organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[3-(4-Fluoro­phen­yl)-5-phenyl-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 July 2012; accepted 30 July 2012; online 4 August 2012)

In the title compound, C17H15FN2O, the pyrazoline ring adopts a flattened envelope conformation. The dihedral angle between the fluoro-substituted benzene ring and the phenyl ring is 69.20 (5)°. In the crystal, a pair of C—H⋯O hydrogen bonds link neighbouring mol­ecules, forming an inversion dimer. The crystal structure is further consolidated by C—H⋯π inter­actions and by a ππ inter­action with a centroid–centroid distance of 3.7379 (6) Å.

Related literature

For related structures, see: Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582-o583.], 2012a[Fun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2586.],b[Fun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2655-o2656.]); Samshuddin et al. (2011[Samshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487-493.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15FN2O

  • Mr = 282.31

  • Orthorhombic, P b c a

  • a = 13.0973 (6) Å

  • b = 8.6104 (4) Å

  • c = 24.5948 (12) Å

  • V = 2773.6 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.34 × 0.33 × 0.09 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.991

  • 25040 measured reflections

  • 4069 independent reflections

  • 3442 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.03

  • 4069 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the pyrazole N1/N2/C7–C9 ring and the phenyl C10–C15 ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.58 3.3797 (13) 138
C1—H1ACg2ii 0.95 2.85 3.6856 (11) 148
C13—H13ACg1iii 0.95 2.73 3.6370 (11) 161
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+1, -y-{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on synthesis of pyrazoline derivatives (Fun et al., 2010; Samshuddin et al., 2011), the title compound is prepared and crystal structure is reported.

In the title compound (Fig. 1), the pyrazoline (N1/N2/C7–C9) ring adopts a flattened envelope conformation [pucker atom at C9 with deviation of 0.065 (1) Å] with puckering parameters Q = 0.1082 (10) Å and ϕ = 79.4 (5)° (Cremer & Pople, 1975). The dihedral angle between fluoro-substituted benzene ring (C1–C6) and the phenyl ring (C10–C15) is 69.20 (5)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with the related structures (Fun et al., 2012a,b).

In the crystal packing (Fig. 2), pairs of C8—H8A···O1 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers. The crystal is further consolidated by C13—H13A···Cg1 and C1—H1A···Cg2 interactions (Table 1), involving the pyrazoline ring (N1/N2/C7–C9; Cg1) and the phenyl ring (C10–C15; Cg2), respectively. A weak ππ interaction is observed with Cg2···Cg2(1-x, 1-y, 1-z) = 3.7379 (6) Å.

Related literature top

For related structures, see: Fun et al. (2010, 2012a,b); Samshuddin et al. (2011). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of (2E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (2.26 g, 0.01 mol) and hydrazine hydrate (0.48 ml, 0.01 mol) in 30 ml acetic acid was refluxed for 6 h. The reaction mixture was cooled and poured into 50 ml ice-cold water. The precipitate was collected by filtration and purified by recrystallization from ethanol. The single crystals were grown from toluene by slow evaporation method (m.p. 392–394 K).

Refinement top

All H atoms were positioned geometrically (C—H = 0.95, 0.98, 0.99 and 1.00 Å) with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. In the final refinement, one outlier (0 6 0) was omitted.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
1-[3-(4-Fluorophenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl]ethanone top
Crystal data top
C17H15FN2OF(000) = 1184
Mr = 282.31Dx = 1.352 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8833 reflections
a = 13.0973 (6) Åθ = 3.0–30.1°
b = 8.6104 (4) ŵ = 0.10 mm1
c = 24.5948 (12) ÅT = 100 K
V = 2773.6 (2) Å3Plate, colourless
Z = 80.34 × 0.33 × 0.09 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4069 independent reflections
Radiation source: fine-focus sealed tube3442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1418
Tmin = 0.969, Tmax = 0.991k = 912
25040 measured reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.9304P]
where P = (Fo2 + 2Fc2)/3
4069 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H15FN2OV = 2773.6 (2) Å3
Mr = 282.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.0973 (6) ŵ = 0.10 mm1
b = 8.6104 (4) ÅT = 100 K
c = 24.5948 (12) Å0.34 × 0.33 × 0.09 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4069 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3442 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.991Rint = 0.029
25040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.03Δρmax = 0.38 e Å3
4069 reflectionsΔρmin = 0.24 e Å3
191 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.82344 (6)0.34824 (9)0.79260 (3)0.03354 (18)
O10.34443 (6)0.10960 (9)0.53136 (3)0.02267 (17)
N10.49592 (6)0.01792 (10)0.64081 (4)0.01708 (17)
N20.46304 (6)0.06398 (10)0.59506 (3)0.01737 (17)
C10.76046 (8)0.09765 (12)0.67970 (4)0.0202 (2)
H1A0.79390.03810.65250.024*
C20.81782 (8)0.18030 (13)0.71746 (5)0.0246 (2)
H2A0.89030.17760.71650.029*
C30.76748 (9)0.26591 (13)0.75618 (4)0.0242 (2)
C40.66219 (9)0.27418 (13)0.75934 (4)0.0248 (2)
H4A0.62970.33470.78660.030*
C50.60547 (8)0.19140 (13)0.72153 (4)0.0223 (2)
H5A0.53300.19560.72280.027*
C60.65372 (8)0.10171 (11)0.68153 (4)0.01726 (19)
C70.59451 (7)0.01827 (11)0.64033 (4)0.01611 (18)
C80.64134 (7)0.06184 (12)0.59202 (4)0.01745 (19)
H8A0.67510.01340.56750.021*
H8B0.69160.14130.60350.021*
C90.54760 (7)0.13688 (11)0.56463 (4)0.01575 (18)
H9A0.54440.10430.52560.019*
C100.54856 (7)0.31268 (11)0.56813 (4)0.01515 (18)
C110.49159 (7)0.39548 (12)0.60596 (4)0.0186 (2)
H11A0.44870.34200.63080.022*
C120.49747 (8)0.55759 (13)0.60740 (4)0.0222 (2)
H12A0.45900.61420.63350.027*
C130.55944 (8)0.63580 (12)0.57079 (4)0.0220 (2)
H13A0.56220.74600.57130.026*
C140.61750 (8)0.55344 (12)0.53337 (4)0.0197 (2)
H14A0.66050.60710.50860.024*
C150.61256 (7)0.39232 (12)0.53229 (4)0.01723 (19)
H15A0.65300.33590.50700.021*
C160.36726 (7)0.04583 (12)0.57425 (4)0.01743 (19)
C170.29434 (8)0.05575 (13)0.60548 (5)0.0233 (2)
H17A0.22450.03670.59280.035*
H17B0.29910.03150.64430.035*
H17C0.31200.16510.59960.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0370 (4)0.0359 (4)0.0277 (4)0.0095 (3)0.0118 (3)0.0057 (3)
O10.0190 (4)0.0253 (4)0.0237 (4)0.0001 (3)0.0042 (3)0.0026 (3)
N10.0155 (4)0.0176 (4)0.0182 (4)0.0005 (3)0.0008 (3)0.0014 (3)
N20.0127 (4)0.0187 (4)0.0207 (4)0.0015 (3)0.0006 (3)0.0044 (3)
C10.0177 (5)0.0205 (5)0.0225 (5)0.0007 (4)0.0028 (4)0.0006 (4)
C20.0196 (5)0.0268 (5)0.0273 (5)0.0032 (4)0.0067 (4)0.0010 (4)
C30.0298 (6)0.0226 (5)0.0202 (5)0.0072 (4)0.0084 (4)0.0021 (4)
C40.0293 (6)0.0262 (5)0.0190 (5)0.0050 (4)0.0012 (4)0.0022 (4)
C50.0196 (5)0.0262 (5)0.0210 (5)0.0035 (4)0.0018 (4)0.0021 (4)
C60.0165 (4)0.0177 (4)0.0176 (4)0.0024 (3)0.0012 (3)0.0024 (3)
C70.0149 (4)0.0153 (4)0.0180 (4)0.0007 (3)0.0005 (3)0.0019 (3)
C80.0126 (4)0.0180 (4)0.0218 (5)0.0006 (3)0.0009 (3)0.0015 (3)
C90.0122 (4)0.0166 (4)0.0184 (4)0.0010 (3)0.0008 (3)0.0009 (3)
C100.0123 (4)0.0170 (4)0.0161 (4)0.0002 (3)0.0023 (3)0.0004 (3)
C110.0153 (4)0.0215 (5)0.0189 (4)0.0009 (3)0.0008 (3)0.0000 (4)
C120.0203 (5)0.0223 (5)0.0241 (5)0.0034 (4)0.0008 (4)0.0055 (4)
C130.0219 (5)0.0166 (4)0.0275 (5)0.0005 (4)0.0054 (4)0.0019 (4)
C140.0160 (4)0.0203 (5)0.0230 (5)0.0035 (4)0.0028 (4)0.0029 (4)
C150.0144 (4)0.0196 (5)0.0177 (4)0.0002 (3)0.0003 (3)0.0002 (3)
C160.0137 (4)0.0168 (4)0.0218 (4)0.0000 (3)0.0003 (3)0.0020 (3)
C170.0149 (4)0.0279 (5)0.0271 (5)0.0053 (4)0.0001 (4)0.0016 (4)
Geometric parameters (Å, º) top
F1—C31.3572 (12)C8—H8A0.9900
O1—C161.2261 (13)C8—H8B0.9900
N1—C71.2914 (13)C9—C101.5162 (13)
N1—N21.3959 (11)C9—H9A1.0000
N2—C161.3639 (12)C10—C111.3896 (13)
N2—C91.4767 (12)C10—C151.3963 (13)
C1—C21.3903 (14)C11—C121.3984 (15)
C1—C61.3991 (14)C11—H11A0.9500
C1—H1A0.9500C12—C131.3866 (15)
C2—C31.3729 (16)C12—H12A0.9500
C2—H2A0.9500C13—C141.3886 (15)
C3—C41.3831 (16)C13—H13A0.9500
C4—C51.3875 (15)C14—C151.3891 (14)
C4—H4A0.9500C14—H14A0.9500
C5—C61.4012 (14)C15—H15A0.9500
C5—H5A0.9500C16—C171.5058 (14)
C6—C71.4644 (13)C17—H17A0.9800
C7—C81.5045 (14)C17—H17B0.9800
C8—C91.5422 (13)C17—H17C0.9800
C7—N1—N2107.59 (8)N2—C9—C8101.40 (7)
C16—N2—N1121.90 (8)C10—C9—C8112.76 (8)
C16—N2—C9123.25 (8)N2—C9—H9A109.6
N1—N2—C9113.07 (8)C10—C9—H9A109.6
C2—C1—C6120.37 (10)C8—C9—H9A109.6
C2—C1—H1A119.8C11—C10—C15119.55 (9)
C6—C1—H1A119.8C11—C10—C9123.07 (9)
C3—C2—C1118.60 (10)C15—C10—C9117.35 (8)
C3—C2—H2A120.7C10—C11—C12119.96 (9)
C1—C2—H2A120.7C10—C11—H11A120.0
F1—C3—C2118.61 (10)C12—C11—H11A120.0
F1—C3—C4118.32 (10)C13—C12—C11120.04 (10)
C2—C3—C4123.06 (10)C13—C12—H12A120.0
C3—C4—C5118.02 (10)C11—C12—H12A120.0
C3—C4—H4A121.0C12—C13—C14120.19 (10)
C5—C4—H4A121.0C12—C13—H13A119.9
C4—C5—C6120.81 (10)C14—C13—H13A119.9
C4—C5—H5A119.6C13—C14—C15119.82 (10)
C6—C5—H5A119.6C13—C14—H14A120.1
C1—C6—C5119.14 (9)C15—C14—H14A120.1
C1—C6—C7119.65 (9)C14—C15—C10120.42 (9)
C5—C6—C7121.15 (9)C14—C15—H15A119.8
N1—C7—C6121.63 (9)C10—C15—H15A119.8
N1—C7—C8114.44 (9)O1—C16—N2119.73 (9)
C6—C7—C8123.74 (9)O1—C16—C17122.97 (9)
C7—C8—C9102.27 (8)N2—C16—C17117.29 (9)
C7—C8—H8A111.3C16—C17—H17A109.5
C9—C8—H8A111.3C16—C17—H17B109.5
C7—C8—H8B111.3H17A—C17—H17B109.5
C9—C8—H8B111.3C16—C17—H17C109.5
H8A—C8—H8B109.2H17A—C17—H17C109.5
N2—C9—C10113.69 (8)H17B—C17—H17C109.5
C7—N1—N2—C16159.15 (9)N1—N2—C9—C10110.76 (9)
C7—N1—N2—C96.08 (11)C16—N2—C9—C8154.47 (9)
C6—C1—C2—C30.25 (16)N1—N2—C9—C810.53 (10)
C1—C2—C3—F1179.15 (9)C7—C8—C9—N210.18 (9)
C1—C2—C3—C40.17 (17)C7—C8—C9—C10111.76 (9)
F1—C3—C4—C5179.15 (10)N2—C9—C10—C1114.38 (13)
C2—C3—C4—C50.16 (17)C8—C9—C10—C11100.34 (10)
C3—C4—C5—C60.26 (16)N2—C9—C10—C15167.56 (8)
C2—C1—C6—C50.66 (15)C8—C9—C10—C1577.72 (11)
C2—C1—C6—C7177.92 (9)C15—C10—C11—C120.96 (14)
C4—C5—C6—C10.67 (16)C9—C10—C11—C12178.98 (9)
C4—C5—C6—C7177.89 (10)C10—C11—C12—C130.55 (15)
N2—N1—C7—C6176.87 (8)C11—C12—C13—C141.38 (16)
N2—N1—C7—C81.65 (11)C12—C13—C14—C150.69 (15)
C1—C6—C7—N1179.40 (9)C13—C14—C15—C100.84 (15)
C5—C6—C7—N13.40 (15)C11—C10—C15—C141.66 (14)
C1—C6—C7—C85.84 (15)C9—C10—C15—C14179.79 (9)
C5—C6—C7—C8171.37 (9)N1—N2—C16—O1173.68 (9)
N1—C7—C8—C98.00 (11)C9—N2—C16—O19.96 (15)
C6—C7—C8—C9176.89 (9)N1—N2—C16—C175.37 (14)
C16—N2—C9—C1084.23 (11)C9—N2—C16—C17169.09 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the pyrazole N1/N2/C7–C9 ring and the phenyl C10–C15 ring, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.583.3797 (13)138
C1—H1A···Cg2ii0.952.853.6856 (11)148
C13—H13A···Cg1iii0.952.733.6370 (11)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y3/2, z1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H15FN2O
Mr282.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)13.0973 (6), 8.6104 (4), 24.5948 (12)
V3)2773.6 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.33 × 0.09
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.969, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
25040, 4069, 3442
Rint0.029
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.03
No. of reflections4069
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the pyrazole N1/N2/C7–C9 ring and the phenyl C10–C15 ring, respectively.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O1i0.992.583.3797 (13)138
C1—H1A···Cg2ii0.952.853.6856 (11)148
C13—H13A···Cg1iii0.952.733.6370 (11)161
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y3/2, z1/2; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Government and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2586.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sapnakumari, M., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o2655–o2656.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Baktir, Z., Akkurt, M. & Yathirajan, H. S. (2011). Der Pharma Chem. 3, 487–493.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds