organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Ethenylphen­yl)di­phenyl­phosphine selenide

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za

(Received 26 July 2012; accepted 1 August 2012; online 11 August 2012)

In the title mol­ecule, C10H17PSe, the P atom has a distorted tetra­hedral environment resulting in an effective cone angle of 165°. The benzene ring makes dihedral angles of 70.04 (8) and 77.28 (8)° with the phenyl rings, while the dihedral angle between the phenyl rings is 62.95 (8)°. In the crystal, mol­ecules are linked by C—H⋯π inter­actions.

Related literature

For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]); Muller et al. (2006[Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794-5801.], 2008[Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650-657.]). For background to cone angles, see: Bunten et al. (2002[Bunten, K. A., Chen, L., Fernandez, A. L. & Poë, A. J. (2002). Coord. Chem. Rev. 233-234, 41-51.]); Tolman (1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]).

[Scheme 1]

Experimental

Crystal data
  • C20H17PSe

  • Mr = 367.27

  • Monoclinic, P 21 /c

  • a = 10.5310 (7) Å

  • b = 11.1477 (7) Å

  • c = 17.2187 (9) Å

  • β = 124.562 (3)°

  • V = 1664.66 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.35 mm−1

  • T = 100 K

  • 0.3 × 0.25 × 0.13 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.526, Tmax = 0.737

  • 20089 measured reflections

  • 4166 independent reflections

  • 3921 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.063

  • S = 1.03

  • 4166 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯Cg1i 0.95 2.62 3.383 (2) 137
C3—H3⋯Cg2ii 0.95 2.88 3.5889 (19) 133
C12—H12⋯Cg2iii 0.95 2.85 3.614 (2) 138
Symmetry codes: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Various techniques such as crystallography, multi nuclear NMR and IR have been used to extensively study the transition metal phosphorous bond (Roodt et al., 2003). As part of this systematic investigation we have extended this study to selenium derivatives of the phosphorus ligands (see Muller et al., 2008). This way there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The 1J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported as part of the above continuing study, the single-crystal structure of the phosphorus containing compound, SePPh2(4-C2H3—C6H4), where Ph = C6H5 and 4-C2H3—C6H4 = 4-vinylbenzene, is reported here.

The title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 105.74 and 112.98°, respectively. Describing the steric demand of phosphine ligands has been the topic of many studies and a variety of models have been developed (Bunten et al., 2002). Of these the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å as described by Tolman), we calculated an effective cone angle from the geometry found in the crystal structure of 165° (Otto, 2001). Intermolecular C—H···π interactions (Table 1 and Fig. 2) are observed in the crystal.

Related literature top

For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2006, 2008). For background to cone angles, see: Bunten et al. (2002); Tolman (1977); Otto (2001).

Experimental top

Diphenylphosphino styrene and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the diphenylphosphino styrene (11.5 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.

Analytical data: 1H NMR (CDCl3, 400 MHz): δ 7.74–7.68 (m, 6H), 7.45–7.42 (m, 8H), 6.75–6.68 (m, 1H), 5.82(d,J = 17.6 Hz, 1H), 5.36 (d, J = 4.8 Hz, 3H); 13C {H} NMR (CDCl3, 400 MHz) δ 135.8,116.7 (ethylene), 133.0,132.9,132.7,132.6,131.6,128.6,128.5,126.3,126,2 (Ar) 31P {H} NMR (CDCl3, 161.99 MHz): δ = 34.71 (t, 1J(31P-77Se) = 729 Hz)

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å (aromatic and methylene), and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The highest residual electron density of 1.37 e.Å-3 and the deepest hole of 0.41 e.Å-3 are both located within 1 Å from Se1. Both represent no physical meaning.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing the C—H···π interactions.
(4-Ethenylphenyl)diphenylphosphine selenide top
Crystal data top
C20H17PSeF(000) = 744
Mr = 367.27Dx = 1.465 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9906 reflections
a = 10.5310 (7) Åθ = 2.5–28.4°
b = 11.1477 (7) ŵ = 2.35 mm1
c = 17.2187 (9) ÅT = 100 K
β = 124.562 (3)°Plate, colourless
V = 1664.66 (18) Å30.3 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
4166 independent reflections
Graphite monochromator3921 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.028
ϕ and ω scansθmax = 28.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.526, Tmax = 0.737k = 1414
20089 measured reflectionsl = 1622
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.032P)2 + 1.0912P]
where P = (Fo2 + 2Fc2)/3
4166 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 1.37 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C20H17PSeV = 1664.66 (18) Å3
Mr = 367.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5310 (7) ŵ = 2.35 mm1
b = 11.1477 (7) ÅT = 100 K
c = 17.2187 (9) Å0.3 × 0.25 × 0.13 mm
β = 124.562 (3)°
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
4166 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3921 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.737Rint = 0.028
20089 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.03Δρmax = 1.37 e Å3
4166 reflectionsΔρmin = 0.41 e Å3
199 parameters
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 1.5 s/frame. A total of 1478 frames were collected with a frame width of 0.5° covering up to θ = 28.40° with 99.9% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32208 (15)0.17035 (12)0.77818 (9)0.0137 (2)
C20.42929 (16)0.09481 (13)0.85112 (10)0.0168 (3)
H20.5340.1190.89160.02*
C30.38312 (16)0.01578 (13)0.86458 (10)0.0179 (3)
H30.45720.06680.91390.021*
C40.22952 (17)0.05274 (12)0.80657 (10)0.0165 (3)
C50.12331 (16)0.02363 (13)0.73350 (10)0.0178 (3)
H50.01860.00050.6930.021*
C60.16804 (16)0.13364 (13)0.71908 (10)0.0165 (3)
H60.09420.18410.66910.02*
C70.17416 (18)0.16732 (13)0.81962 (11)0.0222 (3)
H70.06630.18170.77980.027*
C80.2598 (2)0.25211 (14)0.88126 (13)0.0269 (3)
H8A0.36830.2420.92260.032*
H8B0.21290.32320.88420.032*
C90.58097 (15)0.32505 (12)0.83389 (9)0.0151 (2)
C100.66759 (16)0.24875 (14)0.81638 (10)0.0198 (3)
H100.61670.19510.76440.024*
C110.82745 (17)0.25109 (14)0.87468 (11)0.0226 (3)
H110.88570.19820.86310.027*
C120.90255 (17)0.33079 (15)0.95012 (11)0.0242 (3)
H121.0120.33240.990.029*
C130.81748 (18)0.40761 (15)0.96690 (11)0.0243 (3)
H130.86890.46291.01780.029*
C140.65719 (17)0.40446 (13)0.90988 (10)0.0195 (3)
H140.59960.45630.92270.023*
C150.30934 (15)0.32151 (12)0.63898 (9)0.0148 (2)
C160.23401 (16)0.42233 (13)0.58296 (10)0.0189 (3)
H160.21330.48920.60840.023*
C170.18938 (18)0.42445 (15)0.48962 (11)0.0238 (3)
H170.13830.49290.45150.029*
C180.21944 (18)0.32687 (15)0.45237 (11)0.0241 (3)
H180.18950.32890.38890.029*
C190.29308 (17)0.22632 (14)0.50744 (10)0.0216 (3)
H190.31360.15970.48170.026*
C200.33703 (16)0.22300 (13)0.60052 (10)0.0177 (3)
H200.38590.15350.63790.021*
P10.37156 (4)0.31925 (3)0.76149 (2)0.01286 (8)
Se10.270418 (17)0.457326 (12)0.793367 (11)0.01969 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0185 (6)0.0122 (6)0.0146 (6)0.0004 (5)0.0119 (5)0.0007 (5)
C20.0169 (6)0.0158 (6)0.0193 (6)0.0008 (5)0.0113 (5)0.0007 (5)
C30.0205 (6)0.0144 (6)0.0207 (7)0.0033 (5)0.0130 (6)0.0033 (5)
C40.0233 (7)0.0135 (6)0.0183 (7)0.0012 (5)0.0152 (6)0.0012 (5)
C50.0188 (6)0.0190 (7)0.0160 (6)0.0039 (5)0.0102 (5)0.0018 (5)
C60.0195 (6)0.0165 (6)0.0135 (6)0.0002 (5)0.0094 (5)0.0010 (5)
C70.0278 (7)0.0178 (7)0.0266 (8)0.0043 (6)0.0187 (6)0.0013 (6)
C80.0375 (9)0.0177 (7)0.0359 (9)0.0010 (6)0.0271 (8)0.0024 (6)
C90.0162 (6)0.0147 (6)0.0138 (6)0.0016 (5)0.0082 (5)0.0012 (5)
C100.0187 (6)0.0215 (7)0.0192 (7)0.0013 (5)0.0108 (6)0.0024 (5)
C110.0188 (7)0.0267 (8)0.0235 (7)0.0011 (6)0.0127 (6)0.0033 (6)
C120.0172 (6)0.0288 (8)0.0204 (7)0.0038 (6)0.0070 (6)0.0061 (6)
C130.0250 (7)0.0234 (7)0.0172 (7)0.0081 (6)0.0074 (6)0.0018 (6)
C140.0236 (7)0.0165 (6)0.0170 (7)0.0024 (5)0.0107 (6)0.0003 (5)
C150.0155 (6)0.0165 (6)0.0137 (6)0.0023 (5)0.0091 (5)0.0004 (5)
C160.0179 (6)0.0190 (7)0.0194 (7)0.0011 (5)0.0103 (5)0.0029 (5)
C170.0214 (7)0.0273 (8)0.0189 (7)0.0022 (6)0.0093 (6)0.0081 (6)
C180.0236 (7)0.0352 (9)0.0140 (7)0.0090 (6)0.0110 (6)0.0006 (6)
C190.0241 (7)0.0269 (7)0.0179 (7)0.0074 (6)0.0145 (6)0.0060 (6)
C200.0197 (6)0.0192 (6)0.0157 (6)0.0024 (5)0.0108 (5)0.0014 (5)
P10.01563 (15)0.01136 (15)0.01348 (16)0.00006 (11)0.00938 (13)0.00031 (12)
Se10.02669 (9)0.01456 (8)0.02525 (9)0.00329 (5)0.01918 (7)0.00012 (5)
Geometric parameters (Å, º) top
C1—C21.3973 (19)C11—C121.392 (2)
C1—C61.4005 (19)C11—H110.95
C1—P11.8108 (14)C12—C131.383 (2)
C2—C31.392 (2)C12—H120.95
C2—H20.95C13—C141.391 (2)
C3—C41.397 (2)C13—H130.95
C3—H30.95C14—H140.95
C4—C51.401 (2)C15—C201.3959 (19)
C4—C71.4733 (19)C15—C161.3981 (19)
C5—C61.3857 (19)C15—P11.8198 (14)
C5—H50.95C16—C171.396 (2)
C6—H60.95C16—H160.95
C7—C81.322 (2)C17—C181.388 (2)
C7—H70.95C17—H170.95
C8—H8A0.95C18—C191.387 (2)
C8—H8B0.95C18—H180.95
C9—C141.396 (2)C19—C201.394 (2)
C9—C101.399 (2)C19—H190.95
C9—P11.8173 (14)C20—H200.95
C10—C111.387 (2)P1—Se12.1138 (4)
C10—H100.95
C2—C1—C6119.29 (12)C13—C12—C11119.86 (14)
C2—C1—P1122.45 (10)C13—C12—H12120.1
C6—C1—P1118.13 (10)C11—C12—H12120.1
C3—C2—C1120.20 (13)C12—C13—C14120.49 (14)
C3—C2—H2119.9C12—C13—H13119.8
C1—C2—H2119.9C14—C13—H13119.8
C2—C3—C4120.95 (13)C13—C14—C9120.00 (14)
C2—C3—H3119.5C13—C14—H14120
C4—C3—H3119.5C9—C14—H14120
C3—C4—C5118.28 (13)C20—C15—C16119.64 (13)
C3—C4—C7123.00 (13)C20—C15—P1120.28 (10)
C5—C4—C7118.72 (13)C16—C15—P1120.07 (11)
C6—C5—C4121.30 (13)C17—C16—C15119.78 (14)
C6—C5—H5119.4C17—C16—H16120.1
C4—C5—H5119.4C15—C16—H16120.1
C5—C6—C1119.98 (13)C18—C17—C16120.19 (14)
C5—C6—H6120C18—C17—H17119.9
C1—C6—H6120C16—C17—H17119.9
C8—C7—C4126.41 (15)C19—C18—C17120.23 (14)
C8—C7—H7116.8C19—C18—H18119.9
C4—C7—H7116.8C17—C18—H18119.9
C7—C8—H8A120C18—C19—C20119.99 (14)
C7—C8—H8B120C18—C19—H19120
H8A—C8—H8B120C20—C19—H19120
C14—C9—C10119.27 (13)C19—C20—C15120.14 (14)
C14—C9—P1119.62 (11)C19—C20—H20119.9
C10—C9—P1121.08 (11)C15—C20—H20119.9
C11—C10—C9120.29 (14)C1—P1—C9105.68 (6)
C11—C10—H10119.9C1—P1—C15104.47 (6)
C9—C10—H10119.9C9—P1—C15107.07 (6)
C10—C11—C12120.08 (14)C1—P1—Se1113.17 (4)
C10—C11—H11120C9—P1—Se1112.96 (5)
C12—C11—H11120C15—P1—Se1112.82 (5)
C6—C1—C2—C30.1 (2)C16—C17—C18—C190.4 (2)
P1—C1—C2—C3175.86 (11)C17—C18—C19—C200.1 (2)
C1—C2—C3—C40.7 (2)C18—C19—C20—C151.0 (2)
C2—C3—C4—C50.9 (2)C16—C15—C20—C191.5 (2)
C2—C3—C4—C7178.22 (14)P1—C15—C20—C19178.21 (11)
C3—C4—C5—C60.6 (2)C2—C1—P1—C914.26 (13)
C7—C4—C5—C6178.61 (13)C6—C1—P1—C9169.95 (11)
C4—C5—C6—C10.0 (2)C2—C1—P1—C15127.04 (12)
C2—C1—C6—C50.2 (2)C6—C1—P1—C1557.17 (12)
P1—C1—C6—C5175.69 (11)C2—C1—P1—Se1109.86 (11)
C3—C4—C7—C84.9 (2)C6—C1—P1—Se165.93 (11)
C5—C4—C7—C8175.95 (16)C14—C9—P1—C1115.72 (12)
C14—C9—C10—C110.8 (2)C10—C9—P1—C162.47 (13)
P1—C9—C10—C11177.41 (11)C14—C9—P1—C15133.33 (11)
C9—C10—C11—C121.0 (2)C10—C9—P1—C1548.48 (13)
C10—C11—C12—C130.0 (2)C14—C9—P1—Se18.54 (13)
C11—C12—C13—C141.1 (2)C10—C9—P1—Se1173.27 (10)
C12—C13—C14—C91.3 (2)C20—C15—P1—C142.60 (12)
C10—C9—C14—C130.4 (2)C16—C15—P1—C1137.66 (11)
P1—C9—C14—C13178.59 (11)C20—C15—P1—C969.18 (12)
C20—C15—C16—C171.0 (2)C16—C15—P1—C9110.55 (11)
P1—C15—C16—C17178.70 (11)C20—C15—P1—Se1165.94 (10)
C15—C16—C17—C180.1 (2)C16—C15—P1—Se114.33 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg1i0.952.623.383 (2)137
C3—H3···Cg2ii0.952.883.5889 (19)133
C12—H12···Cg2iii0.952.853.614 (2)138
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC20H17PSe
Mr367.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.5310 (7), 11.1477 (7), 17.2187 (9)
β (°) 124.562 (3)
V3)1664.66 (18)
Z4
Radiation typeMo Kα
µ (mm1)2.35
Crystal size (mm)0.3 × 0.25 × 0.13
Data collection
DiffractometerBruker APEX DUO 4K-CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.526, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
20089, 4166, 3921
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.03
No. of reflections4166
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 0.41

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···Cg1i0.952.623.383 (2)137
C3—H3···Cg2ii0.952.883.5889 (19)133
C12—H12···Cg2iii0.952.853.614 (2)138
Symmetry codes: (i) x, y1/2, z3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

Research funds of the University of Johannesburg is gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunten, K. A., Chen, L., Fernandez, A. L. & Poë, A. J. (2002). Coord. Chem. Rev. 233–234, 41–51.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMuller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657.  Web of Science CSD CrossRef PubMed Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds