metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1146-m1147

Poly[[di­aqua­bis­­(μ-oxalato-κ4O1,O2:O1′,O2′)bis­­(μ3-5-oxidopyridin-1-ium-3-carboxyl­ato-κ3O3:O3′:O5)diholmium(III)] dihydrate]

aDepartment of Materials Science and Engineering, Jinan University, Guangzhou 510632, People's Republic of China
*Correspondence e-mail: thjchen@jnu.edu.cn

(Received 26 June 2012; accepted 20 July 2012; online 4 August 2012)

In the title compound, {[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O}n, the HoIII atom is coordinated by three O atoms from three 5-hy­droxy­nicotinate ligands, four O atoms from two oxalate ligands, each lying on an inversion center, and one water mol­ecule in a distorted square-anti­prismatic geometry. The 5-hy­droxy­nicotinate ligand is protonated at the N atom and deprotonated at the hy­droxy group. The HoIII atoms are bridged by the carboxyl­ate and phenolate O atoms, forming a three-dimensional framework. N—H⋯O and O—H⋯O hydrogen bonds, as well as ππ inter­actions between the pyridine rings [centroid–centroid distance = 3.794 (2) Å], are observed.

Related literature

For background to the applications of compounds with metal-organic framework structures, see: Allendorf et al. (2009[Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330-1352.]); Choi et al. (2008[Choi, H. J., Dinca, M. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 7848-7850.]); Dang et al. (2010[Dang, D. B., Wu, P. Y., He, C., Xie, Z. & Duan, C. Y. (2010). J. Am. Chem. Soc. 132, 14321-14323.]); Ishikawa et al. (2005[Ishikawa, N., Sugita, M. & Wernsdorfer, W. (2005). Angew. Chem. Int. Ed. 44, 2931-2935.]); Lazare et al. (2010[Lazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A. A. & Bats, N. (2010). J. Am. Chem. Soc. 132, 12365-12377.]); Shimomura et al. (2010[Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nat. Chem. 2, 633-637.]); Thallapally et al. (2010[Thallapally, P. K., Fernandez, C. A., Motkuri, R. K., Nune, S. K., Liu, J. & Peden, C. H. F. (2010). Dalton Trans. 39, 1692-1694.]). For related structures, see: Zhang et al. (2012[Zhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163-168.]).

[Scheme 1]

Experimental

Crystal data
  • [Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O

  • Mr = 854.16

  • Triclinic, [P \overline 1]

  • a = 7.7786 (16) Å

  • b = 8.0562 (17) Å

  • c = 9.505 (2) Å

  • α = 110.912 (3)°

  • β = 96.862 (3)°

  • γ = 95.770 (3)°

  • V = 545.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.30 mm−1

  • T = 173 K

  • 0.18 × 0.16 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.354, Tmax = 0.669

  • 4550 measured reflections

  • 2295 independent reflections

  • 2160 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.016

  • wR(F2) = 0.038

  • S = 1.05

  • 2295 reflections

  • 192 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O7i 0.90 (1) 1.83 (1) 2.727 (3) 171 (3)
O8—H7⋯O9ii 0.85 (1) 1.95 (1) 2.787 (4) 171 (5)
O8—H8⋯O4iii 0.85 (1) 1.96 (1) 2.811 (3) 177 (6)
O9—H9⋯O3iv 0.85 (1) 2.08 (1) 2.929 (4) 178 (6)
O9—H10⋯O1ii 0.85 (1) 2.48 (6) 3.003 (4) 120 (5)
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic frameworks (MOFs) remain nowadays one of the most studied topics in synthetic chemistry due to MOFs hold interesting structural features and properties. For example, they can be employed as effective heterogeneous catalysts (Dang et al., 2010; Lazare et al., 2010; Thallapally et al., 2010), selective adsorption of gases (Choi et al., 2008; Shimomura et al., 2010), photoluminescent (Allendorf et al., 2009) and magnetic properties (Ishikawa et al., 2005).

The title compound is isostructural with its Dy(III) and Er(III) analogues (Zhang et al., 2012). As shown in Fig. 1, the asymmetric unit is composed of one HoIII atom, one phenoxonicotinate ligand, two halfs of oxalate ligands, one coordinated and one solvent water molecules. The HoIII atom is coordinated by eight O atoms, exhibiting a distorted square-antiprismatic geometry. One basal square face of the antiprism is defined by two carboxylate O atoms, one oxalate O atom and one aqua O atom; the other base is completed by the other three oxalate O atoms and one phenolate O atom. Adjacent HoIII atoms are bonded to the carboxylate and phenolate O atoms of the phenoxonicotinate ligand, forming dinuclear subunits, which are further extented at a syn-anti conformation into infinite ladder-like chains. The metal atoms are also bridged by oxalate ligands in a side-by-side manner, forming one-dimensional zigzag chains. Both the ladder-like and zigzag chains are finally linked together through the metal atoms into a three-dimensional framework with one-dimensional microchannels (Fig. 2). The three-dimensional framework shows a topology of 3,5-connected {42.65.83}.{42.6} (Fig. 3). N—H···O and O—H···O hydrogen bonds, as well as ππ interactions between the pyridine rings [centroid–centroid distance = 3.794 (2)Å] are found in the crystal.

Related literature top

For background to the applications of compounds with metal-organic framework structures, see: Allendorf et al. (2009); Choi et al. (2008); Dang et al. (2010); Ishikawa et al. (2005); Lazare et al. (2010); Shimomura et al. (2010); Thallapally et al. (2010). For related structures, see: Zhang et al. (2012).

Experimental top

A mixture of holmium nitrate (0.4 mmol, 0.181 g), 5-hydroxynicotinic acid (0.8 mmol, 0.111 g), ammonium oxalate (0.8 mmol, 0.099 g) and 10 ml water was sealed in a 15 ml Teflon-lined autoclave. Colorless crystals suitable for X-ray crystallography analysis were obtained by heating the mixture at 453 K for 72 h and then cooled down to room temperature at a rate of 5 K h-1 (yield: 41%). Analysis, calculated for C16H16Ho2N2O18: C 22.50, H 1.89, N 3.28%; found: C 22.65, H 1.91, N 3.13%. IR (cm-1, KBr): 3398 s, 3083 s, 2957 m, 2768 w, 2089 w, 1900 w, 1646 m, 1565 m, 1447 w, 1427 w, 1359 s, 1319 s, 1302 s, 1140 s, 1051 s, 1013 s, 963 s, 942 m, 894 w, 865 w, 823 w, 788 w, 672 m, 591 s, 545 s, 497 m, 450 w, 413 w.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N and O atoms were located from a difference Fourier map and refined isotropically, with distance restraints of N—H = 0.90 (1) and O—H = 0.85 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1-x, 2-y, 1-z; (ii) 2-x, 2-y, 2-z; (iii) 1-x, 1-y, 1-z; (iv) x, -1+y, -1+z.]
[Figure 2] Fig. 2. The three-dimensional framework of the title compound. H atoms and solvent water molecules are omitted for clarity.
[Figure 3] Fig. 3. A schematic view of the three-dimensional framework for the title compound.
Poly[[diaquabis(µ-oxalato- κ4O1,O2:O1',O2')bis(µ3-5- oxidopyridin-1-ium-3-carboxylato- κ3O3:O3':O5)diholmium(III)] dihydrate] top
Crystal data top
[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2OZ = 1
Mr = 854.16F(000) = 404
Triclinic, P1Dx = 2.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7786 (16) ÅCell parameters from 4550 reflections
b = 8.0562 (17) Åθ = 2.3–27.0°
c = 9.505 (2) ŵ = 7.30 mm1
α = 110.912 (3)°T = 173 K
β = 96.862 (3)°Block, colorless
γ = 95.770 (3)°0.18 × 0.16 × 0.06 mm
V = 545.8 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2295 independent reflections
Radiation source: fine-focus sealed tube2160 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.354, Tmax = 0.669k = 1010
4550 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.016P)2 + 0.6363P]
where P = (Fo2 + 2Fc2)/3
2295 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.57 e Å3
5 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2Oγ = 95.770 (3)°
Mr = 854.16V = 545.8 (2) Å3
Triclinic, P1Z = 1
a = 7.7786 (16) ÅMo Kα radiation
b = 8.0562 (17) ŵ = 7.30 mm1
c = 9.505 (2) ÅT = 173 K
α = 110.912 (3)°0.18 × 0.16 × 0.06 mm
β = 96.862 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2295 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2160 reflections with I > 2σ(I)
Tmin = 0.354, Tmax = 0.669Rint = 0.017
4550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0165 restraints
wR(F2) = 0.038H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.57 e Å3
2295 reflectionsΔρmin = 0.49 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6934 (4)1.2898 (4)1.1270 (3)0.0109 (5)
C20.7746 (4)0.4547 (4)0.2648 (3)0.0123 (6)
C30.7041 (4)0.5062 (4)0.3987 (3)0.0117 (6)
H30.59890.43870.40320.014*
C40.7864 (4)0.6576 (4)0.5285 (3)0.0124 (6)
C50.9393 (4)0.7518 (4)0.5123 (3)0.0158 (6)
H50.99990.85430.59620.019*
C60.9258 (4)0.5562 (4)0.2565 (4)0.0162 (6)
H60.97430.52450.16510.019*
C70.9532 (4)0.9560 (4)1.0490 (3)0.0106 (6)
C80.4187 (4)0.9302 (4)0.4887 (3)0.0116 (6)
Ho10.647369 (16)0.971506 (16)0.803507 (14)0.00854 (5)
N11.0014 (3)0.6993 (4)0.3802 (3)0.0168 (5)
O10.7614 (3)1.2593 (3)1.0082 (2)0.0162 (5)
O20.4346 (3)0.8128 (3)0.8643 (2)0.0136 (4)
O30.7231 (3)0.7072 (3)0.6565 (2)0.0150 (4)
O40.7922 (3)0.8943 (3)1.0004 (2)0.0133 (4)
O50.9595 (3)1.0464 (3)0.8342 (2)0.0123 (4)
O60.4182 (3)0.8477 (3)0.5761 (2)0.0161 (4)
O70.7033 (3)1.0868 (3)0.6190 (2)0.0135 (4)
O80.4335 (3)1.1739 (3)0.8101 (3)0.0197 (5)
O90.3549 (5)0.5133 (4)0.1651 (4)0.0462 (8)
H11.102 (3)0.760 (4)0.373 (4)0.011 (8)*
H70.489 (6)1.275 (4)0.822 (6)0.061 (17)*
H80.363 (6)1.155 (7)0.866 (5)0.065 (17)*
H90.331 (8)0.448 (7)0.216 (6)0.08 (2)*
H100.269 (6)0.501 (9)0.096 (5)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0095 (13)0.0105 (13)0.0124 (14)0.0018 (10)0.0013 (10)0.0039 (11)
C20.0128 (14)0.0109 (14)0.0113 (14)0.0000 (11)0.0015 (11)0.0027 (11)
C30.0087 (14)0.0118 (14)0.0147 (14)0.0008 (10)0.0034 (11)0.0046 (11)
C40.0136 (14)0.0110 (14)0.0126 (14)0.0038 (11)0.0029 (11)0.0037 (11)
C50.0135 (15)0.0159 (15)0.0141 (15)0.0008 (11)0.0017 (11)0.0020 (12)
C60.0149 (15)0.0161 (15)0.0143 (15)0.0008 (12)0.0039 (11)0.0020 (12)
C70.0123 (14)0.0095 (13)0.0088 (13)0.0042 (11)0.0022 (10)0.0012 (11)
C80.0096 (14)0.0128 (14)0.0115 (14)0.0002 (11)0.0017 (10)0.0038 (11)
Ho10.00804 (7)0.00981 (7)0.00735 (7)0.00004 (5)0.00004 (4)0.00353 (5)
N10.0126 (13)0.0181 (13)0.0151 (13)0.0051 (10)0.0041 (10)0.0022 (11)
O10.0163 (11)0.0151 (11)0.0127 (10)0.0024 (8)0.0061 (8)0.0002 (9)
O20.0108 (10)0.0137 (10)0.0141 (10)0.0019 (8)0.0005 (8)0.0045 (8)
O30.0173 (11)0.0149 (10)0.0106 (10)0.0019 (8)0.0050 (8)0.0015 (8)
O40.0108 (10)0.0185 (11)0.0109 (10)0.0007 (8)0.0001 (8)0.0069 (8)
O50.0105 (10)0.0159 (10)0.0101 (10)0.0012 (8)0.0004 (8)0.0052 (8)
O60.0170 (11)0.0165 (11)0.0148 (11)0.0054 (8)0.0047 (8)0.0103 (9)
O70.0108 (10)0.0189 (11)0.0115 (10)0.0019 (8)0.0010 (8)0.0086 (8)
O80.0220 (13)0.0232 (13)0.0201 (12)0.0096 (10)0.0087 (9)0.0122 (10)
O90.056 (2)0.0259 (15)0.055 (2)0.0023 (14)0.0118 (17)0.0206 (15)
Geometric parameters (Å, º) top
C1—O2i1.259 (4)C8—O61.235 (4)
C1—O11.260 (4)C8—O7v1.269 (3)
C1—C2ii1.507 (4)C8—C8v1.545 (6)
C2—C31.388 (4)Ho1—O22.245 (2)
C2—C61.390 (4)Ho1—O32.271 (2)
C2—C1iii1.507 (4)Ho1—O72.322 (2)
C3—C41.414 (4)Ho1—O42.372 (2)
C3—H30.9500Ho1—O52.399 (2)
C4—O31.311 (4)Ho1—O12.429 (2)
C4—C51.400 (4)Ho1—O82.435 (2)
C5—N11.340 (4)Ho1—O62.455 (2)
C5—H50.9500N1—H10.90 (1)
C6—N11.337 (4)O8—H70.85 (1)
C6—H60.9500O8—H80.85 (1)
C7—O5iv1.237 (3)O9—H90.85 (1)
C7—O41.266 (4)O9—H100.85 (1)
C7—C7iv1.559 (6)
O2i—C1—O1123.0 (3)O4—Ho1—O568.67 (7)
O2i—C1—C2ii119.6 (3)O2—Ho1—O1112.36 (7)
O1—C1—C2ii117.4 (3)O3—Ho1—O1143.48 (8)
C3—C2—C6119.6 (3)O7—Ho1—O191.68 (7)
C3—C2—C1iii122.1 (3)O4—Ho1—O175.80 (7)
C6—C2—C1iii118.3 (3)O5—Ho1—O167.35 (7)
C2—C3—C4121.0 (3)O2—Ho1—O883.88 (8)
C2—C3—H3119.5O3—Ho1—O8142.95 (8)
C4—C3—H3119.5O7—Ho1—O875.53 (8)
O3—C4—C5121.8 (3)O4—Ho1—O8130.78 (7)
O3—C4—C3122.0 (3)O5—Ho1—O8126.55 (8)
C5—C4—C3116.2 (3)O1—Ho1—O871.62 (8)
N1—C5—C4120.9 (3)O2—Ho1—O674.25 (7)
N1—C5—H5119.5O3—Ho1—O674.55 (8)
C4—C5—H5119.5O7—Ho1—O668.06 (7)
N1—C6—C2118.5 (3)O4—Ho1—O6141.48 (7)
N1—C6—H6120.7O5—Ho1—O6132.12 (7)
C2—C6—H6120.7O1—Ho1—O6138.53 (7)
O5iv—C7—O4126.2 (3)O8—Ho1—O668.47 (8)
O5iv—C7—C7iv118.1 (3)C6—N1—C5123.8 (3)
O4—C7—C7iv115.7 (3)C6—N1—H1117 (2)
O6—C8—O7v126.3 (3)C5—N1—H1119 (2)
O6—C8—C8v118.0 (3)C1—O1—Ho1115.09 (18)
O7v—C8—C8v115.6 (3)C1i—O2—Ho1169.7 (2)
O2—Ho1—O388.38 (8)C4—O3—Ho1132.61 (19)
O2—Ho1—O7141.51 (7)C7—O4—Ho1118.19 (18)
O3—Ho1—O788.96 (8)C7iv—O5—Ho1116.85 (18)
O2—Ho1—O475.56 (7)C8—O6—Ho1115.09 (18)
O3—Ho1—O481.26 (8)C8v—O7—Ho1119.68 (18)
O7—Ho1—O4141.63 (7)Ho1—O8—H7108 (4)
O2—Ho1—O5143.17 (7)Ho1—O8—H8106 (4)
O3—Ho1—O578.02 (7)H7—O8—H8126 (5)
O7—Ho1—O573.02 (7)H9—O9—H10111 (6)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+1, z+1; (iii) x, y1, z1; (iv) x+2, y+2, z+2; (v) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7vi0.90 (1)1.83 (1)2.727 (3)171 (3)
O8—H7···O9v0.85 (1)1.95 (1)2.787 (4)171 (5)
O8—H8···O4i0.85 (1)1.96 (1)2.811 (3)177 (6)
O9—H9···O3vii0.85 (1)2.08 (1)2.929 (4)178 (6)
O9—H10···O1v0.85 (1)2.48 (6)3.003 (4)120 (5)
Symmetry codes: (i) x+1, y+2, z+2; (v) x+1, y+2, z+1; (vi) x+2, y+2, z+1; (vii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ho2(C6H4NO3)2(C2O4)2(H2O)2]·2H2O
Mr854.16
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.7786 (16), 8.0562 (17), 9.505 (2)
α, β, γ (°)110.912 (3), 96.862 (3), 95.770 (3)
V3)545.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)7.30
Crystal size (mm)0.18 × 0.16 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.354, 0.669
No. of measured, independent and
observed [I > 2σ(I)] reflections
4550, 2295, 2160
Rint0.017
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.038, 1.05
No. of reflections2295
No. of parameters192
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.49

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O7i0.90 (1)1.83 (1)2.727 (3)171 (3)
O8—H7···O9ii0.85 (1)1.95 (1)2.787 (4)171 (5)
O8—H8···O4iii0.85 (1)1.96 (1)2.811 (3)177 (6)
O9—H9···O3iv0.85 (1)2.08 (1)2.929 (4)178 (6)
O9—H10···O1ii0.85 (1)2.48 (6)3.003 (4)120 (5)
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z+2; (iv) x+1, y+1, z+1.
 

References

First citationAllendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. (2009). Chem. Soc. Rev. 38, 1330–1352.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. J., Dinca, M. & Long, J. R. (2008). J. Am. Chem. Soc. 130, 7848–7850.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDang, D. B., Wu, P. Y., He, C., Xie, Z. & Duan, C. Y. (2010). J. Am. Chem. Soc. 132, 14321–14323.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIshikawa, N., Sugita, M. & Wernsdorfer, W. (2005). Angew. Chem. Int. Ed. 44, 2931–2935.  Web of Science CrossRef CAS Google Scholar
First citationLazare, S., Bazer-Bachi, D., Bonnier, F., Lecocq, V., Soyer, E., Quoineaud, A. A. & Bats, N. (2010). J. Am. Chem. Soc. 132, 12365–12377.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nat. Chem. 2, 633–637.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationThallapally, P. K., Fernandez, C. A., Motkuri, R. K., Nune, S. K., Liu, J. & Peden, C. H. F. (2010). Dalton Trans. 39, 1692–1694.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, J., Huang, J., Yang, J. & Chen, H.-J. (2012). Inorg. Chem. Commun. 17, 163–168.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1146-m1147
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds