metal-organic compounds
Poly[[diaquabis(μ-oxalato-κ4O1,O2:O1′,O2′)bis(μ3-5-oxidopyridin-1-ium-3-carboxylato-κ3O3:O3′:O5)diholmium(III)] dihydrate]
aDepartment of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn
In the title compound, {[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O}n, the HoIII atom is coordinated by three O atoms from three 5-hydroxynicotinate ligands, four O atoms from two oxalate ligands, each lying on an inversion center, and one water molecule in a distorted square-antiprismatic geometry. The 5-hydroxynicotinate ligand is protonated at the N atom and deprotonated at the hydroxy group. The HoIII atoms are bridged by the carboxylate and phenolate O atoms, forming a three-dimensional framework. N—H⋯O and O—H⋯O hydrogen bonds, as well as π–π interactions between the pyridine rings [centroid–centroid distance = 3.794 (2) Å], are observed.
Related literature
For background to the applications of compounds with metal-organic framework structures, see: Allendorf et al. (2009); Choi et al. (2008); Dang et al. (2010); Ishikawa et al. (2005); Lazare et al. (2010); Shimomura et al. (2010); Thallapally et al. (2010). For related structures, see: Zhang et al. (2012).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812032916/hy2567sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812032916/hy2567Isup2.hkl
A mixture of holmium nitrate (0.4 mmol, 0.181 g), 5-hydroxynicotinic acid (0.8 mmol, 0.111 g), ammonium oxalate (0.8 mmol, 0.099 g) and 10 ml water was sealed in a 15 ml Teflon-lined autoclave. Colorless crystals suitable for X-ray crystallography analysis were obtained by heating the mixture at 453 K for 72 h and then cooled down to room temperature at a rate of 5 K h-1 (yield: 41%). Analysis, calculated for C16H16Ho2N2O18: C 22.50, H 1.89, N 3.28%; found: C 22.65, H 1.91, N 3.13%. IR (cm-1, KBr): 3398 s, 3083 s, 2957 m, 2768 w, 2089 w, 1900 w, 1646 m, 1565 m, 1447 w, 1427 w, 1359 s, 1319 s, 1302 s, 1140 s, 1051 s, 1013 s, 963 s, 942 m, 894 w, 865 w, 823 w, 788 w, 672 m, 591 s, 545 s, 497 m, 450 w, 413 w.
H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were located from a difference Fourier map and refined isotropically, with distance restraints of N—H = 0.90 (1) and O—H = 0.85 (1) Å.
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1-x, 2-y, 1-z; (ii) 2-x, 2-y, 2-z; (iii) 1-x, 1-y, 1-z; (iv) x, -1+y, -1+z.] | |
Fig. 2. The three-dimensional framework of the title compound. H atoms and solvent water molecules are omitted for clarity. | |
Fig. 3. A schematic view of the three-dimensional framework for the title compound. |
[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O | Z = 1 |
Mr = 854.16 | F(000) = 404 |
Triclinic, P1 | Dx = 2.599 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.7786 (16) Å | Cell parameters from 4550 reflections |
b = 8.0562 (17) Å | θ = 2.3–27.0° |
c = 9.505 (2) Å | µ = 7.30 mm−1 |
α = 110.912 (3)° | T = 173 K |
β = 96.862 (3)° | Block, colorless |
γ = 95.770 (3)° | 0.18 × 0.16 × 0.06 mm |
V = 545.8 (2) Å3 |
Bruker APEXII CCD diffractometer | 2295 independent reflections |
Radiation source: fine-focus sealed tube | 2160 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ϕ and ω scans | θmax = 27.0°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.354, Tmax = 0.669 | k = −10→10 |
4550 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.016P)2 + 0.6363P] where P = (Fo2 + 2Fc2)/3 |
2295 reflections | (Δ/σ)max = 0.001 |
192 parameters | Δρmax = 0.57 e Å−3 |
5 restraints | Δρmin = −0.49 e Å−3 |
[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O | γ = 95.770 (3)° |
Mr = 854.16 | V = 545.8 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.7786 (16) Å | Mo Kα radiation |
b = 8.0562 (17) Å | µ = 7.30 mm−1 |
c = 9.505 (2) Å | T = 173 K |
α = 110.912 (3)° | 0.18 × 0.16 × 0.06 mm |
β = 96.862 (3)° |
Bruker APEXII CCD diffractometer | 2295 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2160 reflections with I > 2σ(I) |
Tmin = 0.354, Tmax = 0.669 | Rint = 0.017 |
4550 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 5 restraints |
wR(F2) = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.57 e Å−3 |
2295 reflections | Δρmin = −0.49 e Å−3 |
192 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6934 (4) | 1.2898 (4) | 1.1270 (3) | 0.0109 (5) | |
C2 | 0.7746 (4) | 0.4547 (4) | 0.2648 (3) | 0.0123 (6) | |
C3 | 0.7041 (4) | 0.5062 (4) | 0.3987 (3) | 0.0117 (6) | |
H3 | 0.5989 | 0.4387 | 0.4032 | 0.014* | |
C4 | 0.7864 (4) | 0.6576 (4) | 0.5285 (3) | 0.0124 (6) | |
C5 | 0.9393 (4) | 0.7518 (4) | 0.5123 (3) | 0.0158 (6) | |
H5 | 0.9999 | 0.8543 | 0.5962 | 0.019* | |
C6 | 0.9258 (4) | 0.5562 (4) | 0.2565 (4) | 0.0162 (6) | |
H6 | 0.9743 | 0.5245 | 0.1651 | 0.019* | |
C7 | 0.9532 (4) | 0.9560 (4) | 1.0490 (3) | 0.0106 (6) | |
C8 | 0.4187 (4) | 0.9302 (4) | 0.4887 (3) | 0.0116 (6) | |
Ho1 | 0.647369 (16) | 0.971506 (16) | 0.803507 (14) | 0.00854 (5) | |
N1 | 1.0014 (3) | 0.6993 (4) | 0.3802 (3) | 0.0168 (5) | |
O1 | 0.7614 (3) | 1.2593 (3) | 1.0082 (2) | 0.0162 (5) | |
O2 | 0.4346 (3) | 0.8128 (3) | 0.8643 (2) | 0.0136 (4) | |
O3 | 0.7231 (3) | 0.7072 (3) | 0.6565 (2) | 0.0150 (4) | |
O4 | 0.7922 (3) | 0.8943 (3) | 1.0004 (2) | 0.0133 (4) | |
O5 | 0.9595 (3) | 1.0464 (3) | 0.8342 (2) | 0.0123 (4) | |
O6 | 0.4182 (3) | 0.8477 (3) | 0.5761 (2) | 0.0161 (4) | |
O7 | 0.7033 (3) | 1.0868 (3) | 0.6190 (2) | 0.0135 (4) | |
O8 | 0.4335 (3) | 1.1739 (3) | 0.8101 (3) | 0.0197 (5) | |
O9 | 0.3549 (5) | 0.5133 (4) | 0.1651 (4) | 0.0462 (8) | |
H1 | 1.102 (3) | 0.760 (4) | 0.373 (4) | 0.011 (8)* | |
H7 | 0.489 (6) | 1.275 (4) | 0.822 (6) | 0.061 (17)* | |
H8 | 0.363 (6) | 1.155 (7) | 0.866 (5) | 0.065 (17)* | |
H9 | 0.331 (8) | 0.448 (7) | 0.216 (6) | 0.08 (2)* | |
H10 | 0.269 (6) | 0.501 (9) | 0.096 (5) | 0.09 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0095 (13) | 0.0105 (13) | 0.0124 (14) | 0.0018 (10) | 0.0013 (10) | 0.0039 (11) |
C2 | 0.0128 (14) | 0.0109 (14) | 0.0113 (14) | 0.0000 (11) | 0.0015 (11) | 0.0027 (11) |
C3 | 0.0087 (14) | 0.0118 (14) | 0.0147 (14) | 0.0008 (10) | 0.0034 (11) | 0.0046 (11) |
C4 | 0.0136 (14) | 0.0110 (14) | 0.0126 (14) | 0.0038 (11) | 0.0029 (11) | 0.0037 (11) |
C5 | 0.0135 (15) | 0.0159 (15) | 0.0141 (15) | −0.0008 (11) | 0.0017 (11) | 0.0020 (12) |
C6 | 0.0149 (15) | 0.0161 (15) | 0.0143 (15) | −0.0008 (12) | 0.0039 (11) | 0.0020 (12) |
C7 | 0.0123 (14) | 0.0095 (13) | 0.0088 (13) | 0.0042 (11) | 0.0022 (10) | 0.0012 (11) |
C8 | 0.0096 (14) | 0.0128 (14) | 0.0115 (14) | 0.0002 (11) | 0.0017 (10) | 0.0038 (11) |
Ho1 | 0.00804 (7) | 0.00981 (7) | 0.00735 (7) | −0.00004 (5) | −0.00004 (4) | 0.00353 (5) |
N1 | 0.0126 (13) | 0.0181 (13) | 0.0151 (13) | −0.0051 (10) | 0.0041 (10) | 0.0022 (11) |
O1 | 0.0163 (11) | 0.0151 (11) | 0.0127 (10) | −0.0024 (8) | 0.0061 (8) | −0.0002 (9) |
O2 | 0.0108 (10) | 0.0137 (10) | 0.0141 (10) | −0.0019 (8) | −0.0005 (8) | 0.0045 (8) |
O3 | 0.0173 (11) | 0.0149 (10) | 0.0106 (10) | 0.0019 (8) | 0.0050 (8) | 0.0015 (8) |
O4 | 0.0108 (10) | 0.0185 (11) | 0.0109 (10) | 0.0007 (8) | 0.0001 (8) | 0.0069 (8) |
O5 | 0.0105 (10) | 0.0159 (10) | 0.0101 (10) | 0.0012 (8) | 0.0004 (8) | 0.0052 (8) |
O6 | 0.0170 (11) | 0.0165 (11) | 0.0148 (11) | −0.0054 (8) | −0.0047 (8) | 0.0103 (9) |
O7 | 0.0108 (10) | 0.0189 (11) | 0.0115 (10) | −0.0019 (8) | −0.0010 (8) | 0.0086 (8) |
O8 | 0.0220 (13) | 0.0232 (13) | 0.0201 (12) | 0.0096 (10) | 0.0087 (9) | 0.0122 (10) |
O9 | 0.056 (2) | 0.0259 (15) | 0.055 (2) | 0.0023 (14) | −0.0118 (17) | 0.0206 (15) |
C1—O2i | 1.259 (4) | C8—O6 | 1.235 (4) |
C1—O1 | 1.260 (4) | C8—O7v | 1.269 (3) |
C1—C2ii | 1.507 (4) | C8—C8v | 1.545 (6) |
C2—C3 | 1.388 (4) | Ho1—O2 | 2.245 (2) |
C2—C6 | 1.390 (4) | Ho1—O3 | 2.271 (2) |
C2—C1iii | 1.507 (4) | Ho1—O7 | 2.322 (2) |
C3—C4 | 1.414 (4) | Ho1—O4 | 2.372 (2) |
C3—H3 | 0.9500 | Ho1—O5 | 2.399 (2) |
C4—O3 | 1.311 (4) | Ho1—O1 | 2.429 (2) |
C4—C5 | 1.400 (4) | Ho1—O8 | 2.435 (2) |
C5—N1 | 1.340 (4) | Ho1—O6 | 2.455 (2) |
C5—H5 | 0.9500 | N1—H1 | 0.90 (1) |
C6—N1 | 1.337 (4) | O8—H7 | 0.85 (1) |
C6—H6 | 0.9500 | O8—H8 | 0.85 (1) |
C7—O5iv | 1.237 (3) | O9—H9 | 0.85 (1) |
C7—O4 | 1.266 (4) | O9—H10 | 0.85 (1) |
C7—C7iv | 1.559 (6) | ||
O2i—C1—O1 | 123.0 (3) | O4—Ho1—O5 | 68.67 (7) |
O2i—C1—C2ii | 119.6 (3) | O2—Ho1—O1 | 112.36 (7) |
O1—C1—C2ii | 117.4 (3) | O3—Ho1—O1 | 143.48 (8) |
C3—C2—C6 | 119.6 (3) | O7—Ho1—O1 | 91.68 (7) |
C3—C2—C1iii | 122.1 (3) | O4—Ho1—O1 | 75.80 (7) |
C6—C2—C1iii | 118.3 (3) | O5—Ho1—O1 | 67.35 (7) |
C2—C3—C4 | 121.0 (3) | O2—Ho1—O8 | 83.88 (8) |
C2—C3—H3 | 119.5 | O3—Ho1—O8 | 142.95 (8) |
C4—C3—H3 | 119.5 | O7—Ho1—O8 | 75.53 (8) |
O3—C4—C5 | 121.8 (3) | O4—Ho1—O8 | 130.78 (7) |
O3—C4—C3 | 122.0 (3) | O5—Ho1—O8 | 126.55 (8) |
C5—C4—C3 | 116.2 (3) | O1—Ho1—O8 | 71.62 (8) |
N1—C5—C4 | 120.9 (3) | O2—Ho1—O6 | 74.25 (7) |
N1—C5—H5 | 119.5 | O3—Ho1—O6 | 74.55 (8) |
C4—C5—H5 | 119.5 | O7—Ho1—O6 | 68.06 (7) |
N1—C6—C2 | 118.5 (3) | O4—Ho1—O6 | 141.48 (7) |
N1—C6—H6 | 120.7 | O5—Ho1—O6 | 132.12 (7) |
C2—C6—H6 | 120.7 | O1—Ho1—O6 | 138.53 (7) |
O5iv—C7—O4 | 126.2 (3) | O8—Ho1—O6 | 68.47 (8) |
O5iv—C7—C7iv | 118.1 (3) | C6—N1—C5 | 123.8 (3) |
O4—C7—C7iv | 115.7 (3) | C6—N1—H1 | 117 (2) |
O6—C8—O7v | 126.3 (3) | C5—N1—H1 | 119 (2) |
O6—C8—C8v | 118.0 (3) | C1—O1—Ho1 | 115.09 (18) |
O7v—C8—C8v | 115.6 (3) | C1i—O2—Ho1 | 169.7 (2) |
O2—Ho1—O3 | 88.38 (8) | C4—O3—Ho1 | 132.61 (19) |
O2—Ho1—O7 | 141.51 (7) | C7—O4—Ho1 | 118.19 (18) |
O3—Ho1—O7 | 88.96 (8) | C7iv—O5—Ho1 | 116.85 (18) |
O2—Ho1—O4 | 75.56 (7) | C8—O6—Ho1 | 115.09 (18) |
O3—Ho1—O4 | 81.26 (8) | C8v—O7—Ho1 | 119.68 (18) |
O7—Ho1—O4 | 141.63 (7) | Ho1—O8—H7 | 108 (4) |
O2—Ho1—O5 | 143.17 (7) | Ho1—O8—H8 | 106 (4) |
O3—Ho1—O5 | 78.02 (7) | H7—O8—H8 | 126 (5) |
O7—Ho1—O5 | 73.02 (7) | H9—O9—H10 | 111 (6) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (ii) x, y+1, z+1; (iii) x, y−1, z−1; (iv) −x+2, −y+2, −z+2; (v) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O7vi | 0.90 (1) | 1.83 (1) | 2.727 (3) | 171 (3) |
O8—H7···O9v | 0.85 (1) | 1.95 (1) | 2.787 (4) | 171 (5) |
O8—H8···O4i | 0.85 (1) | 1.96 (1) | 2.811 (3) | 177 (6) |
O9—H9···O3vii | 0.85 (1) | 2.08 (1) | 2.929 (4) | 178 (6) |
O9—H10···O1v | 0.85 (1) | 2.48 (6) | 3.003 (4) | 120 (5) |
Symmetry codes: (i) −x+1, −y+2, −z+2; (v) −x+1, −y+2, −z+1; (vi) −x+2, −y+2, −z+1; (vii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O |
Mr | 854.16 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 7.7786 (16), 8.0562 (17), 9.505 (2) |
α, β, γ (°) | 110.912 (3), 96.862 (3), 95.770 (3) |
V (Å3) | 545.8 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 7.30 |
Crystal size (mm) | 0.18 × 0.16 × 0.06 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.354, 0.669 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4550, 2295, 2160 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.038, 1.05 |
No. of reflections | 2295 |
No. of parameters | 192 |
No. of restraints | 5 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.57, −0.49 |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O7i | 0.90 (1) | 1.83 (1) | 2.727 (3) | 171 (3) |
O8—H7···O9ii | 0.85 (1) | 1.95 (1) | 2.787 (4) | 171 (5) |
O8—H8···O4iii | 0.85 (1) | 1.96 (1) | 2.811 (3) | 177 (6) |
O9—H9···O3iv | 0.85 (1) | 2.08 (1) | 2.929 (4) | 178 (6) |
O9—H10···O1ii | 0.85 (1) | 2.48 (6) | 3.003 (4) | 120 (5) |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+2, −z+2; (iv) −x+1, −y+1, −z+1. |
References
Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352. Web of Science CrossRef PubMed CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Choi, H. J., Dinca, M. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 7848–7850. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dang, D. B., Wu, P. Y., He, C., Xie, Z. & Duan, C. Y. (2010). J. Am. Chem. Soc. 132, 14321–14323. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ishikawa, N., Sugita, M. & Wernsdorfer, W. (2005). Angew. Chem. Int. Ed. 44, 2931–2935. Web of Science CrossRef CAS Google Scholar
Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A. A. & Bats, N. (2010). J. Am. Chem. Soc. 132, 12365–12377. Web of Science PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nat. Chem. 2, 633–637. Web of Science CSD CrossRef CAS PubMed Google Scholar
Thallapally, P. K., Fernandez, C. A., Motkuri, R. K., Nune, S. K., Liu, J. & Peden, C. H. F. (2010). Dalton Trans. 39, 1692–1694. Web of Science CrossRef CAS PubMed Google Scholar
Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163–168. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Metal-organic frameworks (MOFs) remain nowadays one of the most studied topics in synthetic chemistry due to MOFs hold interesting structural features and properties. For example, they can be employed as effective heterogeneous catalysts (Dang et al., 2010; Lazare et al., 2010; Thallapally et al., 2010), selective adsorption of gases (Choi et al., 2008; Shimomura et al., 2010), photoluminescent (Allendorf et al., 2009) and magnetic properties (Ishikawa et al., 2005).
The title compound is isostructural with its Dy(III) and Er(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit is composed of one HoIII atom, one phenoxonicotinate ligand, two halfs of oxalate ligands, one coordinated and one solvent water molecules. The HoIII atom is coordinated by eight O atoms, exhibiting a distorted square-antiprismatic geometry. One basal square face of the antiprism is defined by two carboxylate O atoms, one oxalate O atom and one aqua O atom; the other base is completed by the other three oxalate O atoms and one phenolate O atom. Adjacent HoIII atoms are bonded to the carboxylate and phenolate O atoms of the phenoxonicotinate ligand, forming dinuclear subunits, which are further extented at a syn-anti conformation into infinite ladder-like chains. The metal atoms are also bridged by oxalate ligands in a side-by-side manner, forming one-dimensional zigzag chains. Both the ladder-like and zigzag chains are finally linked together through the metal atoms into a three-dimensional framework with one-dimensional microchannels (Fig. 2). The three-dimensional framework shows a topology of 3,5-connected {42.65.83}.{42.6} (Fig. 3). N—H···O and O—H···O hydrogen bonds, as well as π–π interactions between the pyridine rings [centroid–centroid distance = 3.794 (2)Å] are found in the crystal.