organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy­ethanaminium 2-methyl-5-nitro­benzene­sulfonate

aCollege of Chemical Engineering and Material Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, bDepartment of Pharmacy, 117th Hospital of PLA, Hangzhou 310013, People's Republic of China, and cCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: awwxzy@sina.com

(Received 24 April 2012; accepted 28 July 2012; online 31 August 2012)

In the crystal structure of the title salt, C2H8NO+·C7H6NO5S, the cations and anions are linked together by N—H⋯O and O—H⋯O hydrogen bonds, forming layers parallel to (100). The plane of nitro group is skew with respect to the plane of benzene ring, making a dihedral angle of 17.5 (2)°.

Related literature

For the structures of pyridinium derivative, nickel, magnesium and potassium salts of 2-methyl-5-nitrobenzenesulfonate, see, respectively: Gu et al. (2007[Gu, J., Chen, W. Q., Wada, T., Hashizume, D. & Duan, X. M. (2007). CrystEngComm, 9, 541-544.]); Xie et al. (2007[Xie, Y.-R., Ge, G.-W., Yuan, X.-Y., Wan, D.-B. & Yang, R.-Q. (2007). Acta Cryst. E63, m812-m814.]); Xie, Lui & Yuan (2006[Xie, Y.-R., Lui, G.-R. & Yuan, X.-Y. (2006). Acta Cryst. E62, m1016-m1017.]); Xie, Yang et al. (2006[Xie, Y.-R., Yang, Y.-C., Yuan, X.-Y. & Yang, R.-Q. (2006). Acta Cryst. E62, m2683-m2684.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8NO+·C7H6NO5S

  • Mr = 278.29

  • Monoclinic, P 21 /c

  • a = 14.8130 (5) Å

  • b = 9.5617 (4) Å

  • c = 8.6697 (3) Å

  • β = 103.071 (1)°

  • V = 1196.14 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.32 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.910

  • 11263 measured reflections

  • 2739 independent reflections

  • 2620 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.11

  • 2739 reflections

  • 181 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.89 (2) 2.04 (2) 2.872 (2) 156 (2)
N2—H2B⋯O5 0.85 (2) 2.10 (2) 2.938 (2) 166 (2)
N2—H2C⋯O3ii 0.92 (2) 2.00 (2) 2.914 (1) 172 (2)
O6—H6′⋯O4iii 0.81 (1) 1.97 (1) 2.760 (1) 165 (1)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A few crystal structures containing 2-methyl-5-nitrobenzenesulfonate have been reported previously (Gu et al., 2007; Xie et al., 2007; Xie, Lui & Yuan, 2006; Xie, Yang et al., 2006).

In the asymmetric unit of the title compound, the 2-ethanolamine molecule is protonated and the 2-methyl-5-nitrobenzenesulfonic acid molecule loses its acid H atom, then they are linked by an N2—H2B···O5 hydrogen bond (Fig. 1 & Table 1). The plane of nitro group is skew with the plane of benzene ring in a dihedral angle of 17.5 (2)°. The C1—C2 bond [1.4054 (16) Å] is the longest one among the other aromatic C—C bond, this is consistent with the situations observed in the previous cases (1.405 Å, Gu et al., 2007; 1.404 Å, Xie, Lui & Yuan, 2006; 1.407 Å, Xie et al., 2007; 1.408 Å, Xie, Yang et al., 2006).

A few crystal structures containing 2-methyl-5-nitrobenzenesulfonate have been reported previously, they are pyridinium derivative (Gu et al., 2007), nickel (Xie, Yang et al., 2006), magnesium (Xie et al., 2007), and potassium salts (Xie, Lui & Yuan, 2006). In the potassium salt, all of the oxygen atoms of sulfonate and one oxygen atom of the nitro group is coordinated with potassium atom directly. However, there exists no covalent bond between the counter ion pair in the title compound, which is similar with the other three previous cases. In all of these cases, one of C-C bond of benzene rings are slightly abormal.

In the crystal, the 2-hydroxyethanaminium cations and the MNB anions are linked by N—H···O and O—H···O hydrogen bonds (Table 1) to form thick layers (Fig. 2) parallel to the (100) plane. The nearest separation between the centroid of MNB benzene rings is of 4.483 (3) Å, suggesting no ππ interaction. This situation is similar to that observed in the case containing a large sized organic cation as counter ion for MNB anion (Gu et al., 2007), but is different from those observed in other cases containing metal cations as counter ion for MNB anion (Xie et al., 2007; Xie, Lui & Yuan, 2006; Xie, Yang et al., 2006).

Related literature top

For related structures, see: Gu et al. (2007); Xie et al. (2007); Xie, Lui & Yuan (2006); Xie, Yang et al. (2006).

Experimental top

2-Methyl-5-nitrobenzenesulfonic acid (12.1 g) and 2-ethanolamine (5.0 g) were mixed and dissolved in sufficient water (25 ml) by heating to 373 K, at which point a clear solution resulted. The solution was then cooled slowly to room temperature. Crystals of the title compound (9.2 g) were formed upon the evaporation of water, then collected and washed with ethanol.

Refinement top

All H atoms of hydroxyl and ammonium groups were located in a difference Fourier map. The H atoms of ammonium group were refined freely, but the H atom of hydroxyl group was refined with a distance restraint O—H = 0.82 (1) Å, and with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The asymmetric unit of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level. One N—H···O hydrogen bond is illustrated as a dashed line.

Fig. 2. The hydrogen bonding layer of the title compound viewed down along the b axis. Hydrogen bonds are drawn as dashed lines. The H atoms not involved in the hydrogen bonds have been omitted for clarity.
2-hydroxyethanaminium 2-methyl-5-nitrobenzenesulfonate top
Crystal data top
C2H8NO+·C7H6NO5SF(000) = 584
Mr = 278.29Dx = 1.545 Mg m3
Monoclinic, P21/cMelting point < 424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.8130 (5) ÅCell parameters from 1766 reflections
b = 9.5617 (4) Åθ = 1.6–17.6°
c = 8.6697 (3) ŵ = 0.29 mm1
β = 103.071 (1)°T = 293 K
V = 1196.14 (8) Å3Prism, colorless
Z = 40.32 × 0.30 × 0.28 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2739 independent reflections
Radiation source: sealed tube2620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1919
Tmin = 0.873, Tmax = 0.910k = 1212
11263 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.342P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2739 reflectionsΔρmax = 0.28 e Å3
181 parametersΔρmin = 0.39 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.095 (5)
Crystal data top
C2H8NO+·C7H6NO5SV = 1196.14 (8) Å3
Mr = 278.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8130 (5) ŵ = 0.29 mm1
b = 9.5617 (4) ÅT = 293 K
c = 8.6697 (3) Å0.32 × 0.30 × 0.28 mm
β = 103.071 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2739 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2620 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.910Rint = 0.032
11263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0361 restraint
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.28 e Å3
2739 reflectionsΔρmin = 0.39 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.320970 (19)0.93470 (3)0.27057 (3)0.02240 (13)
O10.16252 (9)0.44692 (11)0.12844 (15)0.0467 (3)
O20.07025 (8)0.46497 (13)0.10098 (15)0.0484 (3)
O30.37472 (7)1.00898 (11)0.17553 (11)0.0346 (2)
O40.28710 (7)1.02587 (12)0.37875 (11)0.0359 (3)
O50.37141 (7)0.81368 (10)0.35012 (11)0.0328 (2)
N10.12202 (8)0.51582 (12)0.01568 (14)0.0321 (3)
C10.22210 (8)0.86643 (13)0.13486 (13)0.0217 (2)
C20.15933 (9)0.95606 (13)0.03584 (15)0.0265 (3)
C30.08519 (9)0.89425 (16)0.07087 (16)0.0339 (3)
H30.04270.95140.13760.041*
C40.07288 (9)0.75096 (16)0.08063 (16)0.0328 (3)
H40.02360.71180.15370.039*
C50.13542 (8)0.66756 (13)0.02065 (15)0.0262 (3)
C60.21014 (8)0.72276 (13)0.12945 (14)0.0243 (3)
H60.25130.66460.19730.029*
C70.16737 (11)1.11277 (15)0.04080 (19)0.0385 (3)
H7A0.16411.14570.14400.046*
H7B0.11761.15270.03720.046*
H7C0.22561.14000.01880.046*
O60.59657 (8)0.94383 (12)0.32575 (13)0.0407 (3)
N20.49673 (8)0.71679 (12)0.15377 (14)0.0282 (2)
C80.55294 (10)0.81663 (14)0.08550 (15)0.0304 (3)
H8A0.51370.89290.03600.037*
H8B0.57710.76980.00400.037*
C90.63225 (10)0.87505 (16)0.20792 (17)0.0351 (3)
H9A0.67340.80010.25520.042*
H9B0.66730.94050.15890.042*
H6'0.6382 (11)0.954 (2)0.4039 (17)0.048 (5)*
H2A0.4547 (16)0.683 (2)0.072 (3)0.058 (6)*
H2B0.4688 (14)0.753 (2)0.220 (2)0.046 (5)*
H2C0.5324 (13)0.646 (2)0.208 (2)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01922 (18)0.02454 (19)0.02070 (18)0.00232 (10)0.00124 (12)0.00248 (10)
O10.0523 (7)0.0270 (5)0.0529 (7)0.0034 (5)0.0043 (6)0.0035 (5)
O20.0415 (6)0.0386 (6)0.0560 (7)0.0100 (5)0.0078 (5)0.0182 (5)
O30.0285 (5)0.0414 (6)0.0327 (5)0.0116 (4)0.0039 (4)0.0007 (4)
O40.0347 (5)0.0421 (6)0.0287 (5)0.0010 (4)0.0021 (4)0.0130 (4)
O50.0274 (5)0.0326 (5)0.0316 (5)0.0020 (4)0.0079 (4)0.0026 (4)
N10.0255 (5)0.0279 (6)0.0408 (6)0.0046 (4)0.0030 (5)0.0070 (5)
C10.0180 (5)0.0247 (6)0.0207 (5)0.0007 (4)0.0005 (4)0.0020 (4)
C20.0238 (6)0.0258 (6)0.0273 (6)0.0019 (5)0.0003 (5)0.0003 (5)
C30.0266 (6)0.0339 (7)0.0340 (7)0.0046 (5)0.0082 (5)0.0023 (5)
C40.0245 (6)0.0359 (7)0.0319 (6)0.0018 (5)0.0065 (5)0.0061 (5)
C50.0224 (5)0.0250 (6)0.0292 (6)0.0026 (5)0.0019 (5)0.0045 (5)
C60.0208 (5)0.0249 (6)0.0248 (5)0.0001 (4)0.0001 (4)0.0008 (4)
C70.0369 (7)0.0250 (7)0.0477 (8)0.0030 (6)0.0031 (6)0.0036 (6)
O60.0391 (6)0.0446 (6)0.0330 (6)0.0013 (5)0.0030 (5)0.0150 (4)
N20.0305 (6)0.0258 (5)0.0254 (5)0.0002 (4)0.0003 (5)0.0021 (4)
C80.0391 (7)0.0272 (6)0.0230 (6)0.0027 (5)0.0030 (5)0.0006 (5)
C90.0321 (6)0.0364 (7)0.0354 (7)0.0045 (6)0.0045 (6)0.0058 (6)
Geometric parameters (Å, º) top
S1—O41.4506 (10)C6—H60.9300
S1—O31.4540 (10)C7—H7A0.9600
S1—O51.4628 (10)C7—H7B0.9600
S1—C11.7821 (11)C7—H7C0.9600
O1—N11.2183 (16)O6—C91.4141 (17)
O2—N11.2234 (15)O6—H6'0.813 (9)
N1—C51.4638 (16)N2—C81.4757 (17)
C1—C61.3846 (17)N2—H2A0.89 (2)
C1—C21.4054 (16)N2—H2B0.85 (2)
C2—C31.3971 (18)N2—H2C0.92 (2)
C2—C71.5030 (18)C8—C91.5016 (18)
C3—C41.382 (2)C8—H8A0.9700
C3—H30.9300C8—H8B0.9700
C4—C51.3774 (19)C9—H9A0.9700
C4—H40.9300C9—H9B0.9700
C5—C61.3860 (16)
O4—S1—O3112.75 (7)C5—C6—H6120.7
O4—S1—O5112.65 (6)C2—C7—H7A109.5
O3—S1—O5111.52 (6)C2—C7—H7B109.5
O4—S1—C1107.11 (6)H7A—C7—H7B109.5
O3—S1—C1106.16 (5)C2—C7—H7C109.5
O5—S1—C1106.10 (6)H7A—C7—H7C109.5
O1—N1—O2123.46 (13)H7B—C7—H7C109.5
O1—N1—C5118.26 (11)C9—O6—H6'108.8 (15)
O2—N1—C5118.28 (12)C8—N2—H2A105.8 (14)
C6—C1—C2121.49 (11)C8—N2—H2B114.3 (14)
C6—C1—S1117.75 (9)H2A—N2—H2B108.7 (19)
C2—C1—S1120.75 (9)C8—N2—H2C111.7 (12)
C3—C2—C1117.32 (12)H2A—N2—H2C111.0 (19)
C3—C2—C7119.08 (12)H2B—N2—H2C105.5 (18)
C1—C2—C7123.59 (11)N2—C8—C9112.29 (11)
C4—C3—C2122.21 (12)N2—C8—H8A109.1
C4—C3—H3118.9C9—C8—H8A109.1
C2—C3—H3118.9N2—C8—H8B109.1
C5—C4—C3118.32 (12)C9—C8—H8B109.1
C5—C4—H4120.8H8A—C8—H8B107.9
C3—C4—H4120.8O6—C9—C8108.85 (12)
C4—C5—C6122.13 (12)O6—C9—H9A109.9
C4—C5—N1119.20 (12)C8—C9—H9A109.9
C6—C5—N1118.66 (11)O6—C9—H9B109.9
C1—C6—C5118.51 (11)C8—C9—H9B109.9
C1—C6—H6120.7H9A—C9—H9B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.89 (2)2.04 (2)2.872 (2)156 (2)
N2—H2B···O50.85 (2)2.10 (2)2.938 (2)166 (2)
N2—H2C···O3ii0.92 (2)2.00 (2)2.914 (1)172 (2)
O6—H6···O4iii0.81 (1)1.97 (1)2.760 (1)165 (1)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC2H8NO+·C7H6NO5S
Mr278.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.8130 (5), 9.5617 (4), 8.6697 (3)
β (°) 103.071 (1)
V3)1196.14 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.32 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.873, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
11263, 2739, 2620
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.11
No. of reflections2739
No. of parameters181
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.39

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.89 (2)2.04 (2)2.872 (2)156 (2)
N2—H2B···O50.85 (2)2.10 (2)2.938 (2)166 (2)
N2—H2C···O3ii0.92 (2)2.00 (2)2.914 (1)172 (2)
O6—H6'···O4iii0.813 (9)1.967 (14)2.760 (1)165 (1)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+2, z+1.
 

References

First citationBruker (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGu, J., Chen, W. Q., Wada, T., Hashizume, D. & Duan, X. M. (2007). CrystEngComm, 9, 541–544.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Y.-R., Ge, G.-W., Yuan, X.-Y., Wan, D.-B. & Yang, R.-Q. (2007). Acta Cryst. E63, m812–m814.  CrossRef IUCr Journals Google Scholar
First citationXie, Y.-R., Lui, G.-R. & Yuan, X.-Y. (2006). Acta Cryst. E62, m1016–m1017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, Y.-R., Yang, Y.-C., Yuan, X.-Y. & Yang, R.-Q. (2006). Acta Cryst. E62, m2683–m2684.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds