organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2728-o2729

(E)-2-[4-(Di­ethyl­amino)­styr­yl]-1-methyl­pyridinium 4-meth­­oxy­benzene­sulfonate monohydrate

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bDepartment of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 30 July 2012; accepted 9 August 2012; online 15 August 2012)

In the cation of the title compound, C18H23N2+·C7H7O4S·H2O, one ethyl group of the diethyl­amino unit is disordered over two sets of sites in a 0.665 (6):0.335 (6) ratio. The styrylpyridinium unit is nearly planar, with a dihedral angle between the pyridinium and benzene rings of 4.27 (8)°. In the crystal, the anion ring is almost perpendicular to the aromatic rings of the cation; the sulfonate-substituted benzene ring forms dihedral angles of 89.60 (8) and 89.37 (8)°, respectively, with the pyridinium and benzene rings of the cation. In the crystal, the three components are linked into a three-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds. ππ inter­actions with centroid–centroid distances of 3.6999 (9) and 3.7106 (9) Å are also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and applications of quaternary ammonium compounds, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Domagk (1935[Domagk, G. (1935). Dtsch Med. Wochenschr. 24, 829-832.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011a). Acta Cryst. E67, o593-o594.],b[Fun, H.-K., Kaewmanee, N., Chanawanno, K., Karalai, C. & Chantrapromma, S. (2011b). Acta Cryst. E67, o2488-o2489.]); Kaewmanee et al. (2010[Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639-o2640.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N2+·C7H7O4S·H2O

  • Mr = 472.60

  • Triclinic, [P \overline 1]

  • a = 7.4430 (2) Å

  • b = 10.3298 (2) Å

  • c = 16.3817 (4) Å

  • α = 91.265 (1)°

  • β = 100.794 (1)°

  • γ = 102.281 (1)°

  • V = 1206.39 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 298 K

  • 0.53 × 0.19 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.978

  • 28598 measured reflections

  • 6988 independent reflections

  • 4465 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.145

  • S = 1.06

  • 6988 reflections

  • 312 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 0.99 2.53 3.371 (2) 143
O1W—H1W1⋯O3i 0.99 2.15 3.073 (2) 155
O1W—H2W1⋯O2ii 0.89 1.90 2.791 (2) 176
C1—H1A⋯O3iii 0.93 2.54 3.419 (2) 158
C2—H2A⋯O3iv 0.93 2.47 3.349 (2) 158
C4—H4A⋯O1Wv 0.93 2.47 3.381 (2) 166
C7—H7A⋯O1Wv 0.93 2.58 3.479 (2) 163
C17—H17A⋯O1i 0.96 2.58 3.435 (3) 149
C18—H18A⋯O3iii 0.96 2.54 3.466 (2) 162
C18—H18B⋯O4vi 0.96 2.47 3.221 (2) 135
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) -x, -y+2, -z+1; (iv) x-2, y, z; (v) -x, -y+1, -z+1; (vi) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For a long time, quaternary ammonium compounds (QACs) have been used as disinfectants in both medical and domestic purposes due to their low toxicity and wide-ranging antimicrobial properties (Domagk, 1935). We have during the course of our research reported on the synthesis and antibacterial activity of pyridinium derivatives (Chanawanno et al., 2010). The title compound (I) was synthesized and tested for antibacterial activity. Our antibacterial assay showed that (I) exhibits moderate activity against Pseudomonas aeruginosa with the MIC value of 37.5 µg/ml. Herein its crystal structure is reported.

The asymmetric unit of the title compound (Fig. 1) consists of a C18H23N2+ cation, a C7H7O4S- anion and one H2O molecule. The cation exists in the E configuration with respect to the C6C7 double bond [1.332 (2) Å] and the torsion angle C5–C6–C7–C8 = -177.25 (15)°. The cation is nearly planar with the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings being 4.27 (8)°. One ethyl unit of the diethylamino moiety is disordered over two positions; the major component A and the minor component B (Fig. 1), with the refined site-occupancy ratio of 0.665 (6)/0.335 (6). The diethylamino moiety with the disordered ethyl unit deviated from the attached benzene ring and the disordered ethyl units point opposite to each other as indicated by the torsion angles C11–N2–C14A–C15A = -103.6 (3)° for the major component A and C11–N2–C14B–C15B = 101.7 (5)° for the minor component B. The other diethylamino moiety also deviated from its bound benzene ring with the torsion angle C11–N2–C16–C17 = -80.5 (2)° and point toward the same direction as the ethyl unit of the minor component B. The cation and anion are inclined to each other as indicated by the dihedral angles between the pyridinium and benzene rings of cation, and the sulfonate substituted benzene ring being 89.60 (8) and 89.37 (8)°, respectively. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with related structures (Fun et al., 2011a,b)

In the crystal packing, the cations, anions and water molecules are linked into a network by O—H···O hydrogen bonds and C—H···O weak interactions (Fig. 2 and Table 1). π···π interactions with the centroid–centroid distances of Cg1···Cg1vii = 3.7106 (9) Å and Cg1···Cg2ii = 3.6999 (9) Å were observed; Cg1 and Cg2 are the centroids of N1/C1–C5 and C8–C13 rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For background to and applications of quaternary ammonium compounds, see: Chanawanno et al. (2010); Domagk (1935). For related structures, see: Fun et al. (2011a,b); Kaewmanee et al. (2010).

Experimental top

A solution of 2-[(E)-4-(diethylamino)styryl]-1-methylpyridinium iodide (0.13 g, 0.33 mmol) (Kaewmanee et al., 2010) in hot methanol (20 ml) was mixed with a solution of silver(I) 4-methoxybenzenesulfonate (0.10 g, 0.33 mmol) in hot methanol (20 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding a deep orange solid. Orange single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks (m.p. 421–423 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.89 and 0.99 Å, C—H = 0.93 Å for aromatic and CH and 0.96 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. One ethyl unit of the diethylamino is disordered over two sites with refined site occupancies of 0.665 (6) and 0.335 (6).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.

Fig. 2. A crystal packing diagram of the major component viewed along the c axis. The O—H···O hydrogen bonds and weak C—H···O interactions are drawn as dashed lines.
(E)-2-[4-(Diethylamino)styryl]-1-methylpyridinium 4-methoxybenzenesulfonate monohydrate top
Crystal data top
C18H23N2+·C7H7O4S·H2OZ = 2
Mr = 472.60F(000) = 504
Triclinic, P1Dx = 1.301 Mg m3
Hall symbol: -P 1Melting point = 421–423 K
a = 7.4430 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3298 (2) ÅCell parameters from 6988 reflections
c = 16.3817 (4) Åθ = 2.0–30.0°
α = 91.265 (1)°µ = 0.17 mm1
β = 100.794 (1)°T = 298 K
γ = 102.281 (1)°Needle, orange
V = 1206.39 (5) Å30.53 × 0.19 × 0.13 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6988 independent reflections
Radiation source: sealed tube4465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.914, Tmax = 0.978k = 1414
28598 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.1741P]
where P = (Fo2 + 2Fc2)/3
6988 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C18H23N2+·C7H7O4S·H2Oγ = 102.281 (1)°
Mr = 472.60V = 1206.39 (5) Å3
Triclinic, P1Z = 2
a = 7.4430 (2) ÅMo Kα radiation
b = 10.3298 (2) ŵ = 0.17 mm1
c = 16.3817 (4) ÅT = 298 K
α = 91.265 (1)°0.53 × 0.19 × 0.13 mm
β = 100.794 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6988 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4465 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.978Rint = 0.029
28598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
6988 reflectionsΔρmin = 0.32 e Å3
312 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.50562 (17)1.00872 (12)0.61471 (8)0.0443 (3)
N20.6382 (2)0.95002 (15)0.87724 (11)0.0724 (5)
C10.6858 (2)0.98155 (17)0.57237 (10)0.0522 (4)
H1A0.75401.04760.56930.063*
C20.7688 (2)0.85902 (18)0.53425 (11)0.0594 (4)
H2A0.89230.84130.50530.071*
C30.6657 (3)0.76154 (18)0.53944 (11)0.0615 (5)
H3A0.71990.67720.51420.074*
C40.4839 (2)0.78983 (16)0.58190 (11)0.0548 (4)
H4A0.41490.72430.58450.066*
C50.3994 (2)0.91516 (15)0.62153 (9)0.0448 (3)
C60.2092 (2)0.94942 (16)0.66919 (10)0.0499 (4)
H6A0.16251.03630.69140.060*
C70.0969 (2)0.86422 (16)0.68320 (10)0.0494 (4)
H7A0.14470.77890.65830.059*
C80.0914 (2)0.88967 (15)0.73292 (9)0.0456 (3)
C90.1915 (2)0.78913 (16)0.74038 (10)0.0508 (4)
H9A0.13560.70700.71240.061*
C100.3691 (2)0.80681 (16)0.78742 (11)0.0524 (4)
H10A0.43040.73690.79070.063*
C110.4595 (2)0.92947 (16)0.83076 (10)0.0509 (4)
C120.3604 (2)1.03119 (16)0.82244 (10)0.0519 (4)
H12A0.41651.11380.84980.062*
C130.1826 (2)1.01232 (16)0.77504 (10)0.0495 (4)
H13A0.12171.08240.77090.059*
C160.7364 (3)0.84251 (19)0.89166 (13)0.0641 (5)
H16A0.87030.87960.90600.077*
H16B0.71190.78670.84070.077*
C170.6778 (3)0.7585 (2)0.96027 (14)0.0828 (6)
H17A0.74710.68980.96790.124*
H17B0.54610.71920.94560.124*
H17C0.70290.81311.01110.124*
C180.4297 (2)1.14455 (15)0.65430 (11)0.0539 (4)
H18A0.51961.19830.63840.081*
H18B0.31541.18280.63640.081*
H18C0.40501.14060.71370.081*
S10.85883 (5)0.64249 (4)0.33983 (3)0.05481 (14)
O10.14269 (17)0.50219 (14)0.09686 (8)0.0711 (4)
O20.8984 (2)0.52093 (14)0.37195 (11)0.0983 (6)
O30.8267 (2)0.72821 (16)0.40326 (10)0.0928 (5)
O40.99412 (18)0.70754 (16)0.29340 (10)0.0853 (4)
C190.6343 (2)0.61781 (16)0.18441 (11)0.0535 (4)
H19A0.74270.65570.16550.064*
C200.4652 (2)0.58362 (18)0.12927 (11)0.0591 (4)
H20A0.46000.59720.07300.071*
C210.3033 (2)0.52931 (16)0.15715 (10)0.0518 (4)
C220.3100 (2)0.50668 (16)0.24013 (11)0.0528 (4)
H22A0.20100.46990.25900.063*
C230.4813 (2)0.53940 (15)0.29535 (10)0.0504 (4)
H23A0.48710.52320.35130.061*
C240.6431 (2)0.59581 (14)0.26792 (10)0.0446 (3)
C250.0281 (3)0.4442 (3)0.12097 (15)0.0874 (7)
H25A0.12990.43700.07420.131*
H25B0.04740.49890.16530.131*
H25C0.02280.35750.13970.131*
C14A0.7158 (4)1.0661 (3)0.9384 (2)0.0620 (10)0.665 (7)
H14A0.78051.03790.98970.074*0.665 (7)
H14B0.61451.10360.95110.074*0.665 (7)
C15A0.8500 (5)1.1693 (4)0.9030 (2)0.0837 (13)0.665 (7)
H15A0.90231.24300.94330.126*0.665 (7)
H15B0.78441.19940.85340.126*0.665 (7)
H15C0.94891.13140.88970.126*0.665 (7)
C14B0.7614 (10)1.0907 (7)0.8914 (5)0.067 (2)*0.335 (7)
H14C0.89001.09110.88760.080*0.335 (7)
H14D0.71321.14970.85200.080*0.335 (7)
C15B0.7461 (11)1.1271 (9)0.9771 (5)0.085 (3)*0.335 (7)
H15D0.81861.21550.99350.127*0.335 (7)
H15E0.79281.06611.01440.127*0.335 (7)
H15F0.61711.12350.97920.127*0.335 (7)
O1W0.2163 (2)0.42954 (15)0.44206 (9)0.0802 (4)
H1W10.20430.40600.49910.096*
H2W10.11790.46260.41950.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0394 (6)0.0452 (7)0.0455 (7)0.0056 (5)0.0063 (5)0.0013 (5)
N20.0520 (8)0.0551 (9)0.1020 (13)0.0181 (7)0.0109 (8)0.0106 (8)
C10.0411 (8)0.0600 (10)0.0536 (9)0.0101 (7)0.0061 (7)0.0001 (7)
C20.0443 (8)0.0672 (11)0.0569 (10)0.0012 (8)0.0018 (7)0.0034 (8)
C30.0620 (10)0.0512 (9)0.0599 (10)0.0032 (8)0.0026 (8)0.0072 (8)
C40.0582 (10)0.0439 (8)0.0582 (10)0.0074 (7)0.0058 (8)0.0013 (7)
C50.0455 (8)0.0422 (8)0.0448 (8)0.0067 (6)0.0077 (6)0.0019 (6)
C60.0454 (8)0.0453 (8)0.0545 (9)0.0070 (6)0.0030 (7)0.0030 (7)
C70.0493 (8)0.0469 (8)0.0503 (9)0.0100 (7)0.0065 (7)0.0004 (7)
C80.0467 (8)0.0449 (8)0.0455 (8)0.0107 (6)0.0094 (6)0.0032 (6)
C90.0533 (9)0.0422 (8)0.0555 (9)0.0112 (7)0.0067 (7)0.0010 (7)
C100.0536 (9)0.0443 (8)0.0622 (10)0.0186 (7)0.0093 (8)0.0029 (7)
C110.0447 (8)0.0494 (9)0.0579 (9)0.0128 (7)0.0063 (7)0.0016 (7)
C120.0520 (9)0.0432 (8)0.0587 (10)0.0127 (7)0.0049 (7)0.0048 (7)
C130.0509 (9)0.0452 (8)0.0545 (9)0.0169 (7)0.0086 (7)0.0007 (7)
C160.0504 (9)0.0674 (11)0.0759 (12)0.0243 (8)0.0039 (9)0.0013 (9)
C170.0948 (16)0.0816 (14)0.0772 (14)0.0340 (12)0.0137 (12)0.0032 (11)
C180.0488 (9)0.0458 (8)0.0636 (10)0.0095 (7)0.0048 (7)0.0107 (7)
S10.0428 (2)0.0440 (2)0.0716 (3)0.01129 (16)0.00529 (19)0.00146 (19)
O10.0525 (7)0.0869 (9)0.0627 (8)0.0079 (6)0.0074 (6)0.0003 (7)
O20.0759 (10)0.0629 (9)0.1366 (14)0.0167 (7)0.0315 (9)0.0240 (9)
O30.0668 (9)0.1074 (12)0.0924 (11)0.0314 (8)0.0219 (8)0.0470 (9)
O40.0450 (7)0.0923 (10)0.1062 (11)0.0044 (7)0.0055 (7)0.0094 (9)
C190.0482 (8)0.0485 (9)0.0628 (10)0.0058 (7)0.0137 (7)0.0038 (7)
C200.0594 (10)0.0637 (11)0.0501 (9)0.0069 (8)0.0076 (8)0.0069 (8)
C210.0463 (8)0.0493 (9)0.0555 (10)0.0103 (7)0.0003 (7)0.0018 (7)
C220.0433 (8)0.0525 (9)0.0596 (10)0.0041 (7)0.0105 (7)0.0003 (7)
C230.0511 (9)0.0469 (8)0.0501 (9)0.0073 (7)0.0062 (7)0.0016 (7)
C240.0421 (7)0.0345 (7)0.0547 (9)0.0092 (6)0.0030 (6)0.0014 (6)
C250.0442 (10)0.1211 (19)0.0871 (15)0.0093 (11)0.0008 (10)0.0126 (14)
C14A0.0534 (16)0.0638 (18)0.064 (2)0.0186 (13)0.0045 (14)0.0106 (15)
C15A0.079 (2)0.060 (2)0.096 (3)0.0026 (17)0.0013 (18)0.0063 (17)
O1W0.0792 (9)0.0933 (10)0.0774 (9)0.0416 (8)0.0134 (7)0.0030 (8)
Geometric parameters (Å, º) top
N1—C11.3572 (19)C18—H18A0.9600
N1—C51.367 (2)C18—H18B0.9600
N1—C181.4811 (19)C18—H18C0.9600
N2—C111.374 (2)S1—O31.4364 (15)
N2—C161.454 (2)S1—O41.4372 (15)
N2—C14A1.487 (4)S1—O21.4383 (14)
N2—C14B1.531 (8)S1—C241.7706 (15)
C1—C21.364 (2)O1—C211.3732 (19)
C1—H1A0.9300O1—C251.416 (2)
C2—C31.385 (3)C19—C201.377 (2)
C2—H2A0.9300C19—C241.383 (2)
C3—C41.368 (2)C19—H19A0.9300
C3—H3A0.9300C20—C211.380 (2)
C4—C51.399 (2)C20—H20A0.9300
C4—H4A0.9300C21—C221.378 (2)
C5—C61.449 (2)C22—C231.389 (2)
C6—C71.332 (2)C22—H22A0.9300
C6—H6A0.9300C23—C241.381 (2)
C7—C81.450 (2)C23—H23A0.9300
C7—H7A0.9300C25—H25A0.9600
C8—C91.396 (2)C25—H25B0.9600
C8—C131.401 (2)C25—H25C0.9600
C9—C101.373 (2)C14A—C15A1.504 (6)
C9—H9A0.9300C14A—H14A0.9700
C10—C111.407 (2)C14A—H14B0.9700
C10—H10A0.9300C15A—H15A0.9600
C11—C121.402 (2)C15A—H15B0.9600
C12—C131.375 (2)C15A—H15C0.9600
C12—H12A0.9300C14B—C15B1.477 (12)
C13—H13A0.9300C14B—H14C0.9700
C16—C171.507 (3)C14B—H14D0.9700
C16—H16A0.9700C15B—H15D0.9600
C16—H16B0.9700C15B—H15E0.9600
C17—H17A0.9600C15B—H15F0.9600
C17—H17B0.9600O1W—H1W10.9855
C17—H17C0.9600O1W—H2W10.8948
C1—N1—C5121.85 (13)H17B—C17—H17C109.5
C1—N1—C18116.77 (13)N1—C18—H18A109.5
C5—N1—C18121.38 (12)N1—C18—H18B109.5
C11—N2—C16121.76 (14)H18A—C18—H18B109.5
C11—N2—C14A121.37 (16)N1—C18—H18C109.5
C16—N2—C14A113.64 (17)H18A—C18—H18C109.5
C11—N2—C14B119.6 (3)H18B—C18—H18C109.5
C16—N2—C14B115.9 (3)O3—S1—O4113.46 (10)
N1—C1—C2121.17 (16)O3—S1—O2111.88 (11)
N1—C1—H1A119.4O4—S1—O2112.97 (10)
C2—C1—H1A119.4O3—S1—C24105.87 (8)
C1—C2—C3118.79 (16)O4—S1—C24106.18 (8)
C1—C2—H2A120.6O2—S1—C24105.71 (8)
C3—C2—H2A120.6C21—O1—C25117.97 (15)
C4—C3—C2119.71 (15)C20—C19—C24120.06 (15)
C4—C3—H3A120.1C20—C19—H19A120.0
C2—C3—H3A120.1C24—C19—H19A120.0
C3—C4—C5121.47 (16)C19—C20—C21120.26 (16)
C3—C4—H4A119.3C19—C20—H20A119.9
C5—C4—H4A119.3C21—C20—H20A119.9
N1—C5—C4117.00 (14)O1—C21—C22124.66 (15)
N1—C5—C6119.21 (13)O1—C21—C20115.03 (15)
C4—C5—C6123.79 (15)C22—C21—C20120.31 (15)
C7—C6—C5124.12 (14)C21—C22—C23119.25 (15)
C7—C6—H6A117.9C21—C22—H22A120.4
C5—C6—H6A117.9C23—C22—H22A120.4
C6—C7—C8127.23 (15)C24—C23—C22120.60 (15)
C6—C7—H7A116.4C24—C23—H23A119.7
C8—C7—H7A116.4C22—C23—H23A119.7
C9—C8—C13116.61 (14)C23—C24—C19119.50 (14)
C9—C8—C7119.95 (14)C23—C24—S1119.97 (12)
C13—C8—C7123.44 (14)C19—C24—S1120.51 (12)
C10—C9—C8122.58 (14)O1—C25—H25A109.5
C10—C9—H9A118.7O1—C25—H25B109.5
C8—C9—H9A118.7H25A—C25—H25B109.5
C9—C10—C11120.76 (15)O1—C25—H25C109.5
C9—C10—H10A119.6H25A—C25—H25C109.5
C11—C10—H10A119.6H25B—C25—H25C109.5
N2—C11—C12121.41 (14)N2—C14A—C15A109.7 (3)
N2—C11—C10121.78 (15)N2—C14A—H14A109.7
C12—C11—C10116.78 (14)C15A—C14A—H14A109.7
C13—C12—C11121.91 (14)N2—C14A—H14B109.7
C13—C12—H12A119.0C15A—C14A—H14B109.7
C11—C12—H12A119.0H14A—C14A—H14B108.2
C12—C13—C8121.35 (14)C15B—C14B—N2101.4 (6)
C12—C13—H13A119.3C15B—C14B—H14C111.5
C8—C13—H13A119.3N2—C14B—H14C111.5
N2—C16—C17112.53 (17)C15B—C14B—H14D111.5
N2—C16—H16A109.1N2—C14B—H14D111.5
C17—C16—H16A109.1H14C—C14B—H14D109.3
N2—C16—H16B109.1C14B—C15B—H15D109.5
C17—C16—H16B109.1C14B—C15B—H15E109.5
H16A—C16—H16B107.8H15D—C15B—H15E109.5
C16—C17—H17A109.5C14B—C15B—H15F109.5
C16—C17—H17B109.5H15D—C15B—H15F109.5
H17A—C17—H17B109.5H15E—C15B—H15F109.5
C16—C17—H17C109.5H1W1—O1W—H2W1108.6
H17A—C17—H17C109.5
C5—N1—C1—C20.3 (2)C9—C8—C13—C121.2 (2)
C18—N1—C1—C2179.54 (15)C7—C8—C13—C12179.05 (15)
N1—C1—C2—C30.1 (3)C11—N2—C16—C1780.5 (2)
C1—C2—C3—C40.4 (3)C14A—N2—C16—C1779.5 (3)
C2—C3—C4—C50.9 (3)C14B—N2—C16—C17118.5 (4)
C1—N1—C5—C40.8 (2)C24—C19—C20—C211.1 (3)
C18—N1—C5—C4179.99 (14)C25—O1—C21—C221.4 (3)
C1—N1—C5—C6178.59 (14)C25—O1—C21—C20178.95 (18)
C18—N1—C5—C60.6 (2)C19—C20—C21—O1178.51 (15)
C3—C4—C5—N11.1 (2)C19—C20—C21—C221.1 (3)
C3—C4—C5—C6178.25 (16)O1—C21—C22—C23179.48 (15)
N1—C5—C6—C7176.57 (15)C20—C21—C22—C230.1 (3)
C4—C5—C6—C72.8 (3)C21—C22—C23—C240.9 (2)
C5—C6—C7—C8177.25 (15)C22—C23—C24—C191.0 (2)
C6—C7—C8—C9179.16 (16)C22—C23—C24—S1177.67 (12)
C6—C7—C8—C130.6 (3)C20—C19—C24—C230.0 (2)
C13—C8—C9—C101.1 (2)C20—C19—C24—S1178.67 (13)
C7—C8—C9—C10179.14 (15)O3—S1—C24—C2354.23 (15)
C8—C9—C10—C110.1 (3)O4—S1—C24—C23175.13 (13)
C16—N2—C11—C12175.03 (17)O2—S1—C24—C2364.62 (15)
C14A—N2—C11—C1216.6 (3)O3—S1—C24—C19124.45 (15)
C14B—N2—C11—C1224.6 (4)O4—S1—C24—C193.56 (16)
C16—N2—C11—C106.8 (3)O2—S1—C24—C19116.70 (15)
C14A—N2—C11—C10165.2 (2)C11—N2—C14A—C15A103.6 (3)
C14B—N2—C11—C10153.6 (4)C16—N2—C14A—C15A96.4 (3)
C9—C10—C11—N2179.06 (17)C14B—N2—C14A—C15A5.6 (5)
C9—C10—C11—C120.8 (3)C11—N2—C14B—C15B101.7 (5)
N2—C11—C12—C13178.98 (17)C16—N2—C14B—C15B96.8 (5)
C10—C11—C12—C130.7 (3)C14A—N2—C14B—C15B1.8 (4)
C11—C12—C13—C80.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.992.533.371 (2)143
O1W—H1W1···O3i0.992.153.073 (2)155
O1W—H2W1···O2ii0.891.902.791 (2)176
C1—H1A···O3iii0.932.543.419 (2)158
C2—H2A···O3iv0.932.473.349 (2)158
C4—H4A···O1Wv0.932.473.381 (2)166
C7—H7A···O1Wv0.932.583.479 (2)163
C17—H17A···O1i0.962.583.435 (3)149
C18—H18A···O3iii0.962.543.466 (2)162
C18—H18B···O4vi0.962.473.221 (2)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+2, z+1; (iv) x2, y, z; (v) x, y+1, z+1; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H23N2+·C7H7O4S·H2O
Mr472.60
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4430 (2), 10.3298 (2), 16.3817 (4)
α, β, γ (°)91.265 (1), 100.794 (1), 102.281 (1)
V3)1206.39 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.53 × 0.19 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.914, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
28598, 6988, 4465
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.145, 1.06
No. of reflections6988
No. of parameters312
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.992.533.371 (2)143
O1W—H1W1···O3i0.992.153.073 (2)155
O1W—H2W1···O2ii0.891.902.791 (2)176
C1—H1A···O3iii0.932.543.419 (2)158
C2—H2A···O3iv0.932.473.349 (2)158
C4—H4A···O1Wv0.932.473.381 (2)166
C7—H7A···O1Wv0.932.583.479 (2)163
C17—H17A···O1i0.962.583.435 (3)149
C18—H18A···O3iii0.962.543.466 (2)162
C18—H18B···O4vi0.962.473.221 (2)135
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+2, z+1; (iv) x2, y, z; (v) x, y+1, z+1; (vi) x+1, y+2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Prince of Songkla University for a research grant. NB also thanks Prince of Songkla University for a postdoctoral fellowship. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDomagk, G. (1935). Dtsch Med. Wochenschr. 24, 829–832.  CrossRef Google Scholar
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011a). Acta Cryst. E67, o593–o594.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kaewmanee, N., Chanawanno, K., Karalai, C. & Chantrapromma, S. (2011b). Acta Cryst. E67, o2488–o2489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2639–o2640.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2728-o2729
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds