metal-organic compounds
Bis[μ-N-(tert-butyldimethylsilyl)-N-(pyridin-2-ylmethyl)amido]bis[methylcobalt(II)]
aInstitut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldt-Strasse 8, 07743 Jena, Germany
*Correspondence e-mail: m.we@uni-jena.de
The green title complex, [Co2(CH3)2(C12H21N2Si)2], was obtained from bis{[μ-N-tert-butyldimethylsilyl-N-(pyridin-2-ylmethyl)amido]chloridocobalt(II)} and methyllithium in diethyl ether at 195 K via a metathesis reaction. The dimeric cobalt(II) complex exhibits a crystallographic center of inversion in the middle of the Co2N2 ring (average Co—N = 2.050 Å). The CoII atom shows a distorted tetrahedral coordination sphere. The exocyclic Co—N bond length to the pyridyl group shows a similar value of 2.045 (4) Å. The exocyclic methyl group has a rather long Co—C bond length of 2.019 (5) Å.
Related literature
The metathetical conversion of a cobalt chloride functionality into a methyl cobalt fragment via the reaction with methyllithium was reported earlier for tetra-coordinate cobalt(II) complexes bound to three additional aza-bases, see: Au-Yeung et al. (2007); Bowman et al. (2010); Humphries et al. (2005); Kleigrewe et al. (2005), Wallenhorst et al. (2008). The synthesis of dialkyl cobalt complexes succeeds starting from hexa-coordinate [(L)4CoCl2] with L being a pyridyl base, see: Milani et al. (2003); Zhu et al. (2010). The of the final cobalt(II) complexes depends on intramolecular yielding hexa-coordinate [(bpy)2CoMe2] (bpy = 2,2′-bipyridine) and tetra-coordinate [(py)2CoR2] (R = CH2C(Me2)Ph). The formation of para-tolylcobalt complexes was reported by Zhu & Budzelaar (2010) who proposed a radical mechanism.
Experimental
Crystal data
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812032321/im2393sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812032321/im2393Isup2.hkl
Bis{chlorido-[N-(pyidin-2-ylmethyl)-N-(tert-butyldimethylsilyl)amido]cobalt(II)} (0.84 g, 1.32 mmol) was dissolved in 15 ml of THF and this solution cooled to -78 °C. Then 1.7 ml (2,72 mmol) of a 1,6M methyllithium solution in diethyl ether was added dropwise. A brown reaction solution formed which was warmed to ambient temperature and stirred for an additional hour. Thereafter all volatile materials were removed and the residue dried in vacuo. This residue was extracted with 15 ml of n-hexane. The volume of this solution was reduced to third of the original volume and cooled to -20 °C. Within several hours green rod-like crystals of 1 precipitated. Yield: 0.21 g (0.36 mmol, 27%).
All hydrogen atoms were calculated to idealized positions with C–H distances of 0.98 (methyl), 0.99 (methylene) and 0.95 (phenyl) Å, and were refined with 1.2 times (1.5 for all methyl groups) the isotropic displacement parameter of the corresponding carbon atom. All methyl groups were allowed to rotate but not to tip.
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Co2(CH3)2(C12H21N2Si)2] | Z = 1 |
Mr = 590.72 | F(000) = 314 |
Triclinic, P1 | Dx = 1.245 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.4751 (8) Å | Cell parameters from 5417 reflections |
b = 9.8055 (12) Å | θ = 3.3–27.5° |
c = 10.6130 (6) Å | µ = 1.15 mm−1 |
α = 72.837 (6)° | T = 183 K |
β = 83.450 (6)° | Prism, green |
γ = 69.216 (6)° | 0.06 × 0.06 × 0.04 mm |
V = 787.81 (13) Å3 |
Nonius KappaCCD diffractometer | 1685 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.074 |
Graphite monochromator | θmax = 27.5°, θmin = 3.3° |
phi– + ω–scan | h = −10→9 |
5417 measured reflections | k = −10→12 |
3551 independent reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.061 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 0.92 | w = 1/[σ2(Fo2) + (0.0369P)2] where P = (Fo2 + 2Fc2)/3 |
3551 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.39 e Å−3 |
[Co2(CH3)2(C12H21N2Si)2] | γ = 69.216 (6)° |
Mr = 590.72 | V = 787.81 (13) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.4751 (8) Å | Mo Kα radiation |
b = 9.8055 (12) Å | µ = 1.15 mm−1 |
c = 10.6130 (6) Å | T = 183 K |
α = 72.837 (6)° | 0.06 × 0.06 × 0.04 mm |
β = 83.450 (6)° |
Nonius KappaCCD diffractometer | 1685 reflections with I > 2σ(I) |
5417 measured reflections | Rint = 0.074 |
3551 independent reflections |
R[F2 > 2σ(F2)] = 0.061 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 0.92 | Δρmax = 0.39 e Å−3 |
3551 reflections | Δρmin = −0.39 e Å−3 |
160 parameters |
Experimental. IR (in Nujol between KBr windows, cm-1): = 1715 w, 1583 m, 1273 m, 1244 s, 1146 m, 1080 m, 1036 m, 1008 m, 889 m, 828 s, 770 m, 736 m. MS (DEI, rel. intensity in brackets): m/z = 501 ([M - CoMe2]+, 11%), 165 ([Pyr-CH2-NHSiMe2]+, 100%). Elemental analysis (C26H48Co2N4Si2, 590,72): calcd.: C 52.86, H 8.19, N 9.48; found: C 49.47, H 7.70, N 9.03 (the rather large deviations are caused by extreme sensitivity of the complex towards moisture and air; the low carbon value is a consequence of carbide and carbonate formation despite the fact that V2O5 was added prior to combustion). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.50875 (8) | 0.62393 (8) | 0.52394 (5) | 0.0360 (2) | |
Si1 | 0.36965 (16) | 0.43232 (17) | 0.77488 (11) | 0.0373 (4) | |
N1 | 0.2891 (5) | 0.7874 (4) | 0.4452 (3) | 0.0342 (10) | |
N2 | 0.3562 (4) | 0.4948 (4) | 0.6037 (3) | 0.0306 (9) | |
C1 | 0.2668 (7) | 0.9328 (6) | 0.3756 (4) | 0.0466 (14) | |
H1A | 0.3599 | 0.9681 | 0.3636 | 0.056* | |
C2 | 0.1139 (7) | 1.0311 (6) | 0.3217 (4) | 0.0524 (15) | |
H2A | 0.1017 | 1.1325 | 0.2732 | 0.063* | |
C3 | −0.0218 (7) | 0.9803 (7) | 0.3391 (5) | 0.0570 (16) | |
H3A | −0.1275 | 1.0452 | 0.3003 | 0.068* | |
C4 | −0.0012 (6) | 0.8329 (6) | 0.4142 (4) | 0.0429 (13) | |
H4A | −0.0938 | 0.7967 | 0.4294 | 0.052* | |
C5 | 0.1560 (6) | 0.7389 (6) | 0.4668 (4) | 0.0349 (12) | |
C6 | 0.1808 (5) | 0.5827 (6) | 0.5525 (4) | 0.0387 (12) | |
H6A | 0.1501 | 0.5256 | 0.5020 | 0.046* | |
H6B | 0.1020 | 0.5892 | 0.6286 | 0.046* | |
C7 | 0.2682 (6) | 0.5989 (6) | 0.8446 (4) | 0.0529 (15) | |
H7A | 0.3243 | 0.6742 | 0.8080 | 0.079* | |
H7B | 0.2788 | 0.5648 | 0.9408 | 0.079* | |
H7C | 0.1485 | 0.6445 | 0.8213 | 0.079* | |
C8 | 0.5975 (6) | 0.3468 (6) | 0.8222 (4) | 0.0504 (15) | |
H8A | 0.6571 | 0.4165 | 0.7746 | 0.076* | |
H8B | 0.6479 | 0.2504 | 0.7993 | 0.076* | |
H8C | 0.6067 | 0.3288 | 0.9174 | 0.076* | |
C9 | 0.2621 (6) | 0.2877 (6) | 0.8564 (4) | 0.0430 (13) | |
C10 | 0.0704 (6) | 0.3488 (6) | 0.8314 (5) | 0.0594 (16) | |
H10A | 0.0208 | 0.2719 | 0.8808 | 0.089* | |
H10B | 0.0505 | 0.3722 | 0.7370 | 0.089* | |
H10C | 0.0180 | 0.4411 | 0.8606 | 0.089* | |
C11 | 0.3389 (6) | 0.1452 (6) | 0.8085 (4) | 0.0502 (14) | |
H11A | 0.2790 | 0.0739 | 0.8499 | 0.075* | |
H11B | 0.4584 | 0.0976 | 0.8324 | 0.075* | |
H11C | 0.3288 | 0.1728 | 0.7125 | 0.075* | |
C12 | 0.2873 (7) | 0.2393 (7) | 1.0077 (4) | 0.0700 (19) | |
H12A | 0.2415 | 0.1575 | 1.0491 | 0.105* | |
H12B | 0.2284 | 0.3263 | 1.0430 | 0.105* | |
H12C | 0.4080 | 0.2034 | 1.0267 | 0.105* | |
C13 | 0.6200 (6) | 0.7259 (7) | 0.6082 (4) | 0.0580 (16) | |
H13A | 0.6269 | 0.8189 | 0.5442 | 0.087* | |
H13B | 0.7339 | 0.6571 | 0.6363 | 0.087* | |
H13C | 0.5532 | 0.7510 | 0.6850 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0333 (4) | 0.0450 (5) | 0.0363 (4) | −0.0195 (3) | 0.0038 (3) | −0.0147 (3) |
Si1 | 0.0355 (8) | 0.0459 (10) | 0.0285 (7) | −0.0122 (8) | 0.0012 (5) | −0.0098 (6) |
N1 | 0.039 (2) | 0.033 (3) | 0.033 (2) | −0.015 (2) | 0.0103 (16) | −0.0130 (19) |
N2 | 0.026 (2) | 0.036 (3) | 0.0285 (17) | −0.009 (2) | −0.0019 (15) | −0.0068 (16) |
C1 | 0.051 (4) | 0.038 (4) | 0.050 (3) | −0.017 (3) | 0.020 (3) | −0.015 (3) |
C2 | 0.059 (4) | 0.037 (4) | 0.048 (3) | −0.010 (3) | 0.011 (3) | −0.004 (3) |
C3 | 0.051 (4) | 0.050 (4) | 0.054 (3) | 0.000 (3) | −0.005 (3) | −0.010 (3) |
C4 | 0.032 (3) | 0.045 (4) | 0.046 (3) | −0.009 (3) | 0.001 (2) | −0.010 (3) |
C5 | 0.037 (3) | 0.041 (3) | 0.024 (2) | −0.012 (3) | 0.0019 (19) | −0.008 (2) |
C6 | 0.038 (3) | 0.044 (4) | 0.037 (2) | −0.022 (3) | 0.003 (2) | −0.007 (2) |
C7 | 0.061 (4) | 0.057 (4) | 0.045 (3) | −0.018 (3) | 0.003 (2) | −0.024 (3) |
C8 | 0.045 (3) | 0.070 (4) | 0.038 (3) | −0.014 (3) | −0.007 (2) | −0.020 (3) |
C9 | 0.044 (3) | 0.042 (4) | 0.029 (2) | −0.005 (3) | 0.005 (2) | −0.003 (2) |
C10 | 0.050 (4) | 0.054 (4) | 0.068 (3) | −0.022 (3) | 0.016 (3) | −0.009 (3) |
C11 | 0.048 (3) | 0.042 (4) | 0.056 (3) | −0.018 (3) | 0.010 (2) | −0.007 (3) |
C12 | 0.084 (4) | 0.064 (5) | 0.040 (3) | −0.019 (4) | 0.001 (3) | 0.009 (3) |
C13 | 0.055 (4) | 0.089 (5) | 0.055 (3) | −0.047 (4) | 0.013 (3) | −0.034 (3) |
Co1—C13 | 2.019 (5) | C6—H6B | 0.9900 |
Co1—N2i | 2.032 (3) | C7—H7A | 0.9800 |
Co1—N1 | 2.045 (4) | C7—H7B | 0.9800 |
Co1—N2 | 2.067 (4) | C7—H7C | 0.9800 |
Co1—Co1i | 2.6812 (14) | C8—H8A | 0.9800 |
Si1—N2 | 1.741 (3) | C8—H8B | 0.9800 |
Si1—C8 | 1.873 (4) | C8—H8C | 0.9800 |
Si1—C7 | 1.877 (5) | C9—C11 | 1.528 (7) |
Si1—C9 | 1.898 (5) | C9—C10 | 1.544 (6) |
N1—C5 | 1.345 (5) | C9—C12 | 1.551 (6) |
N1—C1 | 1.354 (6) | C10—H10A | 0.9800 |
N2—C6 | 1.499 (5) | C10—H10B | 0.9800 |
N2—Co1i | 2.032 (3) | C10—H10C | 0.9800 |
C1—C2 | 1.376 (6) | C11—H11A | 0.9800 |
C1—H1A | 0.9500 | C11—H11B | 0.9800 |
C2—C3 | 1.381 (7) | C11—H11C | 0.9800 |
C2—H2A | 0.9500 | C12—H12A | 0.9800 |
C3—C4 | 1.388 (7) | C12—H12B | 0.9800 |
C3—H3A | 0.9500 | C12—H12C | 0.9800 |
C4—C5 | 1.390 (6) | C13—H13A | 0.9800 |
C4—H4A | 0.9500 | C13—H13B | 0.9800 |
C5—C6 | 1.487 (6) | C13—H13C | 0.9800 |
C6—H6A | 0.9900 | ||
C13—Co1—N2i | 119.40 (17) | N2—C6—H6B | 108.5 |
C13—Co1—N1 | 105.8 (2) | H6A—C6—H6B | 107.5 |
N2i—Co1—N1 | 112.97 (13) | Si1—C7—H7A | 109.5 |
C13—Co1—N2 | 130.97 (16) | Si1—C7—H7B | 109.5 |
N2i—Co1—N2 | 98.30 (12) | H7A—C7—H7B | 109.5 |
N1—Co1—N2 | 84.19 (15) | Si1—C7—H7C | 109.5 |
C13—Co1—Co1i | 151.34 (17) | H7A—C7—H7C | 109.5 |
N2i—Co1—Co1i | 49.71 (10) | H7B—C7—H7C | 109.5 |
N1—Co1—Co1i | 102.57 (11) | Si1—C8—H8A | 109.5 |
N2—Co1—Co1i | 48.59 (10) | Si1—C8—H8B | 109.5 |
N2—Si1—C8 | 108.95 (18) | H8A—C8—H8B | 109.5 |
N2—Si1—C7 | 109.2 (2) | Si1—C8—H8C | 109.5 |
C8—Si1—C7 | 108.4 (2) | H8A—C8—H8C | 109.5 |
N2—Si1—C9 | 114.74 (19) | H8B—C8—H8C | 109.5 |
C8—Si1—C9 | 108.4 (2) | C11—C9—C10 | 107.8 (4) |
C7—Si1—C9 | 107.0 (2) | C11—C9—C12 | 107.5 (4) |
C5—N1—C1 | 119.0 (4) | C10—C9—C12 | 107.5 (4) |
C5—N1—Co1 | 113.7 (3) | C11—C9—Si1 | 111.1 (3) |
C1—N1—Co1 | 127.3 (3) | C10—C9—Si1 | 113.3 (3) |
C6—N2—Si1 | 114.5 (2) | C12—C9—Si1 | 109.4 (3) |
C6—N2—Co1i | 109.3 (2) | C9—C10—H10A | 109.5 |
Si1—N2—Co1i | 125.9 (2) | C9—C10—H10B | 109.5 |
C6—N2—Co1 | 108.8 (3) | H10A—C10—H10B | 109.5 |
Si1—N2—Co1 | 111.27 (17) | C9—C10—H10C | 109.5 |
Co1i—N2—Co1 | 81.70 (12) | H10A—C10—H10C | 109.5 |
N1—C1—C2 | 122.1 (5) | H10B—C10—H10C | 109.5 |
N1—C1—H1A | 118.9 | C9—C11—H11A | 109.5 |
C2—C1—H1A | 118.9 | C9—C11—H11B | 109.5 |
C1—C2—C3 | 119.1 (5) | H11A—C11—H11B | 109.5 |
C1—C2—H2A | 120.4 | C9—C11—H11C | 109.5 |
C3—C2—H2A | 120.4 | H11A—C11—H11C | 109.5 |
C2—C3—C4 | 119.0 (5) | H11B—C11—H11C | 109.5 |
C2—C3—H3A | 120.5 | C9—C12—H12A | 109.5 |
C4—C3—H3A | 120.5 | C9—C12—H12B | 109.5 |
C3—C4—C5 | 119.4 (5) | H12A—C12—H12B | 109.5 |
C3—C4—H4A | 120.3 | C9—C12—H12C | 109.5 |
C5—C4—H4A | 120.3 | H12A—C12—H12C | 109.5 |
N1—C5—C4 | 121.3 (4) | H12B—C12—H12C | 109.5 |
N1—C5—C6 | 117.8 (4) | Co1—C13—H13A | 109.5 |
C4—C5—C6 | 120.8 (4) | Co1—C13—H13B | 109.5 |
C5—C6—N2 | 115.1 (4) | H13A—C13—H13B | 109.5 |
C5—C6—H6A | 108.5 | Co1—C13—H13C | 109.5 |
N2—C6—H6A | 108.5 | H13A—C13—H13C | 109.5 |
C5—C6—H6B | 108.5 | H13B—C13—H13C | 109.5 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Co2(CH3)2(C12H21N2Si)2] |
Mr | 590.72 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 183 |
a, b, c (Å) | 8.4751 (8), 9.8055 (12), 10.6130 (6) |
α, β, γ (°) | 72.837 (6), 83.450 (6), 69.216 (6) |
V (Å3) | 787.81 (13) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.06 × 0.06 × 0.04 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5417, 3551, 1685 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.061, 0.129, 0.92 |
No. of reflections | 3551 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.39 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Bad Godesberg, Germany) for generous financial support. We also acknowledge funding from the Fonds der Chemischen Industrie (Frankfurt/Main, Germany).
References
Au-Yeung, H. Y., Lam, C. H., Lam, C., Wong, W. & Lee, H. K. (2007). Inorg. Chem. 46, 7695–7697. Web of Science PubMed CAS Google Scholar
Bowman, A. C., Milsmann, C., Bill, E., Lobkovsky, E., Weyhermüller, T., Wieghardt, K. & Chirik, P. J. (2010). Inorg. Chem. 49, 6110–6123. Web of Science CSD CrossRef CAS PubMed Google Scholar
Humphries, M. J., Tellmann, K. P., Gibson, V. C., White, A. J. P. & Williams, D. J. (2005). Organometallics, 24, 2039–2050. Web of Science CrossRef CAS Google Scholar
Kleigrewe, N., Steffen, W., Blömker, T., Kehr, G., Fröhlich, R., Wibbeling, B., Erker, G., Wasilke, J.-C., Wu, G. & Bazan, G. C. (2005). J. Am. Chem. Soc. 127, 13955–13968. Web of Science CSD CrossRef PubMed CAS Google Scholar
Milani, B., Stabon, E., Zangrando, E., Mestroni, G., Sommazzi, A. & Zannoni, C. (2003). Inorg. Chim. Acta, 349, 209–216. Web of Science CSD CrossRef CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wallenhorst, C., Kehr, G., Luftmann, H., Fröhlich, R. & Erker, G. (2008). Organometallics, 27, 6547–6556. Web of Science CSD CrossRef CAS Google Scholar
Zhu, D. & Budzelaar, P. H. M. (2010). Organometallics, 29, 5759–5761. Web of Science CSD CrossRef CAS Google Scholar
Zhu, D., Janssen, F. F. B. J. & Budzelaar, P. H. M. (2010). Organometallics, 29, 1897–1908. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Au-Yeung et al. (2007) performed a metathetical ligand substitution reaction at (tmeda)cobalt(II) 2,6-dimethylphenyl-N-trimethylsilylamide chloride (tmeda = tetramethylethylenediamine) with methyllithium in toluene. Whereas in this complex the cobalt(II) adopts a distorted tetrahedral coordination sphere, severe distortions were observed using tridentate aza-Lewis bases (Bowman et al., 2010; Humphries et al., 2005; Kleigrewe et al., 2005; Wallenhorst et al., 2008). Treatment of tetrakis(pyridine)cobalt(II) dichloride with trimethylsilylmethyllithium or 2-methyl-2-phenylpropyllithium in n-pentane yielded [(py)2CoR2] (R = CH2SiMe3)2, CH2C(Me2)Ph), respectively, with tetra-coordinate cobalt centers (Zhu et al., 2010). Less bulky methyl groups allowed the formation of [(bpy)2CoMe2] with a hexa-coordinate cobalt atom in a slightly distorted octahedral environment (Milani et al., 2003). Contrary to these procedures, a radical mechanism was discussed by Zhu & Budzelaar (2010) for the formation of para-tolyl-cobalt complexes. Whereas all of these cobalt(II) complexes represent mononuclear derivatives, the reaction of bis[N-(pyidin-2-ylmethyl)-N-(tert-butyldimethylsilyl)amido cobalt(II) chloride] with methyllithium in tetrahydrofuran (THF) yielded the centrosymmetric dinuclear title compound 1 with a central planar Co2N2 ring.