diffractometer | 2962 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2298 reflections with I > 2σ(I) |
Tmin = 0.745, Tmax = 0.792 | Rint = 0.027 |
6197 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 168 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.51 e Å−3 |
2962 reflections | Δρmin = −0.52 e Å−3 |
253 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8357 (5) | −0.0050 (5) | 0.4189 (3) | 0.0298 (10) | |
H1 | 0.7730 | −0.0137 | 0.4764 | 0.036* | |
C2 | 0.8690 (5) | −0.1487 (5) | 0.3753 (3) | 0.0278 (10) | |
C3 | 0.9556 (5) | −0.1377 (5) | 0.2879 (3) | 0.0284 (10) | |
H3 | 0.9797 | −0.2302 | 0.2574 | 0.034* | |
C4 | 1.0077 (5) | 0.0126 (5) | 0.2442 (3) | 0.0281 (10) | |
C5 | 0.9753 (5) | 0.1526 (5) | 0.2963 (3) | 0.0268 (10) | |
C6 | 1.0337 (6) | 0.3077 (6) | 0.2576 (4) | 0.0335 (11) | |
H6 | 1.0133 | 0.3995 | 0.2916 | 0.040* | |
C7 | 1.1193 (6) | 0.3232 (6) | 0.1711 (4) | 0.0408 (12) | |
H7 | 1.1604 | 0.4260 | 0.1473 | 0.049* | |
C8 | 1.1461 (6) | 0.1846 (6) | 0.1173 (4) | 0.0413 (12) | |
H8 | 1.2010 | 0.1959 | 0.0567 | 0.050* | |
C9 | 1.0927 (6) | 0.0338 (6) | 0.1529 (4) | 0.0388 (12) | |
H9 | 1.1125 | −0.0564 | 0.1166 | 0.047* | |
C10 | 0.8127 (5) | −0.3042 (5) | 0.4268 (3) | 0.0297 (10) | |
C11 | 0.5510 (6) | 0.8739 (5) | 0.6646 (3) | 0.0298 (10) | |
H11 | 0.6006 | 0.8810 | 0.6021 | 0.036* | |
C12 | 0.5331 (5) | 1.0201 (5) | 0.7144 (3) | 0.0271 (10) | |
C13 | 0.4575 (5) | 1.0106 (5) | 0.8051 (3) | 0.0286 (10) | |
H13 | 0.4414 | 1.1043 | 0.8391 | 0.034* | |
C14 | 0.4036 (6) | 0.8582 (6) | 0.8472 (3) | 0.0309 (10) | |
C15 | 0.4289 (5) | 0.7163 (5) | 0.7920 (4) | 0.0298 (10) | |
C16 | 0.3802 (6) | 0.5640 (6) | 0.8339 (4) | 0.0391 (12) | |
H16 | 0.3952 | 0.4710 | 0.7984 | 0.047* | |
C17 | 0.3109 (7) | 0.5526 (7) | 0.9267 (4) | 0.0519 (14) | |
H17 | 0.2809 | 0.4517 | 0.9544 | 0.062* | |
C18 | 0.2839 (7) | 0.6908 (7) | 0.9811 (4) | 0.0540 (15) | |
H18 | 0.2359 | 0.6804 | 1.0440 | 0.065* | |
C19 | 0.3277 (6) | 0.8391 (6) | 0.9421 (4) | 0.0413 (12) | |
H19 | 0.3075 | 0.9294 | 0.9781 | 0.050* | |
C20 | 0.5961 (6) | 1.1778 (5) | 0.6657 (4) | 0.0302 (10) | |
N1 | 0.8868 (4) | 0.1405 (4) | 0.3842 (3) | 0.0287 (8) | |
N2 | 0.5033 (5) | 0.7289 (4) | 0.6994 (3) | 0.0306 (9) | |
O1 | 0.7023 (4) | −0.3102 (4) | 0.4894 (3) | 0.0389 (8) | |
O2 | 0.8812 (4) | −0.4181 (4) | 0.4039 (2) | 0.0372 (8) | |
O3 | 0.5866 (5) | 1.3064 (4) | 0.7133 (3) | 0.0479 (9) | |
O4 | 0.6565 (4) | 1.1679 (4) | 0.5802 (3) | 0.0428 (9) | |
Ag1 | 0.79527 (5) | 0.35203 (4) | 0.48083 (3) | 0.03910 (14) | |
Ag2 | 0.60900 (5) | 0.52274 (4) | 0.61650 (3) | 0.04425 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.034 (2) | 0.027 (2) | 0.031 (2) | 0.0094 (19) | 0.0114 (19) | 0.0067 (19) |
C2 | 0.030 (2) | 0.025 (2) | 0.030 (2) | 0.0087 (18) | 0.0055 (18) | 0.0059 (19) |
C3 | 0.038 (2) | 0.022 (2) | 0.027 (2) | 0.0122 (18) | 0.0074 (18) | −0.0037 (18) |
C4 | 0.030 (2) | 0.027 (2) | 0.028 (2) | 0.0090 (18) | 0.0047 (18) | 0.0029 (19) |
C5 | 0.028 (2) | 0.027 (2) | 0.028 (2) | 0.0109 (18) | 0.0063 (18) | 0.0026 (18) |
C6 | 0.039 (2) | 0.023 (2) | 0.041 (3) | 0.0095 (19) | 0.011 (2) | 0.009 (2) |
C7 | 0.049 (3) | 0.033 (3) | 0.043 (3) | 0.010 (2) | 0.013 (2) | 0.014 (2) |
C8 | 0.052 (3) | 0.042 (3) | 0.034 (2) | 0.013 (2) | 0.020 (2) | 0.008 (2) |
C9 | 0.049 (3) | 0.033 (3) | 0.039 (3) | 0.015 (2) | 0.015 (2) | 0.004 (2) |
C10 | 0.035 (2) | 0.026 (2) | 0.028 (2) | 0.0075 (19) | 0.0043 (19) | 0.0004 (19) |
C11 | 0.039 (2) | 0.025 (2) | 0.028 (2) | 0.0107 (19) | 0.0117 (19) | 0.0057 (19) |
C12 | 0.031 (2) | 0.022 (2) | 0.031 (2) | 0.0085 (18) | 0.0056 (18) | 0.0040 (19) |
C13 | 0.039 (2) | 0.022 (2) | 0.028 (2) | 0.0117 (19) | 0.0066 (18) | 0.0001 (18) |
C14 | 0.037 (2) | 0.028 (2) | 0.030 (2) | 0.0104 (19) | 0.0079 (19) | 0.0065 (19) |
C15 | 0.030 (2) | 0.025 (2) | 0.036 (2) | 0.0079 (18) | 0.0079 (19) | 0.0067 (19) |
C16 | 0.053 (3) | 0.027 (2) | 0.039 (3) | 0.011 (2) | 0.014 (2) | 0.006 (2) |
C17 | 0.069 (3) | 0.040 (3) | 0.050 (3) | 0.012 (2) | 0.019 (3) | 0.017 (2) |
C18 | 0.067 (3) | 0.053 (3) | 0.045 (3) | 0.014 (3) | 0.029 (3) | 0.014 (3) |
C19 | 0.053 (3) | 0.037 (3) | 0.036 (3) | 0.013 (2) | 0.013 (2) | 0.004 (2) |
C20 | 0.038 (2) | 0.021 (2) | 0.034 (2) | 0.0117 (19) | 0.008 (2) | 0.0045 (19) |
N1 | 0.0348 (19) | 0.021 (2) | 0.031 (2) | 0.0072 (16) | 0.0088 (16) | 0.0006 (16) |
N2 | 0.042 (2) | 0.023 (2) | 0.031 (2) | 0.0113 (16) | 0.0147 (17) | 0.0053 (16) |
O1 | 0.0514 (19) | 0.0296 (18) | 0.0437 (19) | 0.0174 (15) | 0.0238 (16) | 0.0104 (15) |
O2 | 0.0490 (18) | 0.0205 (17) | 0.0459 (19) | 0.0114 (14) | 0.0182 (16) | 0.0036 (15) |
O3 | 0.078 (2) | 0.0253 (18) | 0.046 (2) | 0.0173 (17) | 0.0210 (18) | 0.0058 (16) |
O4 | 0.061 (2) | 0.0273 (18) | 0.046 (2) | 0.0123 (15) | 0.0296 (17) | 0.0072 (15) |
Ag1 | 0.0547 (3) | 0.0202 (2) | 0.0470 (3) | 0.01195 (18) | 0.01993 (19) | 0.01007 (18) |
Ag2 | 0.0681 (3) | 0.0223 (2) | 0.0496 (3) | 0.0169 (2) | 0.0257 (2) | 0.01112 (19) |
C1—N1 | 1.315 (5) | C12—C20 | 1.501 (6) |
C1—C2 | 1.410 (6) | C13—C14 | 1.411 (6) |
C1—H1 | 0.9300 | C13—H13 | 0.9300 |
C2—C3 | 1.374 (6) | C14—C19 | 1.416 (6) |
C2—C10 | 1.495 (6) | C14—C15 | 1.433 (6) |
C3—C4 | 1.404 (6) | C15—N2 | 1.381 (5) |
C3—H3 | 0.9300 | C15—C16 | 1.406 (6) |
C4—C9 | 1.412 (6) | C16—C17 | 1.363 (7) |
C4—C5 | 1.424 (6) | C16—H16 | 0.9300 |
C5—N1 | 1.386 (5) | C17—C18 | 1.407 (8) |
C5—C6 | 1.416 (6) | C17—H17 | 0.9300 |
C6—C7 | 1.359 (6) | C18—C19 | 1.355 (7) |
C6—H6 | 0.9300 | C18—H18 | 0.9300 |
C7—C8 | 1.405 (7) | C19—H19 | 0.9300 |
C7—H7 | 0.9300 | C20—O3 | 1.245 (5) |
C8—C9 | 1.361 (7) | C20—O4 | 1.252 (5) |
C8—H8 | 0.9300 | Ag1—N1 | 2.429 (3) |
C9—H9 | 0.9300 | Ag1—O2i | 2.219 (3) |
C10—O1 | 1.246 (5) | Ag1—O4ii | 2.220 (3) |
C10—O2 | 1.261 (5) | Ag1—Ag2 | 2.9468 (6) |
C11—N2 | 1.310 (5) | Ag2—N2 | 2.373 (3) |
C11—C12 | 1.410 (6) | Ag2—O1i | 2.282 (3) |
C11—H11 | 0.9300 | Ag2—O3ii | 2.258 (3) |
C12—C13 | 1.364 (6) | Ag2—Ag2iii | 3.3099 (10) |
N1—C1—C2 | 124.9 (4) | N2—C15—C14 | 120.5 (4) |
N1—C1—H1 | 117.6 | C16—C15—C14 | 119.4 (4) |
C2—C1—H1 | 117.6 | C17—C16—C15 | 120.0 (5) |
C3—C2—C1 | 117.8 (4) | C17—C16—H16 | 120.0 |
C3—C2—C10 | 123.0 (4) | C15—C16—H16 | 120.0 |
C1—C2—C10 | 119.2 (4) | C16—C17—C18 | 121.1 (5) |
C2—C3—C4 | 120.3 (4) | C16—C17—H17 | 119.4 |
C2—C3—H3 | 119.9 | C18—C17—H17 | 119.4 |
C4—C3—H3 | 119.9 | C19—C18—C17 | 120.3 (5) |
C3—C4—C9 | 124.0 (4) | C19—C18—H18 | 119.9 |
C3—C4—C5 | 117.9 (4) | C17—C18—H18 | 119.9 |
C9—C4—C5 | 118.1 (4) | C18—C19—C14 | 120.8 (5) |
N1—C5—C6 | 119.0 (4) | C18—C19—H19 | 119.6 |
N1—C5—C4 | 121.5 (4) | C14—C19—H19 | 119.6 |
C6—C5—C4 | 119.5 (4) | O3—C20—O4 | 125.6 (4) |
C7—C6—C5 | 120.4 (4) | O3—C20—C12 | 118.1 (4) |
C7—C6—H6 | 119.8 | O4—C20—C12 | 116.2 (4) |
C5—C6—H6 | 119.8 | C1—N1—C5 | 117.6 (4) |
C6—C7—C8 | 120.2 (5) | C1—N1—Ag1 | 113.6 (3) |
C6—C7—H7 | 119.9 | C5—N1—Ag1 | 128.7 (3) |
C8—C7—H7 | 119.9 | C11—N2—C15 | 118.1 (4) |
C9—C8—C7 | 120.8 (5) | C11—N2—Ag2 | 115.5 (3) |
C9—C8—H8 | 119.6 | C15—N2—Ag2 | 125.0 (3) |
C7—C8—H8 | 119.6 | C10—O1—Ag2ii | 134.4 (3) |
C8—C9—C4 | 120.9 (4) | C10—O2—Ag1ii | 117.0 (3) |
C8—C9—H9 | 119.6 | C20—O3—Ag2i | 115.2 (3) |
C4—C9—H9 | 119.6 | C20—O4—Ag1i | 133.5 (3) |
O1—C10—O2 | 125.3 (4) | O2i—Ag1—O4ii | 161.54 (11) |
O1—C10—C2 | 117.1 (4) | O2i—Ag1—N1 | 107.52 (12) |
O2—C10—C2 | 117.6 (4) | O4ii—Ag1—N1 | 90.23 (12) |
N2—C11—C12 | 125.2 (4) | O2i—Ag1—Ag2 | 88.38 (8) |
N2—C11—H11 | 117.4 | O4ii—Ag1—Ag2 | 73.44 (8) |
C12—C11—H11 | 117.4 | N1—Ag1—Ag2 | 162.81 (9) |
C13—C12—C11 | 117.9 (4) | O3ii—Ag2—O1i | 157.36 (12) |
C13—C12—C20 | 123.0 (4) | O3ii—Ag2—N2 | 111.17 (12) |
C11—C12—C20 | 119.1 (4) | O1i—Ag2—N2 | 90.66 (11) |
C12—C13—C14 | 119.9 (4) | O3ii—Ag2—Ag1 | 85.21 (8) |
C12—C13—H13 | 120.1 | O1i—Ag2—Ag1 | 72.49 (8) |
C14—C13—H13 | 120.1 | N2—Ag2—Ag1 | 162.51 (9) |
C13—C14—C19 | 123.2 (4) | O3ii—Ag2—Ag2iii | 119.91 (9) |
C13—C14—C15 | 118.4 (4) | O1i—Ag2—Ag2iii | 58.54 (9) |
C19—C14—C15 | 118.4 (4) | N2—Ag2—Ag2iii | 100.68 (9) |
N2—C15—C16 | 120.1 (4) | Ag1—Ag2—Ag2iii | 74.839 (19) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ag2(C10H6NO2)2] |
Mr | 560.06 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.0583 (15), 8.4824 (15), 12.934 (2) |
α, β, γ (°) | 93.225 (2), 94.812 (2), 104.640 (2) |
V (Å3) | 849.6 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.34 |
Crystal size (mm) | 0.13 × 0.11 × 0.10 |
Data collection | |
Diffractometer | Bruker APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.745, 0.792 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6197, 2962, 2298 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.081, 1.01 |
No. of reflections | 2962 |
No. of parameters | 253 |
No. of restraints | 168 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.52 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Ag1—N1 | 2.429 (3) | Ag2—N2 | 2.373 (3) |
Ag1—O2i | 2.219 (3) | Ag2—O1i | 2.282 (3) |
Ag1—O4ii | 2.220 (3) | Ag2—O3ii | 2.258 (3) |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
Acknowledgements
The authors thank Jiangsu University for supporting this research.
References
Baenziger, N. C., Fox, C. L. & Modak, S. L. (1986). Acta Cryst. C42, 1505–1509. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, D., Zhang, N., Huang, R.-B. & Zheng, L.-S. (2010). Cryst. Growth Des. 10, 3699–3709. Web of Science CSD CrossRef CAS Google Scholar
Wei, X.-Y., Chu, W., Huang, R.-D., Zhang, S.-W., Li, H. & Zhu, Q.-L. (2006). Inorg. Chem. Commun. 9, 1161–1164. Web of Science CSD CrossRef CAS Google Scholar
Yang, S.-P., Chen, H.-M., Zhang, F., Chen, Q.-Q. & Yu, X.-B. (2004). Acta Cryst. E60, m614–m616. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yeşilel, O. Z., Günay, G. & Büyükgüngör, O. (2011). Polyhedron, 30, 364–371. Google Scholar
Yilmaz, V. T., Hamamci, S. & Kazak, C. (2008). J. Organomet. Chem. 693, 3885–3888. Web of Science CSD CrossRef CAS Google Scholar
You, Z.-L., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m1863–m1865. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, the design and synthesis of metal-organic frameworks (MOFs) based on assembly of suitable and rigid building blocks have attracted great attention for their interesting structures and potential applications in catalysis, separation, gas storage and molecular recognition (Wei et al., 2006). Moreover, Ag(I) ion is easy to form short Ag–Ag contacts as well as ligand unsupported interactions, which have been proved to be two of the most important factors contributing to the formation of such complexes and special properties (Yilmaz et al., 2008). Much attention has been paid to Ag(I) ion as its d10 closed-shell electronic configuration. It demonstrates a dynamic range of coordinative geometries, including linear, trigonal-planar, tetrahedral and trigonal-pyramidal. In occasional, it also has examples of square-planar, pyramidal and octahedral geometries, and a tendency to form an argentophilic interaction, both of which may lead to discovery of novel structural motifs (Sun et al., 2010). It is well known that quinoline-3-carboxylic acid (HL) acts as a polyfunctional ligand in metal complexes and coordinates to metals by means of its carboxylate oxygen and a nitrogen atom, exhibiting different coordination modes, such as monodentate-N and monodentate-O, bis(monodentate), bidentate(N, O) and bridging form. In addition, HL also displays an extend π-system, which is beneficial for the formation of π–π interactions to generate high dimensional supramolecular architectures and further stabilize the network. Therefore, we selected silver ion and HL to obtain the title compound under hydrothermal conditions.
In the title compound, the AgI is coordinated by one N atom and two O atoms from three L ligands (Fig. 1, Table 1) and also forms an Ag···Ag contact (Baenziger et al., 1986; Yang et al., 2004). The distance of Ag1···Ag2 is 2.9468 (6) Å. It is shorter than the sum of the van der Waals radii of two silver(I) atoms (3.44 Å), thus the Ag—Ag interaction is found (Yeşilel et al., 2011; You et al., 2004). The bidentate bridging carboxylate group of the ligand connect two Ag atoms and the pyridine N atom links another Ag atom, leading to the formation of a one-dimensional double-chain structure (Fig. 2). The weak Ag···O interactions, with Ag1···O2i and Ag2···O1ii distances of 2.802 (3) and 2.877 (4) Å [symmetry codes: (i) 2-x, -y, 1-z; (ii) 1-x, -y, 1-z], link the double-chains into a layer network. π–π interactions are observed in the layer network [centroid–centroid distances = 3.780 (3) and 3.777 (3) Å].