metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1222-m1223

catena-Poly[[[di­aqua­(1,10-phenanthroline-κ2N,N′)zinc]-μ-4,4′-bi­pyridine-κ2N:N′] dinitrate 4,4′-bi­pyridine hemisolvate monohydrate]

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bKey Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 13 August 2012; accepted 20 August 2012; online 31 August 2012)

In the title compound, [Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2O, the ZnII atom is coordinated in a distorted octa­hedral geometry by two N atoms from two 4,4′-bipyridine (4,4′-bipy) ligands, two N atoms from a chelating 1,10-phenanthroline ligand and two O atoms from two mutually cis water mol­ecules. The 4,4′-bipy ligands bridge the ZnII atoms into a chain structure along [100]. The uncoordinated 4,4′-bipy mol­ecule lies on an inversion center. O—H⋯O and O—H⋯N hydrogen bonds connect the cationic chains, the nitrate anions, the uncoordinated 4,4′-bipy mol­ecules and the water mol­ecules into tow-dimensional networks.

Related literature

For background to metal complexes of 1,10-phenanthroline and its derivatives in biological systems, see: Rama Krishna et al. (2000[Rama Krishna, N., Yanhong, D., Osmond, J., D'Cruz, C. N. & Fatih, M. U. (2000). Clin. Cancer Res. 6, 1546-1556.]); Sastri et al. (2003[Sastri, C. V., Eswaramoorthy, D., Giridabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138-145.]). For related structures, see: Bai et al. (2009[Bai, Z.-S., Chen, M.-S., Chen, S.-S., Su, Z. & Sun, W.-Y. (2009). Chin. J. Inorg. Chem. 25, 402-406.]); Blake et al. (1998[Blake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1998). J. Chem. Soc. Dalton Trans. pp. 909-916.]); Boag et al. (1999[Boag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (1999). Acta Cryst. C55, 672-674.]); Carlucci et al. (1997[Carlucci, L., Ciani, G., Proserpio, D. M. & Sironi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1801-1804.]); Chen et al. (2006[Chen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji, 28, 478-480.]); Du & Li (2007[Du, Z.-X. & Li, J.-X. (2007). Acta Cryst. E63, m2282.]); Ma et al. (2006[Ma, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21-m23.]); Xiong et al. (1999[Xiong, R. G., Lewandowski, B. J. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 461-462.]); Zhang et al. (2009[Zhang, K.-L., Yang, B. & Ng, S. W. (2009). Acta Cryst. E65, m239-m240.]); Zhang & Janiak (2001[Zhang, C. G. & Janiak, C. (2001). J. Chem. Crystallogr. 31, 29-35.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2O

  • Mr = 657.94

  • Monoclinic, P 21 /c

  • a = 11.3910 (11) Å

  • b = 13.0561 (13) Å

  • c = 19.8509 (18) Å

  • β = 103.487 (1)°

  • V = 2870.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 298 K

  • 0.35 × 0.31 × 0.18 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.852

  • 14110 measured reflections

  • 5072 independent reflections

  • 3309 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.132

  • S = 1.03

  • 5072 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7C⋯O1i 0.85 1.89 2.737 (5) 180
O7—H7D⋯O6ii 0.85 1.93 2.782 (5) 180
O8—H8C⋯N5 0.85 1.89 2.724 (5) 169
O8—H8D⋯O3i 0.85 1.90 2.744 (6) 169
O9—H9C⋯O2iii 0.85 2.24 3.091 (7) 176
O9—H9D⋯O4iv 0.85 2.27 3.114 (8) 176
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,10-Phenanthroline (phen) is a versatile ligand capable of forming highly stable complexes with transition metal ions (Bai et al., 2009; Blake et al., 1998; Chen et al., 2006; Du & Li, 2007; Ma et al., 2006; Zhang et al., 2009; Zhang & Janiak, 2001). Metal complexes of 1,10-phenanthroline and its derivatives are interesting because they play an important role in biological systems, for example, some can recognize DNA and some can induce apoptosis in human cancer cells (Rama Krishna et al., 2000; Sastri et al., 2003). 4,4'-Bipyridine (4,4'-bipy) can act as a Lewis base. It can also be cocrystallized with hydrogen donors such as alcohols or transition metal complexes to form macromolecular arrays as bidentate ligands (Blake et al., 1998; Boag et al., 1999; Carlucci et al., 1997; Du & Li, 2007; Xiong et al., 1999). Here we report the structure of the title compound, a new zinc(II) complex with phen and 4,4'-bipy ligands.

In the title complex (Fig. 1), the ZnII atom adopts a six-coordinated distorted octahedral geometry, where the donor atoms are two N atoms from a chelating phen ligand, two N atoms from two 4,4'-bipy ligands and two O atoms from two water molecules. The 4,4'-bipy ligands bridge the ZnII atoms into a chain structure along [100] (Fig. 2). Two nitrate anions, half of a 4,4'-bipy molecule and a water molecule in the asymmetric unit are involved in the formation of O—H···O and O—H···N hydrogen bonds (Table 1). Compared with the similar comlpexes reported in literature (Bai et al., 2009; Blake et al., 1998; Du & Li, 2007), the Zn—N distances are longer, the Zn—O distances are shorter, and the N—Zn—N bite angles are smaller. The O—Zn—O bite angle is smaller than those in the reported zinc complexes (Bai et al., 2009).

Related literature top

For background to metal complexes of 1,10-phenanthroline and its derivatives in biological systems, see: Rama Krishna et al. (2000); Sastri et al. (2003). For related structures, see: Bai et al. (2009); Blake et al. (1998); Boag et al. (1999); Carlucci et al. (1997); Chen et al. (2006); Du & Li (2007); Ma et al. (2006); Xiong et al. (1999); Zhang et al. (2009); Zhang & Janiak (2001).

Experimental top

Zn(NO3)2 (0.2 mmol) was dissolved in 5 ml water and a hot methanolic solution (5 ml) of 4,4'-bipyridine (0.2 mmol) was added to the solution. After the mixture was stirred for 10 min, 1,10-phenanthroline (0.4 mmol) was added. The resulting solution was refluxed for 30 min and then allowed to cool to ambient temperature. The filtrate was evaporated slowly at room temperature for several weeks to yield yellow crystalline products.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located from a difference Fourier map and refined as riding, with O—H = 0.85 Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1+x, y, z; (ii) 1-x, 2-y, -z.]
[Figure 2] Fig. 2. A view of the chain structure and hydrogen bonding interactions (dashed lines).
catena-Poly[[[diaqua(1,10-phenanthroline-κ2N,N')zinc]- µ-4,4'-bipyridine-κ2N:N'] dinitrate 4,4'-bipyridine hemisolvate monohydrate] top
Crystal data top
[Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2OF(000) = 1356
Mr = 657.94Dx = 1.522 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3365 reflections
a = 11.3910 (11) Åθ = 2.4–22.8°
b = 13.0561 (13) ŵ = 0.92 mm1
c = 19.8509 (18) ÅT = 298 K
β = 103.487 (1)°Block, yellow
V = 2870.9 (5) Å30.35 × 0.31 × 0.18 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
5072 independent reflections
Radiation source: fine-focus sealed tube3309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.739, Tmax = 0.852k = 1510
14110 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0523P)2 + 3.4384P]
where P = (Fo2 + 2Fc2)/3
5072 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2OV = 2870.9 (5) Å3
Mr = 657.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3910 (11) ŵ = 0.92 mm1
b = 13.0561 (13) ÅT = 298 K
c = 19.8509 (18) Å0.35 × 0.31 × 0.18 mm
β = 103.487 (1)°
Data collection top
Bruker APEX CCD
diffractometer
5072 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3309 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.852Rint = 0.045
14110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.81 e Å3
5072 reflectionsΔρmin = 0.42 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.79800 (4)0.79895 (4)0.38707 (2)0.03238 (17)
N10.8386 (3)0.7200 (3)0.48637 (17)0.0397 (9)
N20.7735 (3)0.6396 (3)0.35719 (18)0.0373 (8)
N30.0104 (3)0.7983 (3)0.38878 (17)0.0363 (8)
N40.6095 (3)0.8140 (3)0.38381 (17)0.0337 (8)
N50.6004 (4)0.9079 (4)0.1717 (2)0.0576 (11)
N61.0006 (4)0.0462 (4)0.3071 (3)0.0659 (13)
N70.3949 (6)0.6227 (5)0.1489 (3)0.0878 (16)
O10.9895 (4)0.0465 (3)0.3673 (2)0.0837 (13)
O21.0852 (4)0.0946 (4)0.2944 (3)0.1126 (17)
O30.9290 (5)0.0019 (4)0.2633 (2)0.120 (2)
O40.4873 (5)0.6379 (5)0.1878 (3)0.147 (3)
O50.2995 (7)0.6575 (6)0.1641 (4)0.183 (3)
O60.3835 (4)0.5724 (3)0.0954 (2)0.0823 (13)
O70.8234 (2)0.9520 (2)0.42605 (15)0.0448 (8)
H7C0.87470.98160.40780.054*
H7D0.76030.98900.41940.054*
O80.7743 (2)0.8506 (2)0.28439 (14)0.0476 (8)
H8C0.71440.86180.25070.057*
H8D0.82870.89440.28260.057*
O90.3302 (5)0.0820 (4)0.4013 (2)0.1229 (18)
H9C0.26110.08470.37360.148*
H9D0.38300.09680.37890.148*
C10.8733 (4)0.7593 (4)0.5490 (2)0.0553 (13)
H10.87770.83010.55410.066*
C20.9036 (5)0.6974 (6)0.6082 (3)0.0771 (18)
H20.92850.72710.65180.093*
C30.8967 (5)0.5944 (6)0.6017 (3)0.0782 (18)
H30.91660.55300.64090.094*
C40.8602 (4)0.5505 (5)0.5369 (3)0.0611 (14)
C50.8325 (4)0.6162 (4)0.4794 (2)0.0423 (11)
C60.7960 (4)0.5739 (4)0.4114 (2)0.0424 (11)
C70.7839 (4)0.4668 (4)0.4024 (3)0.0593 (14)
C80.7443 (6)0.4308 (5)0.3349 (3)0.0785 (18)
H80.73460.36080.32660.094*
C90.7204 (6)0.4973 (5)0.2817 (3)0.0773 (17)
H90.69250.47370.23660.093*
C100.7374 (4)0.6014 (4)0.2944 (3)0.0510 (12)
H100.72260.64610.25690.061*
C110.8484 (5)0.4422 (5)0.5253 (4)0.0796 (18)
H110.86740.39810.56300.096*
C120.8109 (6)0.4029 (5)0.4618 (4)0.0801 (18)
H120.80230.33230.45640.096*
C130.0304 (4)0.7574 (4)0.3374 (2)0.0434 (11)
H130.02470.72480.30190.052*
C140.1494 (4)0.7604 (4)0.3336 (2)0.0442 (11)
H140.17290.73000.29650.053*
C150.2337 (3)0.8084 (3)0.3850 (2)0.0315 (9)
C160.1911 (3)0.8501 (4)0.4388 (2)0.0426 (11)
H160.24410.88320.47500.051*
C170.0713 (4)0.8429 (4)0.4390 (2)0.0428 (11)
H170.04570.87080.47620.051*
C180.5701 (3)0.8456 (3)0.4383 (2)0.0366 (10)
H180.62700.86800.47700.044*
C190.4508 (3)0.8473 (3)0.4409 (2)0.0350 (10)
H190.42840.87050.48040.042*
C200.3639 (3)0.8139 (3)0.3839 (2)0.0308 (9)
C210.4049 (3)0.7837 (3)0.3263 (2)0.0360 (10)
H210.35010.76230.28640.043*
C220.5252 (3)0.7853 (3)0.3281 (2)0.0358 (10)
H220.54990.76550.28860.043*
C230.5748 (6)1.0034 (5)0.1576 (3)0.087 (2)
H230.58411.04870.19460.105*
C240.5350 (6)1.0426 (4)0.0921 (3)0.082 (2)
H240.51821.11220.08600.098*
C250.5200 (4)0.9801 (3)0.0361 (2)0.0395 (10)
C260.5451 (6)0.8796 (4)0.0508 (3)0.0810 (19)
H260.53530.83200.01510.097*
C270.5849 (6)0.8484 (5)0.1182 (3)0.086 (2)
H270.60200.77920.12610.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0222 (2)0.0411 (3)0.0338 (3)0.0005 (2)0.00634 (18)0.0014 (2)
N10.0302 (18)0.053 (3)0.035 (2)0.0011 (17)0.0064 (15)0.0012 (18)
N20.0286 (18)0.039 (2)0.044 (2)0.0014 (16)0.0082 (15)0.0020 (19)
N30.0218 (16)0.050 (2)0.0361 (19)0.0012 (16)0.0058 (15)0.0011 (18)
N40.0244 (17)0.042 (2)0.0363 (19)0.0003 (15)0.0103 (15)0.0024 (16)
N50.059 (3)0.061 (3)0.046 (3)0.001 (2)0.001 (2)0.009 (2)
N60.067 (3)0.067 (3)0.068 (3)0.014 (3)0.024 (3)0.014 (3)
N70.095 (5)0.088 (4)0.081 (4)0.027 (4)0.022 (4)0.007 (4)
O10.085 (3)0.093 (3)0.078 (3)0.041 (2)0.027 (2)0.001 (2)
O20.106 (4)0.127 (4)0.118 (4)0.047 (3)0.052 (3)0.014 (3)
O30.137 (4)0.156 (5)0.063 (3)0.090 (4)0.015 (3)0.010 (3)
O40.119 (4)0.205 (7)0.092 (4)0.058 (4)0.026 (3)0.014 (4)
O50.163 (7)0.150 (6)0.252 (9)0.036 (5)0.081 (6)0.076 (6)
O60.100 (3)0.084 (3)0.068 (3)0.027 (2)0.031 (2)0.027 (2)
O70.0361 (16)0.0462 (19)0.0530 (19)0.0017 (14)0.0124 (14)0.0019 (16)
O80.0310 (16)0.071 (2)0.0373 (17)0.0045 (15)0.0010 (13)0.0162 (16)
O90.142 (5)0.132 (5)0.089 (4)0.002 (4)0.014 (3)0.008 (3)
C10.053 (3)0.070 (4)0.041 (3)0.004 (3)0.007 (2)0.005 (3)
C20.084 (4)0.112 (6)0.030 (3)0.008 (4)0.002 (3)0.005 (3)
C30.088 (5)0.093 (5)0.051 (4)0.012 (4)0.010 (3)0.030 (4)
C40.056 (3)0.073 (4)0.054 (3)0.011 (3)0.012 (3)0.023 (3)
C50.032 (2)0.048 (3)0.047 (3)0.006 (2)0.010 (2)0.011 (2)
C60.029 (2)0.046 (3)0.052 (3)0.005 (2)0.009 (2)0.000 (2)
C70.056 (3)0.044 (3)0.079 (4)0.003 (2)0.018 (3)0.008 (3)
C80.103 (5)0.042 (4)0.086 (5)0.008 (3)0.014 (4)0.015 (3)
C90.106 (5)0.054 (4)0.067 (4)0.010 (3)0.010 (3)0.013 (3)
C100.053 (3)0.049 (3)0.049 (3)0.002 (2)0.007 (2)0.004 (3)
C110.085 (4)0.067 (4)0.087 (5)0.022 (3)0.019 (4)0.044 (4)
C120.099 (5)0.049 (4)0.091 (5)0.008 (3)0.020 (4)0.023 (4)
C130.028 (2)0.061 (3)0.039 (2)0.005 (2)0.0034 (19)0.009 (2)
C140.029 (2)0.065 (3)0.041 (3)0.002 (2)0.0120 (19)0.010 (2)
C150.0221 (19)0.035 (2)0.037 (2)0.0014 (18)0.0067 (17)0.004 (2)
C160.024 (2)0.059 (3)0.043 (3)0.000 (2)0.0042 (19)0.012 (2)
C170.030 (2)0.063 (3)0.037 (2)0.003 (2)0.0095 (19)0.009 (2)
C180.027 (2)0.047 (3)0.034 (2)0.0030 (19)0.0032 (18)0.002 (2)
C190.030 (2)0.041 (3)0.036 (2)0.0031 (19)0.0113 (18)0.002 (2)
C200.024 (2)0.034 (2)0.033 (2)0.0018 (17)0.0050 (17)0.0063 (19)
C210.030 (2)0.045 (3)0.031 (2)0.0014 (19)0.0024 (17)0.004 (2)
C220.028 (2)0.046 (3)0.034 (2)0.0023 (19)0.0073 (18)0.004 (2)
C230.149 (6)0.063 (4)0.038 (3)0.002 (4)0.002 (3)0.007 (3)
C240.156 (6)0.038 (3)0.040 (3)0.006 (3)0.000 (3)0.002 (3)
C250.040 (2)0.037 (3)0.037 (2)0.0005 (19)0.0012 (19)0.006 (2)
C260.142 (6)0.040 (3)0.047 (3)0.010 (3)0.006 (3)0.009 (3)
C270.132 (6)0.048 (4)0.063 (4)0.013 (4)0.007 (4)0.015 (3)
Geometric parameters (Å, º) top
Zn1—O82.104 (3)C6—C71.412 (7)
Zn1—O72.138 (3)C7—C81.393 (7)
Zn1—N42.142 (3)C7—C121.418 (7)
Zn1—N22.163 (4)C8—C91.344 (8)
Zn1—N3i2.175 (3)C8—H80.9300
Zn1—N12.176 (3)C9—C101.387 (7)
N1—C11.317 (5)C9—H90.9300
N1—C51.362 (6)C10—H100.9300
N2—C101.316 (5)C11—C121.335 (8)
N2—C61.354 (5)C11—H110.9300
N3—C131.328 (5)C12—H120.9300
N3—C171.329 (5)C13—C141.375 (5)
N4—C181.329 (5)C13—H130.9300
N4—C221.338 (5)C14—C151.378 (6)
N5—C271.295 (7)C14—H140.9300
N5—C231.296 (7)C15—C161.383 (5)
N6—O31.194 (6)C15—C201.490 (5)
N6—O21.227 (5)C16—C171.369 (5)
N6—O11.230 (5)C16—H160.9300
N7—O41.167 (6)C17—H170.9300
N7—O61.229 (6)C18—C191.373 (5)
N7—O51.278 (8)C18—H180.9300
O7—H7C0.8500C19—C201.389 (5)
O7—H7D0.8500C19—H190.9300
O8—H8C0.8500C20—C211.388 (5)
O8—H8D0.8500C21—C221.363 (5)
O9—H9C0.8500C21—H210.9300
O9—H9D0.8500C22—H220.9300
C1—C21.401 (7)C23—C241.373 (7)
C1—H10.9300C23—H230.9300
C2—C31.352 (8)C24—C251.357 (6)
C2—H20.9300C24—H240.9300
C3—C41.381 (8)C25—C261.361 (7)
C3—H30.9300C25—C25ii1.492 (8)
C4—C51.403 (6)C26—C271.370 (7)
C4—C111.434 (8)C26—H260.9300
C5—C61.427 (6)C27—H270.9300
O8—Zn1—O791.55 (12)C6—C7—C12118.8 (5)
O8—Zn1—N492.31 (11)C9—C8—C7119.8 (5)
O7—Zn1—N488.58 (12)C9—C8—H8120.1
O8—Zn1—N293.64 (13)C7—C8—H8120.1
O7—Zn1—N2174.80 (12)C8—C9—C10119.8 (5)
N4—Zn1—N290.88 (12)C8—C9—H9120.1
O8—Zn1—N3i85.28 (11)C10—C9—H9120.1
O7—Zn1—N3i86.98 (12)N2—C10—C9122.9 (5)
N4—Zn1—N3i174.89 (13)N2—C10—H10118.5
N2—Zn1—N3i93.77 (13)C9—C10—H10118.5
O8—Zn1—N1168.97 (13)C12—C11—C4121.9 (5)
O7—Zn1—N197.62 (13)C12—C11—H11119.0
N4—Zn1—N194.05 (12)C4—C11—H11119.0
N2—Zn1—N177.27 (14)C11—C12—C7121.2 (6)
N3i—Zn1—N189.06 (12)C11—C12—H12119.4
C1—N1—C5118.6 (4)C7—C12—H12119.4
C1—N1—Zn1128.6 (3)N3—C13—C14123.8 (4)
C5—N1—Zn1112.6 (3)N3—C13—H13118.1
C10—N2—C6118.2 (4)C14—C13—H13118.1
C10—N2—Zn1128.1 (3)C13—C14—C15119.9 (4)
C6—N2—Zn1113.7 (3)C13—C14—H14120.0
C13—N3—C17116.3 (3)C15—C14—H14120.0
C13—N3—Zn1iii121.3 (3)C14—C15—C16116.1 (4)
C17—N3—Zn1iii122.3 (3)C14—C15—C20122.4 (4)
C18—N4—C22116.5 (3)C16—C15—C20121.5 (4)
C18—N4—Zn1122.0 (3)C17—C16—C15120.3 (4)
C22—N4—Zn1121.4 (3)C17—C16—H16119.9
C27—N5—C23114.8 (5)C15—C16—H16119.9
O3—N6—O2122.4 (5)N3—C17—C16123.5 (4)
O3—N6—O1120.1 (5)N3—C17—H17118.2
O2—N6—O1117.5 (5)C16—C17—H17118.2
O4—N7—O6124.0 (7)N4—C18—C19124.2 (4)
O4—N7—O5118.0 (7)N4—C18—H18117.9
O6—N7—O5118.0 (7)C19—C18—H18117.9
Zn1—O7—H7C108.6C18—C19—C20119.1 (4)
Zn1—O7—H7D115.9C18—C19—H19120.4
H7C—O7—H7D108.4C20—C19—H19120.4
Zn1—O8—H8C135.8C21—C20—C19116.6 (3)
Zn1—O8—H8D109.0C21—C20—C15121.7 (3)
H8C—O8—H8D108.1C19—C20—C15121.7 (3)
H9C—O9—H9D108.3C22—C21—C20120.3 (4)
N1—C1—C2121.9 (5)C22—C21—H21119.9
N1—C1—H1119.1C20—C21—H21119.9
C2—C1—H1119.1N4—C22—C21123.3 (4)
C3—C2—C1119.8 (5)N4—C22—H22118.3
C3—C2—H2120.1C21—C22—H22118.3
C1—C2—H2120.1N5—C23—C24124.8 (5)
C2—C3—C4120.0 (5)N5—C23—H23117.6
C2—C3—H3120.0C24—C23—H23117.6
C4—C3—H3120.0C25—C24—C23120.2 (5)
C3—C4—C5117.7 (6)C25—C24—H24119.9
C3—C4—C11123.7 (6)C23—C24—H24119.9
C5—C4—C11118.5 (5)C24—C25—C26115.1 (4)
N1—C5—C4122.0 (5)C24—C25—C25ii121.9 (5)
N1—C5—C6118.5 (4)C26—C25—C25ii122.9 (5)
C4—C5—C6119.5 (5)C25—C26—C27120.1 (5)
N2—C6—C7122.1 (4)C25—C26—H26120.0
N2—C6—C5117.8 (4)C27—C26—H26120.0
C7—C6—C5120.1 (5)N5—C27—C26125.0 (6)
C8—C7—C6117.2 (5)N5—C27—H27117.5
C8—C7—C12124.0 (6)C26—C27—H27117.5
O8—Zn1—N1—C1143.1 (6)N2—C6—C7—C81.6 (7)
O7—Zn1—N1—C12.8 (4)C5—C6—C7—C8178.1 (4)
N4—Zn1—N1—C191.9 (4)N2—C6—C7—C12179.0 (4)
N2—Zn1—N1—C1178.1 (4)C5—C6—C7—C121.3 (7)
N3i—Zn1—N1—C184.0 (4)C6—C7—C8—C90.4 (8)
O8—Zn1—N1—C532.9 (8)C12—C7—C8—C9179.7 (6)
O7—Zn1—N1—C5178.8 (3)C7—C8—C9—C101.2 (10)
N4—Zn1—N1—C592.1 (3)C6—N2—C10—C90.7 (7)
N2—Zn1—N1—C52.1 (3)Zn1—N2—C10—C9177.4 (4)
N3i—Zn1—N1—C592.0 (3)C8—C9—C10—N21.9 (9)
O8—Zn1—N2—C109.1 (4)C3—C4—C11—C12178.9 (6)
N4—Zn1—N2—C1083.2 (4)C5—C4—C11—C120.7 (9)
N3i—Zn1—N2—C1094.6 (4)C4—C11—C12—C71.7 (10)
N1—Zn1—N2—C10177.2 (4)C8—C7—C12—C11180.0 (6)
O8—Zn1—N2—C6172.7 (3)C6—C7—C12—C110.7 (9)
N4—Zn1—N2—C694.9 (3)C17—N3—C13—C140.9 (7)
N3i—Zn1—N2—C687.2 (3)Zn1iii—N3—C13—C14175.9 (4)
N1—Zn1—N2—C61.0 (3)N3—C13—C14—C150.4 (7)
O8—Zn1—N4—C18142.9 (3)C13—C14—C15—C161.0 (7)
O7—Zn1—N4—C1851.4 (3)C13—C14—C15—C20179.8 (4)
N2—Zn1—N4—C18123.4 (3)C14—C15—C16—C170.3 (7)
N1—Zn1—N4—C1846.1 (3)C20—C15—C16—C17179.2 (4)
O8—Zn1—N4—C2241.6 (3)C13—N3—C17—C161.6 (7)
O7—Zn1—N4—C22133.1 (3)Zn1iii—N3—C17—C16175.1 (4)
N2—Zn1—N4—C2252.0 (3)C15—C16—C17—N31.0 (7)
N1—Zn1—N4—C22129.3 (3)C22—N4—C18—C192.1 (6)
C5—N1—C1—C20.1 (7)Zn1—N4—C18—C19173.6 (3)
Zn1—N1—C1—C2175.8 (4)N4—C18—C19—C200.3 (7)
N1—C1—C2—C30.5 (8)C18—C19—C20—C212.1 (6)
C1—C2—C3—C40.2 (9)C18—C19—C20—C15176.6 (4)
C2—C3—C4—C50.7 (8)C14—C15—C20—C219.3 (6)
C2—C3—C4—C11179.0 (6)C16—C15—C20—C21171.9 (4)
C1—N1—C5—C41.0 (6)C14—C15—C20—C19169.3 (4)
Zn1—N1—C5—C4177.4 (3)C16—C15—C20—C199.5 (6)
C1—N1—C5—C6179.4 (4)C19—C20—C21—C221.6 (6)
Zn1—N1—C5—C63.0 (5)C15—C20—C21—C22177.1 (4)
C3—C4—C5—N11.3 (7)C18—N4—C22—C212.6 (6)
C11—C4—C5—N1178.4 (4)Zn1—N4—C22—C21173.1 (3)
C3—C4—C5—C6179.1 (4)C20—C21—C22—N40.8 (6)
C11—C4—C5—C61.2 (7)C27—N5—C23—C240.5 (10)
C10—N2—C6—C71.1 (6)N5—C23—C24—C250.2 (11)
Zn1—N2—C6—C7179.4 (3)C23—C24—C25—C261.1 (9)
C10—N2—C6—C5178.6 (4)C23—C24—C25—C25ii178.4 (6)
Zn1—N2—C6—C50.3 (4)C24—C25—C26—C271.3 (9)
N1—C5—C6—N22.3 (6)C25ii—C25—C26—C27178.1 (6)
C4—C5—C6—N2178.1 (4)C23—N5—C27—C260.2 (10)
N1—C5—C6—C7177.4 (4)C25—C26—C27—N50.8 (11)
C4—C5—C6—C72.2 (6)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+2, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O1iv0.851.892.737 (5)180
O7—H7D···O6v0.851.932.782 (5)180
O8—H8C···N50.851.892.724 (5)169
O8—H8D···O3iv0.851.902.744 (6)169
O9—H9C···O2iii0.852.243.091 (7)176
O9—H9D···O4vi0.852.273.114 (8)176
Symmetry codes: (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H8N2)(C12H8N2)(H2O)2](NO3)2·0.5C10H8N2·H2O
Mr657.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.3910 (11), 13.0561 (13), 19.8509 (18)
β (°) 103.487 (1)
V3)2870.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.35 × 0.31 × 0.18
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.739, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
14110, 5072, 3309
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.132, 1.03
No. of reflections5072
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.42

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7C···O1i0.851.892.737 (5)180
O7—H7D···O6ii0.851.932.782 (5)180
O8—H8C···N50.851.892.724 (5)169
O8—H8D···O3i0.851.902.744 (6)169
O9—H9C···O2iii0.852.243.091 (7)176
O9—H9D···O4iv0.852.273.114 (8)176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21171119), the National Keystone Basic Research Program (973 Program) under grant Nos. 2007CB310408 and 2006CB302901, and the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020).

References

First citationBai, Z.-S., Chen, M.-S., Chen, S.-S., Su, Z. & Sun, W.-Y. (2009). Chin. J. Inorg. Chem. 25, 402–406.  CAS Google Scholar
First citationBlake, A. J., Hill, S. J., Hubberstey, P. & Li, W.-S. (1998). J. Chem. Soc. Dalton Trans. pp. 909–916.  Web of Science CSD CrossRef Google Scholar
First citationBoag, N. M., Coward, K. M., Jones, A. C., Pemble, M. E. & Thompson, J. R. (1999). Acta Cryst. C55, 672–674.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G., Proserpio, D. M. & Sironi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1801–1804.  CSD CrossRef Web of Science Google Scholar
First citationChen, H., Xu, X.-Y., Gao, J., Yang, X.-J., Lu, L.-D. & Wang, X. (2006). Huaxue Shiji, 28, 478–480.  CAS Google Scholar
First citationDu, Z.-X. & Li, J.-X. (2007). Acta Cryst. E63, m2282.  CrossRef IUCr Journals Google Scholar
First citationMa, A.-Q., Jia, Z.-B. & Wang, G.-P. (2006). Acta Cryst. E62, m21–m23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRama Krishna, N., Yanhong, D., Osmond, J., D'Cruz, C. N. & Fatih, M. U. (2000). Clin. Cancer Res. 6, 1546–1556.  PubMed Google Scholar
First citationSastri, C. V., Eswaramoorthy, D., Giridabu, L. & Maiya, B. G. (2003). J. Inorg. Biochem. 94, 138–145.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiong, R. G., Lewandowski, B. J. & Huang, S. D. (1999). Z. Kristallogr. New Cryst. Struct. 214, 461–462.  CAS Google Scholar
First citationZhang, C. G. & Janiak, C. (2001). J. Chem. Crystallogr. 31, 29–35.  CrossRef Google Scholar
First citationZhang, K.-L., Yang, B. & Ng, S. W. (2009). Acta Cryst. E65, m239–m240.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1222-m1223
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds