organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Bromo­phen­yl)-3-(4-fluoro­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 26 July 2012; accepted 3 August 2012; online 11 August 2012)

In the title compound, C21H16BrFN2, the fluoro-substituted benzene ring is disordered over two orientations about the C—F bond and the C—C bond between the benzene and pyrazole groups with a site-occupancy ratio of 0.516 (8):0.484 (8). The central pyrazole ring [maximum deviation = 0.035 (3) Å] makes dihedral angles of 22.4 (2), 11.0 (2), 77.19 (16) and 7.44 (17)° with the two disorder components of the benzene ring, the bromo-substituted benzene ring and the phenyl ring, respectively. In the crystal, mol­ecules are linked into a layer parallel to the bc plane through C—H⋯π inter­actions.

Related literature

For background to pyrazoline derivatives, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.], 2011[Samshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487-493.]). For a related structure, see: Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16BrFN2

  • Mr = 395.27

  • Monoclinic, P 21 /c

  • a = 20.5345 (5) Å

  • b = 5.2689 (1) Å

  • c = 16.1929 (5) Å

  • β = 104.443 (2)°

  • V = 1696.61 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.44 mm−1

  • T = 100 K

  • 0.25 × 0.13 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.583, Tmax = 0.818

  • 16716 measured reflections

  • 4974 independent reflections

  • 3761 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.113

  • S = 1.01

  • 4974 reflections

  • 263 parameters

  • 130 restraints

  • H-atom parameters constrained

  • Δρmax = 1.26 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7ACg1i 1.00 2.60 3.522 (3) 153
C17—H17ACg1ii 0.95 2.99 3.752 (6) 138
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010; Samshuddin et al., 2010, 2011), the title compound was prepared and its crystal structure is now reported.

The asymmetric unit of the title compound is shown in Fig. 1. The fluoro-substituted benzene ring is disordered over two positions (C16–C21 and C16/C17X/C18X/C19/C20X/C21X) rotated about the C9—C16···C19—F1 axis with a site-occupancy ratio of 0.516 (8):0.484 (8). The central pyrazole ring [N1/N2/C7–C9; maximum deviation = 0.035 (3) Å at atom C7] makes dihedral angles of 77.19 (16), 7.44 (17), 22.4 (2) and 11.0 (2)° with the C1–C6 (A), C10–C15 (B), C16–C21 (C) and C16/C17X/C18X/C19/C20X/C21X (D) benzene rings, respectively. The dihedral angles between the benzene rings are A/B = 83.25 (15)°, A/C = 87.1 (2)°, A/D = 67.2 (2)°, B/C = 22.6 (2)° and B/D = 16.1 (2)°. The bond lengths and angles are comparable to those found in a related structure (Samshuddin et al., 2010). In the crystal, molecules are linked into a layer parallel to (100) through intermolecular C—H···π interactions (Table 1), involving Cg1 which is the centroid of the C10–C15 ring.

Related literature top

For background to pyrazoline derivatives, see: Fun et al. (2010); Samshuddin et al. (2010, 2011). For a related structure, see: Samshuddin et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (2E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (3.05 g, 0.01 mol) and phenyl hydrazine (0.98 ml, 0.01 mol) in 50 ml of glacial acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from toluene. Orange blocks were grown from ethanol by slow evaporation method (m.p. 397–399 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95, 0.99 and 1.00 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C). The fluoro-substituted benzene ring is statistically disordered over two conformations with a site-occupancy ratio of 0.516 (8):0.484 (8). Similarity (SAME), similar-ADP (SIMU) and FLAT restraints were used for the major and minor components of disordered fluoro-substituted benzene ring (C16–C21 and C16/C17X/C18X/C19/C20X/C21X). The highest peak is located at 0.31 Å from atom C17, whereas the deepest hole is located at 0.34 Å from atom C21.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids. The minor component of disorder is indicated by the open bonds.
5-(4-Bromophenyl)-3-(4-fluorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazole top
Crystal data top
C21H16BrFN2F(000) = 800
Mr = 395.27Dx = 1.547 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4161 reflections
a = 20.5345 (5) Åθ = 2.9–30.0°
b = 5.2689 (1) ŵ = 2.44 mm1
c = 16.1929 (5) ÅT = 100 K
β = 104.443 (2)°Block, orange
V = 1696.61 (7) Å30.25 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4974 independent reflections
Radiation source: fine-focus sealed tube3761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 30.2°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2928
Tmin = 0.583, Tmax = 0.818k = 77
16716 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0403P)2 + 3.9007P]
where P = (Fo2 + 2Fc2)/3
4974 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 1.26 e Å3
130 restraintsΔρmin = 0.99 e Å3
Crystal data top
C21H16BrFN2V = 1696.61 (7) Å3
Mr = 395.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.5345 (5) ŵ = 2.44 mm1
b = 5.2689 (1) ÅT = 100 K
c = 16.1929 (5) Å0.25 × 0.13 × 0.09 mm
β = 104.443 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4974 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3761 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.818Rint = 0.048
16716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051130 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.01Δρmax = 1.26 e Å3
4974 reflectionsΔρmin = 0.99 e Å3
263 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.438172 (16)0.29092 (7)0.31781 (2)0.02527 (11)
F11.03501 (11)1.0361 (5)0.31750 (17)0.0482 (7)
N10.76496 (13)0.5313 (5)0.52597 (18)0.0205 (6)
N20.82467 (12)0.5535 (5)0.50180 (17)0.0189 (5)
C10.58983 (16)0.7495 (6)0.4593 (2)0.0198 (6)
H1A0.59300.89420.49510.024*
C20.52691 (16)0.6511 (6)0.4199 (2)0.0210 (7)
H2A0.48720.72810.42820.025*
C30.52306 (15)0.4394 (6)0.3684 (2)0.0194 (6)
C40.58002 (16)0.3298 (6)0.3531 (2)0.0212 (6)
H4A0.57650.18660.31660.025*
C50.64254 (16)0.4316 (6)0.3919 (2)0.0202 (6)
H5A0.68190.35930.38080.024*
C60.64832 (15)0.6383 (6)0.4469 (2)0.0175 (6)
C70.71689 (15)0.7394 (6)0.4928 (2)0.0184 (6)
H7A0.71250.85230.54080.022*
C80.75404 (15)0.8818 (6)0.4346 (2)0.0193 (6)
H8A0.72920.86940.37400.023*
H8B0.76061.06300.45080.023*
C90.82035 (15)0.7440 (6)0.4509 (2)0.0183 (6)
C100.76131 (15)0.3686 (6)0.59269 (19)0.0171 (6)
C110.81265 (15)0.1909 (6)0.6237 (2)0.0202 (6)
H11A0.85150.18800.60200.024*
C120.80621 (16)0.0197 (6)0.6863 (2)0.0232 (7)
H12A0.84080.10140.70680.028*
C130.75020 (17)0.0222 (7)0.7196 (2)0.0237 (7)
H13A0.74610.09660.76210.028*
C140.70032 (16)0.2001 (7)0.6900 (2)0.0238 (7)
H14A0.66200.20380.71290.029*
C150.70535 (16)0.3739 (6)0.6272 (2)0.0213 (6)
H15A0.67080.49580.60780.026*
C160.87551 (16)0.8212 (6)0.4136 (2)0.0228 (7)
C190.98129 (18)0.9645 (7)0.3479 (2)0.0333 (8)
C170.8674 (3)0.9700 (12)0.3440 (4)0.0143 (13)0.516 (8)
H17A0.82321.02180.31530.017*0.516 (8)
C180.9209 (4)1.0507 (15)0.3126 (5)0.0138 (14)0.516 (8)
H18A0.91391.16640.26620.017*0.516 (8)
C200.9970 (4)0.8198 (14)0.4250 (5)0.0348 (17)0.516 (8)
H20A1.04200.77480.45260.042*0.516 (8)
C210.9429 (3)0.7482 (13)0.4575 (5)0.0287 (16)0.516 (8)
H21A0.95050.65130.50850.034*0.516 (8)
C17X0.8755 (4)1.0417 (15)0.3726 (4)0.0186 (15)0.484 (8)
H17B0.83871.15440.36840.022*0.484 (8)
C18X0.9274 (5)1.1126 (19)0.3360 (5)0.0211 (17)0.484 (8)
H18B0.92431.26360.30310.025*0.484 (8)
C20X0.9841 (3)0.7160 (14)0.3859 (4)0.0226 (14)0.484 (8)
H20B1.02100.60520.38780.027*0.484 (8)
C21X0.9309 (3)0.6444 (14)0.4195 (4)0.0200 (14)0.484 (8)
H21B0.93070.48340.44580.024*0.484 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01981 (15)0.03041 (18)0.02509 (18)0.00327 (13)0.00464 (12)0.00043 (15)
F10.0264 (11)0.0682 (17)0.0583 (16)0.0129 (11)0.0263 (11)0.0328 (14)
N10.0165 (12)0.0241 (14)0.0221 (14)0.0036 (10)0.0071 (11)0.0078 (11)
N20.0164 (11)0.0212 (14)0.0202 (14)0.0005 (10)0.0064 (10)0.0037 (11)
C10.0255 (15)0.0129 (16)0.0224 (15)0.0022 (11)0.0084 (13)0.0011 (12)
C20.0204 (14)0.0199 (16)0.0258 (17)0.0022 (11)0.0114 (13)0.0010 (13)
C30.0180 (13)0.0225 (16)0.0182 (15)0.0019 (11)0.0051 (12)0.0032 (13)
C40.0254 (15)0.0202 (17)0.0179 (15)0.0027 (12)0.0050 (12)0.0005 (12)
C50.0201 (14)0.0223 (16)0.0182 (15)0.0072 (12)0.0050 (12)0.0003 (12)
C60.0192 (14)0.0164 (14)0.0174 (15)0.0020 (11)0.0057 (12)0.0026 (11)
C70.0182 (13)0.0170 (16)0.0198 (15)0.0027 (11)0.0043 (12)0.0004 (12)
C80.0207 (14)0.0174 (14)0.0209 (16)0.0019 (11)0.0073 (12)0.0021 (12)
C90.0192 (13)0.0164 (16)0.0193 (15)0.0014 (11)0.0048 (12)0.0010 (12)
C100.0183 (13)0.0182 (14)0.0132 (14)0.0042 (11)0.0008 (11)0.0002 (11)
C110.0168 (13)0.0219 (15)0.0203 (15)0.0022 (12)0.0017 (12)0.0010 (13)
C120.0214 (15)0.0212 (16)0.0233 (17)0.0021 (12)0.0015 (13)0.0038 (13)
C130.0279 (16)0.0258 (17)0.0165 (16)0.0049 (13)0.0039 (13)0.0062 (13)
C140.0247 (15)0.0282 (17)0.0197 (16)0.0057 (13)0.0082 (13)0.0009 (14)
C150.0218 (14)0.0231 (16)0.0193 (16)0.0006 (12)0.0055 (13)0.0012 (13)
C160.0207 (14)0.0230 (16)0.0251 (16)0.0023 (12)0.0066 (12)0.0045 (13)
C190.0246 (16)0.042 (2)0.038 (2)0.0051 (15)0.0157 (15)0.0160 (17)
C170.011 (2)0.022 (3)0.007 (3)0.002 (2)0.004 (2)0.002 (2)
C180.015 (3)0.020 (4)0.005 (3)0.004 (2)0.000 (3)0.001 (2)
C200.023 (3)0.041 (4)0.040 (4)0.003 (3)0.005 (3)0.014 (3)
C210.026 (3)0.033 (4)0.028 (3)0.003 (3)0.006 (3)0.012 (3)
C17X0.018 (3)0.018 (3)0.019 (4)0.001 (3)0.004 (3)0.000 (3)
C18X0.026 (3)0.022 (4)0.013 (4)0.004 (3)0.001 (3)0.000 (3)
C20X0.022 (3)0.026 (3)0.020 (3)0.001 (3)0.006 (2)0.005 (3)
C21X0.027 (3)0.020 (3)0.014 (3)0.001 (2)0.005 (2)0.005 (2)
Geometric parameters (Å, º) top
Br1—C31.900 (3)C12—C131.386 (5)
F1—C191.368 (4)C12—H12A0.9500
N1—N21.382 (3)C13—C141.383 (5)
N1—C101.395 (4)C13—H13A0.9500
N1—C71.484 (4)C14—C151.391 (5)
N2—C91.288 (4)C14—H14A0.9500
C1—C21.391 (5)C15—H15A0.9500
C1—C61.395 (4)C16—C17X1.338 (9)
C1—H1A0.9500C16—C171.349 (8)
C2—C31.383 (5)C16—C211.441 (7)
C2—H2A0.9500C16—C21X1.454 (7)
C3—C41.381 (4)C19—C181.310 (9)
C4—C51.389 (4)C19—C18X1.328 (11)
C4—H4A0.9500C19—C201.429 (8)
C5—C61.393 (4)C19—C20X1.442 (8)
C5—H5A0.9500C17—C181.389 (9)
C6—C71.516 (4)C17—H17A0.9500
C7—C81.546 (4)C18—H18A0.9500
C7—H7A1.0000C20—C211.395 (9)
C8—C91.507 (4)C20—H20A0.9500
C8—H8A0.9900C21—H21A0.9500
C8—H8B0.9900C17X—C18X1.394 (10)
C9—C161.467 (4)C17X—H17B0.9500
C10—C151.398 (4)C18X—H18B0.9500
C10—C111.406 (4)C20X—C21X1.389 (9)
C11—C121.388 (5)C20X—H20B0.9500
C11—H11A0.9500C21X—H21B0.9500
N2—N1—C10119.6 (2)C12—C13—H13A120.4
N2—N1—C7113.1 (2)C13—C14—C15121.1 (3)
C10—N1—C7125.1 (3)C13—C14—H14A119.5
C9—N2—N1108.8 (2)C15—C14—H14A119.5
C2—C1—C6120.8 (3)C14—C15—C10119.8 (3)
C2—C1—H1A119.6C14—C15—H15A120.1
C6—C1—H1A119.6C10—C15—H15A120.1
C3—C2—C1118.9 (3)C17X—C16—C21110.9 (4)
C3—C2—H2A120.5C17—C16—C21118.1 (5)
C1—C2—H2A120.5C17X—C16—C21X119.5 (5)
C4—C3—C2121.5 (3)C17—C16—C21X111.1 (4)
C4—C3—Br1118.5 (2)C17X—C16—C9122.7 (4)
C2—C3—Br1120.0 (2)C17—C16—C9123.9 (4)
C3—C4—C5119.1 (3)C21—C16—C9117.9 (4)
C3—C4—H4A120.5C21X—C16—C9117.8 (4)
C5—C4—H4A120.5C18—C19—F1120.5 (5)
C4—C5—C6120.9 (3)C18X—C19—F1120.2 (5)
C4—C5—H5A119.6C18—C19—C20123.3 (5)
C6—C5—H5A119.6C18X—C19—C20116.0 (5)
C5—C6—C1118.8 (3)F1—C19—C20115.8 (4)
C5—C6—C7120.6 (3)C18—C19—C20X115.7 (5)
C1—C6—C7120.6 (3)C18X—C19—C20X122.6 (6)
N1—C7—C6111.7 (2)F1—C19—C20X117.0 (4)
N1—C7—C8101.2 (2)C16—C17—C18122.7 (6)
C6—C7—C8114.3 (3)C16—C17—H17A118.7
N1—C7—H7A109.8C18—C17—H17A118.7
C6—C7—H7A109.8C19—C18—C17118.9 (7)
C8—C7—H7A109.8C19—C18—H18A120.6
C9—C8—C7102.8 (2)C17—C18—H18A120.6
C9—C8—H8A111.2C21—C20—C19116.5 (6)
C7—C8—H8A111.2C21—C20—H20A121.7
C9—C8—H8B111.2C19—C20—H20A121.7
C7—C8—H8B111.2C20—C21—C16119.9 (6)
H8A—C8—H8B109.1C20—C21—H21A120.0
N2—C9—C16122.8 (3)C16—C21—H21A120.0
N2—C9—C8113.7 (3)C16—C17X—C18X122.6 (7)
C16—C9—C8123.4 (3)C16—C17X—H17B118.7
N1—C10—C15120.4 (3)C18X—C17X—H17B118.7
N1—C10—C11120.4 (3)C19—C18X—C17X118.6 (8)
C15—C10—C11119.2 (3)C19—C18X—H18B120.7
C12—C11—C10119.7 (3)C17X—C18X—H18B120.7
C12—C11—H11A120.2C21X—C20X—C19117.5 (6)
C10—C11—H11A120.2C21X—C20X—H20B121.2
C13—C12—C11121.1 (3)C19—C20X—H20B121.2
C13—C12—H12A119.4C20X—C21X—C16118.6 (6)
C11—C12—H12A119.4C20X—C21X—H21B120.7
C14—C13—C12119.1 (3)C16—C21X—H21B120.7
C14—C13—H13A120.4
C10—N1—N2—C9168.5 (3)C8—C9—C16—C1719.9 (5)
C7—N1—N2—C94.5 (4)N2—C9—C16—C2123.3 (5)
C6—C1—C2—C30.4 (5)C8—C9—C16—C21155.5 (4)
C1—C2—C3—C42.2 (5)N2—C9—C16—C21X13.7 (5)
C1—C2—C3—Br1177.1 (2)C8—C9—C16—C21X167.4 (4)
C2—C3—C4—C51.4 (5)C17X—C16—C17—C1880.8 (12)
Br1—C3—C4—C5177.9 (2)C21—C16—C17—C181.2 (4)
C3—C4—C5—C61.3 (5)C21X—C16—C17—C1833.9 (4)
C4—C5—C6—C13.0 (5)C9—C16—C17—C18176.7 (4)
C4—C5—C6—C7176.6 (3)C18X—C19—C18—C1785.6 (19)
C2—C1—C6—C52.2 (5)F1—C19—C18—C17178.7 (4)
C2—C1—C6—C7177.5 (3)C20—C19—C18—C179.2 (6)
N2—N1—C7—C6128.1 (3)C20X—C19—C18—C1728.6 (6)
C10—N1—C7—C669.1 (4)C16—C17—C18—C195.1 (6)
N2—N1—C7—C86.1 (3)C18—C19—C20—C216.8 (6)
C10—N1—C7—C8168.9 (3)C18X—C19—C20—C2130.2 (7)
C5—C6—C7—N142.2 (4)F1—C19—C20—C21179.2 (5)
C1—C6—C7—N1137.4 (3)C20X—C19—C20—C2180.2 (8)
C5—C6—C7—C871.9 (4)C19—C20—C21—C160.2 (7)
C1—C6—C7—C8108.4 (3)C17X—C16—C21—C2030.3 (6)
N1—C7—C8—C95.0 (3)C17—C16—C21—C203.5 (6)
C6—C7—C8—C9125.3 (3)C21X—C16—C21—C2082.0 (8)
N1—N2—C9—C16179.7 (3)C9—C16—C21—C20179.3 (4)
N1—N2—C9—C80.7 (4)C17—C16—C17X—C18X77.7 (12)
C7—C8—C9—N23.0 (4)C21—C16—C17X—C18X34.0 (5)
C7—C8—C9—C16175.9 (3)C21X—C16—C17X—C18X1.0 (4)
N2—N1—C10—C15169.6 (3)C9—C16—C17X—C18X178.8 (4)
C7—N1—C10—C157.7 (5)C18—C19—C18X—C17X87.1 (19)
N2—N1—C10—C1112.9 (4)F1—C19—C18X—C17X175.8 (4)
C7—N1—C10—C11174.7 (3)C20—C19—C18X—C17X28.3 (6)
N1—C10—C11—C12175.9 (3)C20X—C19—C18X—C17X9.7 (6)
C15—C10—C11—C121.7 (5)C16—C17X—C18X—C195.4 (6)
C10—C11—C12—C130.7 (5)C18—C19—C20X—C21X30.8 (6)
C11—C12—C13—C140.5 (5)C18X—C19—C20X—C21X7.4 (6)
C12—C13—C14—C150.6 (5)F1—C19—C20X—C21X177.9 (4)
C13—C14—C15—C100.5 (5)C20—C19—C20X—C21X81.3 (8)
N1—C10—C15—C14176.0 (3)C19—C20X—C21X—C160.8 (6)
C11—C10—C15—C141.6 (5)C17X—C16—C21X—C20X3.1 (5)
N2—C9—C16—C17X168.4 (4)C17—C16—C21X—C20X29.6 (5)
C8—C9—C16—C17X10.4 (5)C21—C16—C21X—C20X79.9 (8)
N2—C9—C16—C17161.2 (4)C9—C16—C21X—C20X178.9 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i1.002.603.522 (3)153
C17—H17A···Cg1ii0.952.993.752 (6)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z3/2.

Experimental details

Crystal data
Chemical formulaC21H16BrFN2
Mr395.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)20.5345 (5), 5.2689 (1), 16.1929 (5)
β (°) 104.443 (2)
V3)1696.61 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.25 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.583, 0.818
No. of measured, independent and
observed [I > 2σ(I)] reflections
16716, 4974, 3761
Rint0.048
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.113, 1.01
No. of reflections4974
No. of parameters263
No. of restraints130
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.26, 0.99

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg1i1.002.603.522 (3)153
C17—H17A···Cg1ii0.952.993.752 (6)138
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals.

References

First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487–493.  CAS Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds