organic compounds
(4-Ethenylphenyl)diphenylphosphine selenide
aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: mullera@uj.ac.za
In the title molecule, C10H17PSe, the P atom has a distorted tetrahedral environment resulting in an effective cone angle of 165°. The benzene ring makes dihedral angles of 70.04 (8) and 77.28 (8)° with the phenyl rings, while the dihedral angle between the phenyl rings is 62.95 (8)°. In the crystal, molecules are linked by C—H⋯π interactions.
Related literature
For background to our investigation of the steric and electronic effects of group 15 ligands, see: Roodt et al. (2003); Muller et al. (2006, 2008). For background to cone angles, see: Bunten et al. (2002); Tolman (1977); Otto (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2011); cell SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812034289/is5175sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812034289/is5175Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812034289/is5175Isup3.cml
Diphenylphosphino styrene and KSeCN were purchased from Sigma-Aldrich and used without purification. Eqimolar amounts of KSeCN (5.8 mg, 0.04 mmol) and the diphenylphosphino styrene (11.5 mg, 0.04 mmol) were dissolved in the minimum amounts of methanol (10 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study.
Analytical data: 1H NMR (CDCl3, 400 MHz): δ 7.74–7.68 (m, 6H), 7.45–7.42 (m, 8H), 6.75–6.68 (m, 1H), 5.82(d,J = 17.6 Hz, 1H), 5.36 (d, J = 4.8 Hz, 3H); 13C {H} NMR (CDCl3, 400 MHz) δ 135.8,116.7 (ethylene), 133.0,132.9,132.7,132.6,131.6,128.6,128.5,126.3,126,2 (Ar) 31P {H} NMR (CDCl3, 161.99 MHz): δ = 34.71 (t, 1J(31P-77Se) = 729 Hz)
All hydrogen atoms were positioned in geometrically idealized positions with C—H = 0.95 Å (aromatic and methylene), and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The highest residual electron density of 1.37 e.Å-3 and the deepest hole of 0.41 e.Å-3 are both located within 1 Å from Se1. Both represent no physical meaning.
Data collection: APEX2 (Bruker, 2011); cell
SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).C20H17PSe | F(000) = 744 |
Mr = 367.27 | Dx = 1.465 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9906 reflections |
a = 10.5310 (7) Å | θ = 2.5–28.4° |
b = 11.1477 (7) Å | µ = 2.35 mm−1 |
c = 17.2187 (9) Å | T = 100 K |
β = 124.562 (3)° | Plate, colourless |
V = 1664.66 (18) Å3 | 0.3 × 0.25 × 0.13 mm |
Z = 4 |
Bruker APEX DUO 4K-CCD diffractometer | 4166 independent reflections |
Graphite monochromator | 3921 reflections with I > 2σ(I) |
Detector resolution: 8.4 pixels mm-1 | Rint = 0.028 |
ϕ and ω scans | θmax = 28.4°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −14→14 |
Tmin = 0.526, Tmax = 0.737 | k = −14→14 |
20089 measured reflections | l = −16→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.032P)2 + 1.0912P] where P = (Fo2 + 2Fc2)/3 |
4166 reflections | (Δ/σ)max = 0.002 |
199 parameters | Δρmax = 1.37 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
C20H17PSe | V = 1664.66 (18) Å3 |
Mr = 367.27 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.5310 (7) Å | µ = 2.35 mm−1 |
b = 11.1477 (7) Å | T = 100 K |
c = 17.2187 (9) Å | 0.3 × 0.25 × 0.13 mm |
β = 124.562 (3)° |
Bruker APEX DUO 4K-CCD diffractometer | 4166 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3921 reflections with I > 2σ(I) |
Tmin = 0.526, Tmax = 0.737 | Rint = 0.028 |
20089 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters constrained |
S = 1.03 | Δρmax = 1.37 e Å−3 |
4166 reflections | Δρmin = −0.41 e Å−3 |
199 parameters |
Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 1.5 s/frame. A total of 1478 frames were collected with a frame width of 0.5° covering up to θ = 28.40° with 99.9% completeness accomplished. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.32208 (15) | 0.17035 (12) | 0.77818 (9) | 0.0137 (2) | |
C2 | 0.42929 (16) | 0.09481 (13) | 0.85112 (10) | 0.0168 (3) | |
H2 | 0.534 | 0.119 | 0.8916 | 0.02* | |
C3 | 0.38312 (16) | −0.01578 (13) | 0.86458 (10) | 0.0179 (3) | |
H3 | 0.4572 | −0.0668 | 0.9139 | 0.021* | |
C4 | 0.22952 (17) | −0.05274 (12) | 0.80657 (10) | 0.0165 (3) | |
C5 | 0.12331 (16) | 0.02363 (13) | 0.73350 (10) | 0.0178 (3) | |
H5 | 0.0186 | −0.0005 | 0.693 | 0.021* | |
C6 | 0.16804 (16) | 0.13364 (13) | 0.71908 (10) | 0.0165 (3) | |
H6 | 0.0942 | 0.1841 | 0.6691 | 0.02* | |
C7 | 0.17416 (18) | −0.16732 (13) | 0.81962 (11) | 0.0222 (3) | |
H7 | 0.0663 | −0.1817 | 0.7798 | 0.027* | |
C8 | 0.2598 (2) | −0.25211 (14) | 0.88126 (13) | 0.0269 (3) | |
H8A | 0.3683 | −0.242 | 0.9226 | 0.032* | |
H8B | 0.2129 | −0.3232 | 0.8842 | 0.032* | |
C9 | 0.58097 (15) | 0.32505 (12) | 0.83389 (9) | 0.0151 (2) | |
C10 | 0.66759 (16) | 0.24875 (14) | 0.81638 (10) | 0.0198 (3) | |
H10 | 0.6167 | 0.1951 | 0.7644 | 0.024* | |
C11 | 0.82745 (17) | 0.25109 (14) | 0.87468 (11) | 0.0226 (3) | |
H11 | 0.8857 | 0.1982 | 0.8631 | 0.027* | |
C12 | 0.90255 (17) | 0.33079 (15) | 0.95012 (11) | 0.0242 (3) | |
H12 | 1.012 | 0.3324 | 0.99 | 0.029* | |
C13 | 0.81748 (18) | 0.40761 (15) | 0.96690 (11) | 0.0243 (3) | |
H13 | 0.8689 | 0.4629 | 1.0178 | 0.029* | |
C14 | 0.65719 (17) | 0.40446 (13) | 0.90988 (10) | 0.0195 (3) | |
H14 | 0.5996 | 0.4563 | 0.9227 | 0.023* | |
C15 | 0.30934 (15) | 0.32151 (12) | 0.63898 (9) | 0.0148 (2) | |
C16 | 0.23401 (16) | 0.42233 (13) | 0.58296 (10) | 0.0189 (3) | |
H16 | 0.2133 | 0.4892 | 0.6084 | 0.023* | |
C17 | 0.18938 (18) | 0.42445 (15) | 0.48962 (11) | 0.0238 (3) | |
H17 | 0.1383 | 0.4929 | 0.4515 | 0.029* | |
C18 | 0.21944 (18) | 0.32687 (15) | 0.45237 (11) | 0.0241 (3) | |
H18 | 0.1895 | 0.3289 | 0.3889 | 0.029* | |
C19 | 0.29308 (17) | 0.22632 (14) | 0.50744 (10) | 0.0216 (3) | |
H19 | 0.3136 | 0.1597 | 0.4817 | 0.026* | |
C20 | 0.33703 (16) | 0.22300 (13) | 0.60052 (10) | 0.0177 (3) | |
H20 | 0.3859 | 0.1535 | 0.6379 | 0.021* | |
P1 | 0.37156 (4) | 0.31925 (3) | 0.76149 (2) | 0.01286 (8) | |
Se1 | 0.270418 (17) | 0.457326 (12) | 0.793367 (11) | 0.01969 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0185 (6) | 0.0122 (6) | 0.0146 (6) | −0.0004 (5) | 0.0119 (5) | −0.0007 (5) |
C2 | 0.0169 (6) | 0.0158 (6) | 0.0193 (6) | 0.0008 (5) | 0.0113 (5) | 0.0007 (5) |
C3 | 0.0205 (6) | 0.0144 (6) | 0.0207 (7) | 0.0033 (5) | 0.0130 (6) | 0.0033 (5) |
C4 | 0.0233 (7) | 0.0135 (6) | 0.0183 (7) | −0.0012 (5) | 0.0152 (6) | −0.0012 (5) |
C5 | 0.0188 (6) | 0.0190 (7) | 0.0160 (6) | −0.0039 (5) | 0.0102 (5) | −0.0018 (5) |
C6 | 0.0195 (6) | 0.0165 (6) | 0.0135 (6) | −0.0002 (5) | 0.0094 (5) | 0.0010 (5) |
C7 | 0.0278 (7) | 0.0178 (7) | 0.0266 (8) | −0.0043 (6) | 0.0187 (6) | −0.0013 (6) |
C8 | 0.0375 (9) | 0.0177 (7) | 0.0359 (9) | −0.0010 (6) | 0.0271 (8) | 0.0024 (6) |
C9 | 0.0162 (6) | 0.0147 (6) | 0.0138 (6) | −0.0016 (5) | 0.0082 (5) | 0.0012 (5) |
C10 | 0.0187 (6) | 0.0215 (7) | 0.0192 (7) | −0.0013 (5) | 0.0108 (6) | −0.0024 (5) |
C11 | 0.0188 (7) | 0.0267 (8) | 0.0235 (7) | 0.0011 (6) | 0.0127 (6) | 0.0033 (6) |
C12 | 0.0172 (6) | 0.0288 (8) | 0.0204 (7) | −0.0038 (6) | 0.0070 (6) | 0.0061 (6) |
C13 | 0.0250 (7) | 0.0234 (7) | 0.0172 (7) | −0.0081 (6) | 0.0074 (6) | −0.0018 (6) |
C14 | 0.0236 (7) | 0.0165 (6) | 0.0170 (7) | −0.0024 (5) | 0.0107 (6) | −0.0003 (5) |
C15 | 0.0155 (6) | 0.0165 (6) | 0.0137 (6) | −0.0023 (5) | 0.0091 (5) | 0.0004 (5) |
C16 | 0.0179 (6) | 0.0190 (7) | 0.0194 (7) | −0.0011 (5) | 0.0103 (5) | 0.0029 (5) |
C17 | 0.0214 (7) | 0.0273 (8) | 0.0189 (7) | −0.0022 (6) | 0.0093 (6) | 0.0081 (6) |
C18 | 0.0236 (7) | 0.0352 (9) | 0.0140 (7) | −0.0090 (6) | 0.0110 (6) | 0.0006 (6) |
C19 | 0.0241 (7) | 0.0269 (7) | 0.0179 (7) | −0.0074 (6) | 0.0145 (6) | −0.0060 (6) |
C20 | 0.0197 (6) | 0.0192 (6) | 0.0157 (6) | −0.0024 (5) | 0.0108 (5) | −0.0014 (5) |
P1 | 0.01563 (15) | 0.01136 (15) | 0.01348 (16) | −0.00006 (11) | 0.00938 (13) | −0.00031 (12) |
Se1 | 0.02669 (9) | 0.01456 (8) | 0.02525 (9) | 0.00329 (5) | 0.01918 (7) | −0.00012 (5) |
C1—C2 | 1.3973 (19) | C11—C12 | 1.392 (2) |
C1—C6 | 1.4005 (19) | C11—H11 | 0.95 |
C1—P1 | 1.8108 (14) | C12—C13 | 1.383 (2) |
C2—C3 | 1.392 (2) | C12—H12 | 0.95 |
C2—H2 | 0.95 | C13—C14 | 1.391 (2) |
C3—C4 | 1.397 (2) | C13—H13 | 0.95 |
C3—H3 | 0.95 | C14—H14 | 0.95 |
C4—C5 | 1.401 (2) | C15—C20 | 1.3959 (19) |
C4—C7 | 1.4733 (19) | C15—C16 | 1.3981 (19) |
C5—C6 | 1.3857 (19) | C15—P1 | 1.8198 (14) |
C5—H5 | 0.95 | C16—C17 | 1.396 (2) |
C6—H6 | 0.95 | C16—H16 | 0.95 |
C7—C8 | 1.322 (2) | C17—C18 | 1.388 (2) |
C7—H7 | 0.95 | C17—H17 | 0.95 |
C8—H8A | 0.95 | C18—C19 | 1.387 (2) |
C8—H8B | 0.95 | C18—H18 | 0.95 |
C9—C14 | 1.396 (2) | C19—C20 | 1.394 (2) |
C9—C10 | 1.399 (2) | C19—H19 | 0.95 |
C9—P1 | 1.8173 (14) | C20—H20 | 0.95 |
C10—C11 | 1.387 (2) | P1—Se1 | 2.1138 (4) |
C10—H10 | 0.95 | ||
C2—C1—C6 | 119.29 (12) | C13—C12—C11 | 119.86 (14) |
C2—C1—P1 | 122.45 (10) | C13—C12—H12 | 120.1 |
C6—C1—P1 | 118.13 (10) | C11—C12—H12 | 120.1 |
C3—C2—C1 | 120.20 (13) | C12—C13—C14 | 120.49 (14) |
C3—C2—H2 | 119.9 | C12—C13—H13 | 119.8 |
C1—C2—H2 | 119.9 | C14—C13—H13 | 119.8 |
C2—C3—C4 | 120.95 (13) | C13—C14—C9 | 120.00 (14) |
C2—C3—H3 | 119.5 | C13—C14—H14 | 120 |
C4—C3—H3 | 119.5 | C9—C14—H14 | 120 |
C3—C4—C5 | 118.28 (13) | C20—C15—C16 | 119.64 (13) |
C3—C4—C7 | 123.00 (13) | C20—C15—P1 | 120.28 (10) |
C5—C4—C7 | 118.72 (13) | C16—C15—P1 | 120.07 (11) |
C6—C5—C4 | 121.30 (13) | C17—C16—C15 | 119.78 (14) |
C6—C5—H5 | 119.4 | C17—C16—H16 | 120.1 |
C4—C5—H5 | 119.4 | C15—C16—H16 | 120.1 |
C5—C6—C1 | 119.98 (13) | C18—C17—C16 | 120.19 (14) |
C5—C6—H6 | 120 | C18—C17—H17 | 119.9 |
C1—C6—H6 | 120 | C16—C17—H17 | 119.9 |
C8—C7—C4 | 126.41 (15) | C19—C18—C17 | 120.23 (14) |
C8—C7—H7 | 116.8 | C19—C18—H18 | 119.9 |
C4—C7—H7 | 116.8 | C17—C18—H18 | 119.9 |
C7—C8—H8A | 120 | C18—C19—C20 | 119.99 (14) |
C7—C8—H8B | 120 | C18—C19—H19 | 120 |
H8A—C8—H8B | 120 | C20—C19—H19 | 120 |
C14—C9—C10 | 119.27 (13) | C19—C20—C15 | 120.14 (14) |
C14—C9—P1 | 119.62 (11) | C19—C20—H20 | 119.9 |
C10—C9—P1 | 121.08 (11) | C15—C20—H20 | 119.9 |
C11—C10—C9 | 120.29 (14) | C1—P1—C9 | 105.68 (6) |
C11—C10—H10 | 119.9 | C1—P1—C15 | 104.47 (6) |
C9—C10—H10 | 119.9 | C9—P1—C15 | 107.07 (6) |
C10—C11—C12 | 120.08 (14) | C1—P1—Se1 | 113.17 (4) |
C10—C11—H11 | 120 | C9—P1—Se1 | 112.96 (5) |
C12—C11—H11 | 120 | C15—P1—Se1 | 112.82 (5) |
C6—C1—C2—C3 | 0.1 (2) | C16—C17—C18—C19 | 0.4 (2) |
P1—C1—C2—C3 | 175.86 (11) | C17—C18—C19—C20 | 0.1 (2) |
C1—C2—C3—C4 | −0.7 (2) | C18—C19—C20—C15 | −1.0 (2) |
C2—C3—C4—C5 | 0.9 (2) | C16—C15—C20—C19 | 1.5 (2) |
C2—C3—C4—C7 | −178.22 (14) | P1—C15—C20—C19 | −178.21 (11) |
C3—C4—C5—C6 | −0.6 (2) | C2—C1—P1—C9 | 14.26 (13) |
C7—C4—C5—C6 | 178.61 (13) | C6—C1—P1—C9 | −169.95 (11) |
C4—C5—C6—C1 | 0.0 (2) | C2—C1—P1—C15 | 127.04 (12) |
C2—C1—C6—C5 | 0.2 (2) | C6—C1—P1—C15 | −57.17 (12) |
P1—C1—C6—C5 | −175.69 (11) | C2—C1—P1—Se1 | −109.86 (11) |
C3—C4—C7—C8 | −4.9 (2) | C6—C1—P1—Se1 | 65.93 (11) |
C5—C4—C7—C8 | 175.95 (16) | C14—C9—P1—C1 | −115.72 (12) |
C14—C9—C10—C11 | 0.8 (2) | C10—C9—P1—C1 | 62.47 (13) |
P1—C9—C10—C11 | −177.41 (11) | C14—C9—P1—C15 | 133.33 (11) |
C9—C10—C11—C12 | −1.0 (2) | C10—C9—P1—C15 | −48.48 (13) |
C10—C11—C12—C13 | 0.0 (2) | C14—C9—P1—Se1 | 8.54 (13) |
C11—C12—C13—C14 | 1.1 (2) | C10—C9—P1—Se1 | −173.27 (10) |
C12—C13—C14—C9 | −1.3 (2) | C20—C15—P1—C1 | −42.60 (12) |
C10—C9—C14—C13 | 0.4 (2) | C16—C15—P1—C1 | 137.66 (11) |
P1—C9—C14—C13 | 178.59 (11) | C20—C15—P1—C9 | 69.18 (12) |
C20—C15—C16—C17 | −1.0 (2) | C16—C15—P1—C9 | −110.55 (11) |
P1—C15—C16—C17 | 178.70 (11) | C20—C15—P1—Se1 | −165.94 (10) |
C15—C16—C17—C18 | 0.1 (2) | C16—C15—P1—Se1 | 14.33 (12) |
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cg1i | 0.95 | 2.62 | 3.383 (2) | 137 |
C3—H3···Cg2ii | 0.95 | 2.88 | 3.5889 (19) | 133 |
C12—H12···Cg2iii | 0.95 | 2.85 | 3.614 (2) | 138 |
Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x+1, −y−1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C20H17PSe |
Mr | 367.27 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 10.5310 (7), 11.1477 (7), 17.2187 (9) |
β (°) | 124.562 (3) |
V (Å3) | 1664.66 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.35 |
Crystal size (mm) | 0.3 × 0.25 × 0.13 |
Data collection | |
Diffractometer | Bruker APEX DUO 4K-CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.526, 0.737 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20089, 4166, 3921 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.063, 1.03 |
No. of reflections | 4166 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.37, −0.41 |
Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).
Cg1 and Cg2 are the centroids of the C1–C6 and C15–C20 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18···Cg1i | 0.95 | 2.62 | 3.383 (2) | 137 |
C3—H3···Cg2ii | 0.95 | 2.88 | 3.5889 (19) | 133 |
C12—H12···Cg2iii | 0.95 | 2.85 | 3.614 (2) | 138 |
Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x+1, −y−1/2, z−1/2. |
Acknowledgements
Research funds of the University of Johannesburg is gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bunten, K. A., Chen, L., Fernandez, A. L. & Poë, A. J. (2002). Coord. Chem. Rev. 233–234, 41–51. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Muller, A., Meijboom, R. & Roodt, A. (2006). J. Organomet. Chem. 691, 5794–5801. Web of Science CSD CrossRef CAS Google Scholar
Muller, A., Otto, S. & Roodt, A. (2008). Dalton Trans. pp. 650–657. Web of Science CSD CrossRef PubMed Google Scholar
Otto, S. (2001). Acta Cryst. C57, 793–795. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Various techniques such as crystallography, multi nuclear NMR and IR have been used to extensively study the transition metal phosphorous bond (Roodt et al., 2003). As part of this systematic investigation we have extended this study to selenium derivatives of the phosphorus ligands (see Muller et al., 2008). This way there is no steric crowding effect, albeit crystal packing effects, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angles variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The 1J(31P-77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported as part of the above continuing study, the single-crystal structure of the phosphorus containing compound, SePPh2(4-C2H3—C6H4), where Ph = C6H5 and 4-C2H3—C6H4 = 4-vinylbenzene, is reported here.
The title compound (Fig. 1) adopts a distorted tetrahedral arrangement about the P atom with average C—P—C and Se—P—C angles of 105.74 and 112.98°, respectively. Describing the steric demand of phosphine ligands has been the topic of many studies and a variety of models have been developed (Bunten et al., 2002). Of these the Tolman cone angle (Tolman, 1977) is still the most commonly used model. Applying this model to the geometry obtained for the title compound (and adjusting the Se—P bond distance to 2.28 Å as described by Tolman), we calculated an effective cone angle from the geometry found in the crystal structure of 165° (Otto, 2001). Intermolecular C—H···π interactions (Table 1 and Fig. 2) are observed in the crystal.