organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2684-o2685

(E)-1-(2,4-Di­nitro­phen­yl)-2-[1-(3-nitro­phen­yl)ethyl­­idene]hydrazine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 30 July 2012; accepted 6 August 2012; online 11 August 2012)

In the asymmetric unit of the title compound, C14H11N5O6, there are three crystallographically independent mol­ecules with similar conformations but some differences in bond angles. The mol­ecules are slightly twisted with the dihedral angles between the benzene rings being 10.02 (14), 8.41 (15) and 1.40 (14)°. In each mol­ecule, an intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into a three-dimensional network. ππ inter­actions with centroid–centroid distances of 3.5635 (17)–3.8273 (18) Å are observed.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure, see: Chantrapromma et al. (2011[Chantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499-o3500.]). For background to and the biological activity of hydro­zones, see: Cui et al. (2010[Cui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576-5584.]); Krishnamoorthy et al. (2011[Krishnamoorthy, P., Sathyadevi, P., Senthikumar, K., Muthiah, T., Ramesh, R. & Dharmaraj, N. (2011). Inorg. Chem. Commun. 14, 1318-1322.]); Molyneux (2004[Molyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211-219.]); Raja et al. (2012[Raja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Eur. J. Med. Chem. 47, 73-85.]); Sathyadevi et al. (2012[Sathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K. & Muthiah, P. T. (2012). Polyhedron, 31, 294-306.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N5O6

  • Mr = 345.28

  • Monoclinic, P 21 /c

  • a = 7.3309 (2) Å

  • b = 38.3569 (8) Å

  • c = 16.8027 (4) Å

  • β = 115.158 (1)°

  • V = 4276.57 (18) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.49 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.988

  • 49752 measured reflections

  • 12460 independent reflections

  • 7719 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.159

  • S = 1.07

  • 12460 reflections

  • 679 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O1A 0.88 1.98 2.615 (3) 128
N1B—H1BA⋯O1B 0.88 2.01 2.637 (3) 127
N1C—H1CA⋯O1C 0.88 1.98 2.617 (3) 129
C3A—H3AA⋯O2Ai 0.95 2.44 3.320 (3) 154
C3B—H3BA⋯O2Cii 0.95 2.40 3.188 (3) 140
C3C—H3CA⋯O2Biii 0.95 2.52 3.413 (3) 156
C14B—H14F⋯O4Aiv 0.98 2.53 3.316 (4) 137
C14C—H14J⋯O4Ciii 0.98 2.54 3.253 (4) 129
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Considerable attentions have been devoted to hydrazones and their complexes which have been acknowledged to possess diverse biological properties as antibacterial, antifungal, anagesic, anti-inflammatory as well as antioxidant activities (Cui et al., 2010; Krishnamoorthy et al., 2011; Raja et al., 2012; Sathyadevi et al., 2012). In our on-going research on bioactivity of hydrazones, the title compound (I) was synthesized and evaluated for antioxidant activity by DPPH scavenging (Molyneux, 2004) and was found to be weakly active with 30% inhibition. It was also screened for antibacterial activity and found to be inactive. Herein we report the synthesis and crystal structure of (I).

In the asymmetric unit of (I), C14H11N5O6, there are three crystallographically independent molecules A, B and C with similar conformations but some differences in bond angles (Fig. 1). The molecular structure is slightly twisted with the dihedral angle between the two benzene rings being 10.02 (14), 8.41 (15) and 1.40 (14)° in molecule A, B and C, respectively. The central ethylidenehydrazine bridge is planar with the torsion angles N1–N2–C7–C14 = 2.6 (4), -3.1 (4) and -2.1 (3)° in molecules A, B and C, respectively. This central N1/N2/C7/C14 plane makes dihedral angles of 12.90 (18) and 20.11 (18)° with the 2,4-dinitro- and 3-nitro-substituted benzene rings, respectively in molecule A, whereas the corresponding values are 12.50 (18) and 20.51 (18)° in molecule B, and 11.70 (18) and 12.33 (18)° in molecule C. In all three molecules, the nitro group of 3-nitrophenyl are co-planar with their bound benzene rings with r.m.s. deviations of 0.079 (2), 0.030 (2) and 0.025 (3) Å in molecules A, B and C, respectively, for the nine non H-atoms (C8–C13/N5/O5–O6). In the 2,4-dinitrophenyl, the ortho-nitro group lies on the same plane with its bound benzene ring with r.m.s. deviations of 0.023 (2), 0.075 (2) and 0.025 (2) Å in molecules A, B and C, repectively, for the nine non H-atoms (C1–C6/N3/O1–O2), but the para-nitro group is deviated with the torsion angles O3–N4–C4–C3 = 19.8 (3)° and O4–N4–C4–C3 = -160.9 (2)° in molecule A whereas the corresponding values are -9.8 (4) and 170.6 (2)° in molecule B, and -21.0 (3) and 159.4 (2)° in molecule C. In each molecule, intramolecular N—H···O hydrogen bonds between the hydrazone-NH and the ortho-nitro group (Fig. 1 and Table 1) generate three S(6) ring motifs (Bernstein et al., 1995). The bond distances are in normal ranges (Allen et al., 1987) and are comparable with the related structure (Chantrapromma et al., 2011).

In the crystal structure (Fig. 2), the molecules are linked by C—H···O weak interactions (Table 1) into a three-dimensional network. ππ interactions were presented with the distances of Cg1···Cg6 = 3.5635 (17) Å, Cg2···Cg5 = 3.5650 (18) Å, Cg3···Cg4v = 3.6544 (18) Å and Cg3···Cg4vi = 3.8273 (18) Å [symmetry codes: (v) 1 - x, 2 - y, 2 - z; (vi) 2 - x, 2 - y, 2 - z]; Cg1, Cg2, Cg3, Cg4, Cg5 and Cg6 are the centroids of C1A–C6A, C8A–C13A, C1B–C6B, C8B–C13BA, C1C–C6C and C8C–C13C benzene rings, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure, see: Chantrapromma et al. (2011). For background to and the biological activity of hydrozones, see: Cui et al. (2010); Krishnamoorthy et al. (2011); Molyneux (2004); Raja et al. (2012); Sathyadevi et al. (2012). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H2SO4 (conc.) (98%, 0.50 ml) was slowly added with stirring. 3-Nitroacetophenone (0.35 g, 2 mmol) in ethanol (10.00 ml) was then added to the solution with continuous stirring. The solution was refluxed for 1 hr yielding an yellow solid which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days (m.p. 507–508 K).

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.88 Å, C—H = 0.95 Å for aromatic and 0.98 Å for CH3 atoms. The Uiso(H) values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound viewed approximately along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-1-(2,4-Dinitrophenyl)-2-[1-(3-nitrophenyl)ethylidene]hydrazine top
Crystal data top
C14H11N5O6F(000) = 2136
Mr = 345.28Dx = 1.609 Mg m3
Monoclinic, P21/cMelting point = 507–508 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.3309 (2) ÅCell parameters from 12460 reflections
b = 38.3569 (8) Åθ = 1.1–30.0°
c = 16.8027 (4) ŵ = 0.13 mm1
β = 115.158 (1)°T = 100 K
V = 4276.57 (18) Å3Block, yellow
Z = 120.49 × 0.10 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
12460 independent reflections
Radiation source: sealed tube7719 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 30.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.940, Tmax = 0.988k = 4953
49752 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0437P)2 + 3.8937P]
where P = (Fo2 + 2Fc2)/3
12460 reflections(Δ/σ)max = 0.001
679 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C14H11N5O6V = 4276.57 (18) Å3
Mr = 345.28Z = 12
Monoclinic, P21/cMo Kα radiation
a = 7.3309 (2) ŵ = 0.13 mm1
b = 38.3569 (8) ÅT = 100 K
c = 16.8027 (4) Å0.49 × 0.10 × 0.10 mm
β = 115.158 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
12460 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
7719 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.988Rint = 0.072
49752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0770 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.07Δρmax = 0.51 e Å3
12460 reflectionsΔρmin = 0.38 e Å3
679 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A1.0005 (3)0.92844 (5)0.64127 (11)0.0268 (4)
O2A0.9875 (3)0.97771 (5)0.57674 (12)0.0276 (4)
O3A0.6139 (3)0.99217 (5)0.26790 (13)0.0359 (5)
O4A0.3472 (3)0.95996 (5)0.20354 (11)0.0254 (4)
O5A0.2251 (3)0.75669 (5)0.35614 (12)0.0261 (4)
O6A0.2531 (4)0.70272 (5)0.39490 (14)0.0472 (6)
N1A0.7915 (3)0.87484 (5)0.55324 (13)0.0172 (4)
H1AA0.87640.88170.60600.021*
N2A0.7233 (3)0.84100 (5)0.53897 (13)0.0171 (4)
N3A0.9363 (3)0.94709 (5)0.57465 (13)0.0177 (4)
N4A0.5092 (3)0.96680 (6)0.26601 (14)0.0209 (5)
N5A0.3093 (3)0.73305 (6)0.40790 (14)0.0241 (5)
C1A0.7255 (4)0.89752 (6)0.48449 (15)0.0151 (5)
C2A0.7932 (3)0.93258 (6)0.49190 (15)0.0150 (5)
C3A0.7244 (4)0.95503 (6)0.41999 (16)0.0167 (5)
H3AA0.77560.97810.42540.020*
C4A0.5813 (4)0.94319 (6)0.34122 (15)0.0169 (5)
C5A0.5038 (4)0.90923 (6)0.33111 (16)0.0175 (5)
H5AA0.40120.90190.27640.021*
C6A0.5780 (4)0.88679 (6)0.40110 (15)0.0175 (5)
H6AA0.52960.86350.39360.021*
C7A0.7690 (4)0.82152 (6)0.60742 (15)0.0163 (5)
C8A0.6995 (4)0.78476 (6)0.58883 (15)0.0160 (5)
C9A0.5443 (4)0.77613 (6)0.50711 (15)0.0170 (5)
H9AA0.48350.79340.46330.020*
C10A0.4817 (4)0.74167 (6)0.49183 (16)0.0193 (5)
C11A0.5691 (4)0.71538 (6)0.55242 (17)0.0220 (5)
H11A0.52530.69190.53910.026*
C12A0.7215 (4)0.72408 (7)0.63267 (17)0.0219 (5)
H12A0.78390.70650.67540.026*
C13A0.7846 (4)0.75853 (6)0.65159 (16)0.0189 (5)
H13A0.88680.76430.70790.023*
C14A0.8828 (4)0.83316 (7)0.70094 (17)0.0272 (6)
H14A0.85570.85790.70580.041*
H14B1.02760.82980.71910.041*
H14C0.83960.81940.73900.041*
O1B1.0090 (3)0.91068 (5)1.14668 (12)0.0260 (4)
O2B0.8666 (3)0.86026 (4)1.10339 (12)0.0266 (4)
O3B0.4725 (4)0.83754 (6)0.80216 (16)0.0654 (9)
O4B0.2945 (3)0.87838 (5)0.71768 (12)0.0334 (5)
O5B0.3878 (3)1.09140 (5)0.83376 (11)0.0236 (4)
O6B0.5168 (3)1.14326 (5)0.84719 (12)0.0309 (5)
N1B0.8365 (3)0.96614 (5)1.05174 (13)0.0190 (4)
H1BA0.91700.95951.10540.023*
N2B0.8059 (3)1.00095 (5)1.03058 (13)0.0191 (4)
N3B0.8860 (3)0.89130 (5)1.09028 (14)0.0198 (4)
N4B0.4247 (3)0.86807 (6)0.78739 (15)0.0265 (5)
N5B0.5170 (3)1.11357 (6)0.87446 (14)0.0212 (5)
C1B0.7396 (4)0.94219 (6)0.98780 (16)0.0178 (5)
C2B0.7587 (4)0.90569 (6)1.00424 (15)0.0167 (5)
C3B0.6541 (4)0.88183 (6)0.93861 (16)0.0190 (5)
H3BA0.66870.85750.95060.023*
C4B0.5301 (4)0.89357 (6)0.85670 (16)0.0192 (5)
C5B0.5034 (4)0.92931 (7)0.83717 (16)0.0193 (5)
H5BA0.41420.93700.78000.023*
C6B0.6080 (4)0.95299 (6)0.90184 (15)0.0187 (5)
H6BA0.59180.97720.88860.022*
C7B0.8768 (4)1.02291 (6)1.09502 (16)0.0168 (5)
C8B0.8458 (4)1.06007 (6)1.06806 (15)0.0164 (5)
C9B0.6992 (4)1.06913 (6)0.98502 (15)0.0170 (5)
H9BA0.61631.05180.94590.020*
C10B0.6771 (4)1.10396 (6)0.96097 (15)0.0168 (5)
C11B0.7940 (4)1.13023 (6)1.01474 (16)0.0195 (5)
H11B0.77641.15380.99570.023*
C12B0.9374 (4)1.12102 (6)1.09710 (16)0.0199 (5)
H12B1.01971.13851.13560.024*
C13B0.9629 (4)1.08631 (6)1.12452 (16)0.0187 (5)
H13B1.06021.08051.18180.022*
C14B0.9801 (4)1.01340 (7)1.19055 (16)0.0264 (6)
H14D0.92110.99191.20080.040*
H14E0.96271.03231.22600.040*
H14F1.12411.00981.20720.040*
O1C0.1689 (3)0.74191 (5)0.38978 (12)0.0275 (4)
O2C0.1244 (3)0.69066 (5)0.44882 (12)0.0296 (5)
O3C0.2722 (3)0.67220 (5)0.75401 (12)0.0282 (4)
O4C0.5339 (3)0.70556 (5)0.81641 (12)0.0257 (4)
O5C0.5986 (3)0.91628 (5)0.66988 (12)0.0294 (4)
O6C0.5778 (3)0.96939 (5)0.62208 (14)0.0362 (5)
N1C0.0454 (3)0.79484 (5)0.47944 (13)0.0174 (4)
H1CA0.04840.78850.42800.021*
N2C0.1181 (3)0.82847 (5)0.49206 (13)0.0170 (4)
N3C0.0874 (3)0.72206 (5)0.45348 (14)0.0199 (4)
N4C0.3685 (3)0.69869 (5)0.75661 (13)0.0192 (4)
N5C0.5215 (3)0.93881 (6)0.61320 (14)0.0225 (5)
C1C0.1188 (4)0.77154 (6)0.54654 (16)0.0163 (5)
C2C0.0576 (4)0.73607 (6)0.53636 (15)0.0168 (5)
C3C0.1358 (4)0.71267 (6)0.60596 (16)0.0175 (5)
H3CA0.08870.68930.59900.021*
C4C0.2817 (4)0.72381 (6)0.68475 (16)0.0177 (5)
C5C0.3507 (4)0.75844 (6)0.69789 (16)0.0183 (5)
H5CA0.45380.76550.75280.022*
C6C0.2673 (4)0.78189 (6)0.63043 (16)0.0186 (5)
H6CA0.30940.80550.63990.022*
C7C0.0635 (4)0.84757 (6)0.42229 (16)0.0155 (5)
C8C0.1381 (3)0.88409 (6)0.43691 (15)0.0159 (5)
C9C0.2878 (3)0.89426 (6)0.51852 (15)0.0166 (5)
H9CA0.34150.87820.56580.020*
C10C0.3557 (4)0.92842 (7)0.52864 (16)0.0188 (5)
C11C0.2798 (4)0.95319 (7)0.46272 (17)0.0213 (5)
H11C0.32890.97650.47220.026*
C12C0.1305 (4)0.94299 (7)0.38283 (17)0.0224 (5)
H12C0.07470.95950.33660.027*
C13C0.0606 (4)0.90885 (6)0.36922 (16)0.0184 (5)
H13C0.04070.90220.31350.022*
C14C0.0651 (4)0.83538 (7)0.33029 (16)0.0213 (5)
H14G0.03930.81060.32510.032*
H14H0.03230.84890.28860.032*
H14J0.20760.83870.31720.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0358 (11)0.0155 (9)0.0182 (9)0.0019 (8)0.0009 (9)0.0017 (7)
O2A0.0367 (11)0.0116 (9)0.0281 (10)0.0104 (8)0.0075 (9)0.0028 (8)
O3A0.0391 (12)0.0254 (11)0.0337 (11)0.0106 (9)0.0063 (10)0.0128 (9)
O4A0.0245 (10)0.0247 (10)0.0195 (9)0.0024 (8)0.0022 (8)0.0006 (8)
O5A0.0274 (10)0.0230 (10)0.0221 (9)0.0029 (8)0.0048 (8)0.0017 (8)
O6A0.0701 (17)0.0199 (11)0.0339 (12)0.0224 (11)0.0051 (12)0.0043 (9)
N1A0.0234 (11)0.0084 (10)0.0156 (10)0.0035 (8)0.0041 (9)0.0013 (8)
N2A0.0208 (11)0.0089 (10)0.0200 (10)0.0020 (8)0.0072 (9)0.0017 (8)
N3A0.0182 (10)0.0132 (11)0.0187 (10)0.0030 (8)0.0051 (9)0.0032 (8)
N4A0.0231 (11)0.0165 (11)0.0199 (11)0.0023 (9)0.0062 (10)0.0015 (9)
N5A0.0299 (13)0.0203 (12)0.0221 (11)0.0089 (10)0.0111 (10)0.0029 (9)
C1A0.0174 (12)0.0113 (11)0.0168 (11)0.0008 (9)0.0074 (10)0.0015 (9)
C2A0.0149 (11)0.0123 (12)0.0156 (11)0.0025 (9)0.0044 (10)0.0023 (9)
C3A0.0190 (12)0.0093 (11)0.0226 (12)0.0013 (9)0.0094 (11)0.0002 (9)
C4A0.0187 (12)0.0148 (12)0.0176 (11)0.0028 (9)0.0081 (10)0.0034 (9)
C5A0.0172 (12)0.0167 (13)0.0181 (12)0.0025 (10)0.0070 (10)0.0031 (9)
C6A0.0190 (12)0.0130 (12)0.0196 (12)0.0033 (9)0.0075 (10)0.0045 (9)
C7A0.0178 (12)0.0122 (12)0.0178 (11)0.0015 (9)0.0063 (10)0.0006 (9)
C8A0.0184 (12)0.0119 (12)0.0185 (12)0.0003 (9)0.0086 (10)0.0009 (9)
C9A0.0212 (12)0.0123 (12)0.0174 (11)0.0008 (9)0.0082 (10)0.0003 (9)
C10A0.0226 (13)0.0166 (13)0.0190 (12)0.0051 (10)0.0093 (11)0.0041 (10)
C11A0.0289 (14)0.0109 (12)0.0270 (14)0.0014 (10)0.0128 (12)0.0016 (10)
C12A0.0244 (13)0.0147 (13)0.0249 (13)0.0023 (10)0.0088 (12)0.0080 (10)
C13A0.0181 (12)0.0168 (13)0.0194 (12)0.0001 (10)0.0056 (10)0.0015 (10)
C14A0.0379 (16)0.0167 (14)0.0196 (13)0.0032 (12)0.0052 (12)0.0002 (10)
O1B0.0257 (10)0.0190 (10)0.0227 (9)0.0029 (8)0.0000 (8)0.0006 (8)
O2B0.0398 (12)0.0102 (9)0.0266 (10)0.0045 (8)0.0110 (9)0.0042 (7)
O3B0.0775 (19)0.0186 (12)0.0493 (15)0.0105 (12)0.0220 (14)0.0143 (11)
O4B0.0345 (12)0.0299 (12)0.0223 (10)0.0046 (9)0.0010 (9)0.0023 (8)
O5B0.0237 (10)0.0202 (10)0.0220 (9)0.0008 (8)0.0050 (8)0.0036 (8)
O6B0.0378 (12)0.0190 (10)0.0285 (10)0.0022 (9)0.0070 (9)0.0090 (8)
N1B0.0247 (11)0.0118 (10)0.0159 (10)0.0002 (8)0.0042 (9)0.0012 (8)
N2B0.0228 (11)0.0123 (10)0.0199 (10)0.0007 (8)0.0070 (9)0.0012 (8)
N3B0.0234 (11)0.0143 (11)0.0212 (11)0.0017 (9)0.0090 (10)0.0008 (8)
N4B0.0267 (12)0.0207 (13)0.0248 (12)0.0014 (10)0.0039 (10)0.0042 (9)
N5B0.0248 (11)0.0169 (11)0.0202 (11)0.0031 (9)0.0078 (10)0.0008 (9)
C1B0.0202 (12)0.0146 (12)0.0194 (12)0.0002 (10)0.0092 (10)0.0001 (10)
C2B0.0179 (12)0.0140 (12)0.0175 (11)0.0010 (9)0.0068 (10)0.0008 (9)
C3B0.0201 (13)0.0119 (12)0.0236 (13)0.0002 (10)0.0079 (11)0.0020 (10)
C4B0.0185 (12)0.0169 (13)0.0204 (12)0.0024 (10)0.0063 (11)0.0058 (10)
C5B0.0193 (12)0.0209 (13)0.0169 (12)0.0023 (10)0.0069 (10)0.0022 (10)
C6B0.0217 (13)0.0153 (13)0.0178 (12)0.0034 (10)0.0071 (11)0.0026 (9)
C7B0.0205 (12)0.0113 (12)0.0181 (12)0.0010 (9)0.0076 (10)0.0001 (9)
C8B0.0191 (12)0.0130 (12)0.0165 (11)0.0008 (9)0.0071 (10)0.0017 (9)
C9B0.0177 (12)0.0154 (12)0.0172 (11)0.0006 (9)0.0068 (10)0.0022 (9)
C10B0.0186 (12)0.0155 (12)0.0149 (11)0.0038 (9)0.0057 (10)0.0025 (9)
C11B0.0247 (13)0.0114 (12)0.0228 (13)0.0010 (10)0.0103 (11)0.0001 (10)
C12B0.0235 (13)0.0139 (12)0.0207 (12)0.0048 (10)0.0079 (11)0.0062 (10)
C13B0.0194 (12)0.0169 (13)0.0169 (11)0.0005 (10)0.0050 (10)0.0020 (9)
C14B0.0379 (16)0.0157 (13)0.0198 (13)0.0033 (12)0.0067 (12)0.0006 (10)
O1C0.0319 (11)0.0156 (10)0.0234 (10)0.0011 (8)0.0004 (9)0.0041 (8)
O2C0.0362 (11)0.0106 (9)0.0299 (10)0.0063 (8)0.0024 (9)0.0026 (8)
O3C0.0300 (11)0.0185 (10)0.0316 (11)0.0023 (8)0.0088 (9)0.0074 (8)
O4C0.0213 (10)0.0264 (11)0.0211 (9)0.0031 (8)0.0010 (8)0.0028 (8)
O5C0.0267 (10)0.0303 (11)0.0234 (10)0.0038 (9)0.0032 (9)0.0006 (8)
O6C0.0383 (12)0.0194 (11)0.0402 (12)0.0093 (9)0.0064 (10)0.0093 (9)
N1C0.0215 (11)0.0100 (10)0.0162 (10)0.0016 (8)0.0035 (9)0.0005 (8)
N2C0.0199 (11)0.0096 (10)0.0212 (10)0.0013 (8)0.0084 (9)0.0019 (8)
N3C0.0195 (11)0.0153 (11)0.0211 (11)0.0016 (9)0.0050 (9)0.0014 (9)
N4C0.0214 (11)0.0160 (11)0.0179 (10)0.0026 (9)0.0061 (9)0.0019 (8)
N5C0.0213 (11)0.0214 (12)0.0235 (11)0.0028 (9)0.0084 (10)0.0058 (9)
C1C0.0197 (12)0.0114 (12)0.0190 (12)0.0000 (9)0.0096 (10)0.0004 (9)
C2C0.0188 (12)0.0109 (12)0.0170 (11)0.0006 (9)0.0041 (10)0.0007 (9)
C3C0.0203 (12)0.0099 (12)0.0222 (12)0.0004 (9)0.0090 (11)0.0013 (9)
C4C0.0185 (12)0.0155 (12)0.0185 (12)0.0026 (10)0.0073 (10)0.0039 (9)
C5C0.0201 (12)0.0158 (13)0.0178 (12)0.0025 (10)0.0068 (10)0.0012 (9)
C6C0.0227 (13)0.0128 (12)0.0197 (12)0.0041 (10)0.0084 (11)0.0022 (9)
C7C0.0156 (11)0.0097 (11)0.0197 (12)0.0006 (9)0.0061 (10)0.0005 (9)
C8C0.0163 (12)0.0143 (12)0.0176 (11)0.0007 (9)0.0078 (10)0.0007 (9)
C9C0.0170 (12)0.0139 (12)0.0165 (11)0.0021 (9)0.0048 (10)0.0011 (9)
C10C0.0157 (12)0.0184 (13)0.0208 (12)0.0013 (10)0.0063 (10)0.0045 (10)
C11C0.0231 (13)0.0113 (12)0.0317 (14)0.0014 (10)0.0137 (12)0.0002 (10)
C12C0.0244 (13)0.0183 (13)0.0239 (13)0.0039 (11)0.0097 (11)0.0073 (10)
C13C0.0186 (12)0.0163 (13)0.0184 (12)0.0005 (10)0.0061 (10)0.0007 (10)
C14C0.0243 (13)0.0148 (13)0.0183 (12)0.0034 (10)0.0027 (11)0.0001 (10)
Geometric parameters (Å, º) top
O1A—N3A1.240 (3)C5B—C6B1.373 (3)
O2A—N3A1.229 (3)C5B—H5BA0.9500
O3A—N4A1.231 (3)C6B—H6BA0.9500
O4A—N4A1.234 (3)C7B—C8B1.483 (3)
O5A—N5A1.226 (3)C7B—C14B1.500 (3)
O6A—N5A1.222 (3)C8B—C9B1.396 (3)
N1A—C1A1.360 (3)C8B—C13B1.399 (3)
N1A—N2A1.375 (3)C9B—C10B1.385 (3)
N1A—H1AA0.8800C9B—H9BA0.9500
N2A—C7A1.291 (3)C10B—C11B1.381 (3)
N3A—C2A1.450 (3)C11B—C12B1.381 (4)
N4A—C4A1.459 (3)C11B—H11B0.9500
N5A—C10A1.476 (3)C12B—C13B1.395 (3)
C1A—C6A1.419 (3)C12B—H12B0.9500
C1A—C2A1.420 (3)C13B—H13B0.9500
C2A—C3A1.392 (3)C14B—H14D0.9800
C3A—C4A1.370 (3)C14B—H14E0.9800
C3A—H3AA0.9500C14B—H14F0.9800
C4A—C5A1.402 (3)O1C—N3C1.240 (3)
C5A—C6A1.370 (3)O2C—N3C1.230 (3)
C5A—H5AA0.9500O3C—N4C1.228 (3)
C6A—H6AA0.9500O4C—N4C1.230 (3)
C7A—C8A1.486 (3)O5C—N5C1.231 (3)
C7A—C14A1.500 (3)O6C—N5C1.231 (3)
C8A—C13A1.398 (3)N1C—C1C1.358 (3)
C8A—C9A1.400 (3)N1C—N2C1.377 (3)
C9A—C10A1.387 (3)N1C—H1CA0.8800
C9A—H9AA0.9500N2C—C7C1.293 (3)
C10A—C11A1.382 (3)N3C—C2C1.449 (3)
C11A—C12A1.377 (4)N4C—C4C1.462 (3)
C11A—H11A0.9500N5C—C10C1.479 (3)
C12A—C13A1.391 (3)C1C—C2C1.420 (3)
C12A—H12A0.9500C1C—C6C1.423 (3)
C13A—H13A0.9500C2C—C3C1.390 (3)
C14A—H14A0.9800C3C—C4C1.369 (3)
C14A—H14B0.9800C3C—H3CA0.9500
C14A—H14C0.9800C4C—C5C1.405 (3)
O1B—N3B1.240 (3)C5C—C6C1.370 (3)
O2B—N3B1.230 (3)C5C—H5CA0.9500
O3B—N4B1.217 (3)C6C—H6CA0.9500
O4B—N4B1.220 (3)C7C—C8C1.486 (3)
O5B—N5B1.239 (3)C7C—C14C1.503 (3)
O6B—N5B1.227 (3)C8C—C9C1.399 (3)
N1B—C1B1.362 (3)C8C—C13C1.403 (3)
N1B—N2B1.375 (3)C9C—C10C1.386 (3)
N1B—H1BA0.8800C9C—H9CA0.9500
N2B—C7B1.294 (3)C10C—C11C1.384 (4)
N3B—C2B1.456 (3)C11C—C12C1.380 (4)
N4B—C4B1.464 (3)C11C—H11C0.9500
N5B—C10B1.475 (3)C12C—C13C1.389 (3)
C1B—C6B1.415 (3)C12C—H12C0.9500
C1B—C2B1.423 (3)C13C—H13C0.9500
C2B—C3B1.386 (3)C14C—H14G0.9800
C3B—C4B1.364 (3)C14C—H14H0.9800
C3B—H3BA0.9500C14C—H14J0.9800
C4B—C5B1.404 (3)
C1A—N1A—N2A118.9 (2)C5B—C6B—H6BA119.2
C1A—N1A—H1AA120.5C1B—C6B—H6BA119.2
N2A—N1A—H1AA120.5N2B—C7B—C8B114.5 (2)
C7A—N2A—N1A117.0 (2)N2B—C7B—C14B125.3 (2)
O2A—N3A—O1A122.1 (2)C8B—C7B—C14B120.2 (2)
O2A—N3A—C2A118.8 (2)C9B—C8B—C13B119.2 (2)
O1A—N3A—C2A119.1 (2)C9B—C8B—C7B119.8 (2)
O3A—N4A—O4A123.7 (2)C13B—C8B—C7B120.9 (2)
O3A—N4A—C4A118.4 (2)C10B—C9B—C8B118.5 (2)
O4A—N4A—C4A117.9 (2)C10B—C9B—H9BA120.8
O6A—N5A—O5A123.2 (2)C8B—C9B—H9BA120.8
O6A—N5A—C10A118.1 (2)C11B—C10B—C9B123.4 (2)
O5A—N5A—C10A118.7 (2)C11B—C10B—N5B118.3 (2)
N1A—C1A—C6A120.0 (2)C9B—C10B—N5B118.3 (2)
N1A—C1A—C2A123.1 (2)C10B—C11B—C12B117.7 (2)
C6A—C1A—C2A116.9 (2)C10B—C11B—H11B121.1
C3A—C2A—C1A121.7 (2)C12B—C11B—H11B121.1
C3A—C2A—N3A116.2 (2)C11B—C12B—C13B120.9 (2)
C1A—C2A—N3A122.1 (2)C11B—C12B—H12B119.6
C4A—C3A—C2A118.7 (2)C13B—C12B—H12B119.6
C4A—C3A—H3AA120.7C12B—C13B—C8B120.3 (2)
C2A—C3A—H3AA120.7C12B—C13B—H13B119.8
C3A—C4A—C5A121.9 (2)C8B—C13B—H13B119.8
C3A—C4A—N4A118.5 (2)C7B—C14B—H14D109.5
C5A—C4A—N4A119.5 (2)C7B—C14B—H14E109.5
C6A—C5A—C4A119.2 (2)H14D—C14B—H14E109.5
C6A—C5A—H5AA120.4C7B—C14B—H14F109.5
C4A—C5A—H5AA120.4H14D—C14B—H14F109.5
C5A—C6A—C1A121.5 (2)H14E—C14B—H14F109.5
C5A—C6A—H6AA119.2C1C—N1C—N2C119.8 (2)
C1A—C6A—H6AA119.2C1C—N1C—H1CA120.1
N2A—C7A—C8A115.2 (2)N2C—N1C—H1CA120.1
N2A—C7A—C14A125.4 (2)C7C—N2C—N1C116.2 (2)
C8A—C7A—C14A119.4 (2)O2C—N3C—O1C122.3 (2)
C13A—C8A—C9A119.0 (2)O2C—N3C—C2C118.5 (2)
C13A—C8A—C7A121.4 (2)O1C—N3C—C2C119.3 (2)
C9A—C8A—C7A119.6 (2)O3C—N4C—O4C124.0 (2)
C10A—C9A—C8A118.3 (2)O3C—N4C—C4C118.3 (2)
C10A—C9A—H9AA120.9O4C—N4C—C4C117.7 (2)
C8A—C9A—H9AA120.9O5C—N5C—O6C123.7 (2)
C11A—C10A—C9A123.1 (2)O5C—N5C—C10C118.3 (2)
C11A—C10A—N5A118.7 (2)O6C—N5C—C10C118.0 (2)
C9A—C10A—N5A118.2 (2)N1C—C1C—C2C122.5 (2)
C12A—C11A—C10A118.3 (2)N1C—C1C—C6C120.3 (2)
C12A—C11A—H11A120.9C2C—C1C—C6C117.1 (2)
C10A—C11A—H11A120.9C3C—C2C—C1C121.4 (2)
C11A—C12A—C13A120.4 (2)C3C—C2C—N3C116.2 (2)
C11A—C12A—H12A119.8C1C—C2C—N3C122.4 (2)
C13A—C12A—H12A119.8C4C—C3C—C2C119.0 (2)
C12A—C13A—C8A120.9 (2)C4C—C3C—H3CA120.5
C12A—C13A—H13A119.6C2C—C3C—H3CA120.5
C8A—C13A—H13A119.6C3C—C4C—C5C121.9 (2)
C7A—C14A—H14A109.5C3C—C4C—N4C118.7 (2)
C7A—C14A—H14B109.5C5C—C4C—N4C119.5 (2)
H14A—C14A—H14B109.5C6C—C5C—C4C119.1 (2)
C7A—C14A—H14C109.5C6C—C5C—H5CA120.5
H14A—C14A—H14C109.5C4C—C5C—H5CA120.5
H14B—C14A—H14C109.5C5C—C6C—C1C121.4 (2)
C1B—N1B—N2B118.5 (2)C5C—C6C—H6CA119.3
C1B—N1B—H1BA120.7C1C—C6C—H6CA119.3
N2B—N1B—H1BA120.7N2C—C7C—C8C115.7 (2)
C7B—N2B—N1B116.9 (2)N2C—C7C—C14C125.0 (2)
O2B—N3B—O1B123.1 (2)C8C—C7C—C14C119.3 (2)
O2B—N3B—C2B118.1 (2)C9C—C8C—C13C119.0 (2)
O1B—N3B—C2B118.9 (2)C9C—C8C—C7C120.3 (2)
O3B—N4B—O4B123.2 (2)C13C—C8C—C7C120.7 (2)
O3B—N4B—C4B118.1 (2)C10C—C9C—C8C118.3 (2)
O4B—N4B—C4B118.7 (2)C10C—C9C—H9CA120.8
O6B—N5B—O5B123.4 (2)C8C—C9C—H9CA120.8
O6B—N5B—C10B118.3 (2)C11C—C10C—C9C123.3 (2)
O5B—N5B—C10B118.3 (2)C11C—C10C—N5C118.1 (2)
N1B—C1B—C6B120.6 (2)C9C—C10C—N5C118.6 (2)
N1B—C1B—C2B122.4 (2)C12C—C11C—C10C117.8 (2)
C6B—C1B—C2B117.0 (2)C12C—C11C—H11C121.1
C3B—C2B—C1B121.3 (2)C10C—C11C—H11C121.1
C3B—C2B—N3B116.4 (2)C11C—C12C—C13C120.8 (2)
C1B—C2B—N3B122.3 (2)C11C—C12C—H12C119.6
C4B—C3B—C2B119.4 (2)C13C—C12C—H12C119.6
C4B—C3B—H3BA120.3C12C—C13C—C8C120.7 (2)
C2B—C3B—H3BA120.3C12C—C13C—H13C119.6
C3B—C4B—C5B121.7 (2)C8C—C13C—H13C119.6
C3B—C4B—N4B118.8 (2)C7C—C14C—H14G109.5
C5B—C4B—N4B119.5 (2)C7C—C14C—H14H109.5
C6B—C5B—C4B119.0 (2)H14G—C14C—H14H109.5
C6B—C5B—H5BA120.5C7C—C14C—H14J109.5
C4B—C5B—H5BA120.5H14G—C14C—H14J109.5
C5B—C6B—C1B121.5 (2)H14H—C14C—H14J109.5
C1A—N1A—N2A—C7A171.6 (2)N1B—C1B—C6B—C5B177.7 (2)
N2A—N1A—C1A—C6A4.3 (3)C2B—C1B—C6B—C5B0.0 (3)
N2A—N1A—C1A—C2A177.5 (2)N1B—N2B—C7B—C8B177.9 (2)
N1A—C1A—C2A—C3A179.3 (2)N1B—N2B—C7B—C14B3.1 (4)
C6A—C1A—C2A—C3A2.5 (3)N2B—C7B—C8B—C9B19.2 (3)
N1A—C1A—C2A—N3A1.2 (3)C14B—C7B—C8B—C9B159.9 (2)
C6A—C1A—C2A—N3A177.0 (2)N2B—C7B—C8B—C13B160.4 (2)
O2A—N3A—C2A—C3A0.1 (3)C14B—C7B—C8B—C13B20.6 (3)
O1A—N3A—C2A—C3A178.9 (2)C13B—C8B—C9B—C10B1.0 (3)
O2A—N3A—C2A—C1A179.4 (2)C7B—C8B—C9B—C10B178.5 (2)
O1A—N3A—C2A—C1A0.6 (3)C8B—C9B—C10B—C11B0.5 (4)
C1A—C2A—C3A—C4A2.8 (3)C8B—C9B—C10B—N5B177.8 (2)
N3A—C2A—C3A—C4A176.7 (2)O6B—N5B—C10B—C11B12.8 (3)
C2A—C3A—C4A—C5A0.4 (4)O5B—N5B—C10B—C11B166.1 (2)
C2A—C3A—C4A—N4A179.9 (2)O6B—N5B—C10B—C9B168.8 (2)
O3A—N4A—C4A—C3A19.8 (3)O5B—N5B—C10B—C9B12.3 (3)
O4A—N4A—C4A—C3A160.9 (2)C9B—C10B—C11B—C12B1.1 (4)
O3A—N4A—C4A—C5A159.9 (2)N5B—C10B—C11B—C12B177.2 (2)
O4A—N4A—C4A—C5A19.4 (3)C10B—C11B—C12B—C13B0.2 (4)
C3A—C4A—C5A—C6A2.3 (4)C11B—C12B—C13B—C8B1.3 (4)
N4A—C4A—C5A—C6A177.4 (2)C9B—C8B—C13B—C12B1.9 (3)
C4A—C5A—C6A—C1A2.6 (4)C7B—C8B—C13B—C12B177.6 (2)
N1A—C1A—C6A—C5A178.0 (2)C1C—N1C—N2C—C7C170.1 (2)
C2A—C1A—C6A—C5A0.2 (3)N2C—N1C—C1C—C2C176.7 (2)
N1A—N2A—C7A—C8A177.61 (19)N2C—N1C—C1C—C6C1.4 (3)
N1A—N2A—C7A—C14A2.6 (4)N1C—C1C—C2C—C3C179.7 (2)
N2A—C7A—C8A—C13A161.1 (2)C6C—C1C—C2C—C3C1.5 (3)
C14A—C7A—C8A—C13A19.1 (3)N1C—C1C—C2C—N3C0.2 (4)
N2A—C7A—C8A—C9A19.5 (3)C6C—C1C—C2C—N3C178.0 (2)
C14A—C7A—C8A—C9A160.3 (2)O2C—N3C—C2C—C3C3.3 (3)
C13A—C8A—C9A—C10A0.1 (3)O1C—N3C—C2C—C3C177.1 (2)
C7A—C8A—C9A—C10A179.6 (2)O2C—N3C—C2C—C1C176.2 (2)
C8A—C9A—C10A—C11A2.0 (4)O1C—N3C—C2C—C1C3.4 (3)
C8A—C9A—C10A—N5A176.1 (2)C1C—C2C—C3C—C4C3.0 (4)
O6A—N5A—C10A—C11A1.2 (4)N3C—C2C—C3C—C4C176.5 (2)
O5A—N5A—C10A—C11A176.2 (2)C2C—C3C—C4C—C5C1.7 (4)
O6A—N5A—C10A—C9A179.3 (2)C2C—C3C—C4C—N4C177.7 (2)
O5A—N5A—C10A—C9A1.9 (3)O3C—N4C—C4C—C3C21.0 (3)
C9A—C10A—C11A—C12A2.0 (4)O4C—N4C—C4C—C3C159.4 (2)
N5A—C10A—C11A—C12A176.0 (2)O3C—N4C—C4C—C5C159.5 (2)
C10A—C11A—C12A—C13A0.0 (4)O4C—N4C—C4C—C5C20.1 (3)
C11A—C12A—C13A—C8A2.0 (4)C3C—C4C—C5C—C6C1.1 (4)
C9A—C8A—C13A—C12A2.1 (4)N4C—C4C—C5C—C6C179.4 (2)
C7A—C8A—C13A—C12A178.5 (2)C4C—C5C—C6C—C1C2.7 (4)
C1B—N1B—N2B—C7B170.5 (2)N1C—C1C—C6C—C5C176.8 (2)
N2B—N1B—C1B—C6B0.9 (3)C2C—C1C—C6C—C5C1.4 (3)
N2B—N1B—C1B—C2B178.5 (2)N1C—N2C—C7C—C8C178.35 (19)
N1B—C1B—C2B—C3B178.2 (2)N1C—N2C—C7C—C14C2.1 (3)
C6B—C1B—C2B—C3B0.5 (3)N2C—C7C—C8C—C9C11.8 (3)
N1B—C1B—C2B—N3B1.1 (4)C14C—C7C—C8C—C9C167.8 (2)
C6B—C1B—C2B—N3B178.8 (2)N2C—C7C—C8C—C13C168.6 (2)
O2B—N3B—C2B—C3B12.4 (3)C14C—C7C—C8C—C13C11.9 (3)
O1B—N3B—C2B—C3B167.4 (2)C13C—C8C—C9C—C10C1.0 (3)
O2B—N3B—C2B—C1B167.0 (2)C7C—C8C—C9C—C10C178.7 (2)
O1B—N3B—C2B—C1B13.2 (3)C8C—C9C—C10C—C11C1.5 (4)
C1B—C2B—C3B—C4B0.1 (4)C8C—C9C—C10C—N5C176.7 (2)
N3B—C2B—C3B—C4B179.2 (2)O5C—N5C—C10C—C11C175.2 (2)
C2B—C3B—C4B—C5B0.8 (4)O6C—N5C—C10C—C11C3.1 (3)
C2B—C3B—C4B—N4B178.4 (2)O5C—N5C—C10C—C9C3.1 (3)
O3B—N4B—C4B—C3B9.8 (4)O6C—N5C—C10C—C9C178.5 (2)
O4B—N4B—C4B—C3B170.6 (2)C9C—C10C—C11C—C12C0.7 (4)
O3B—N4B—C4B—C5B169.4 (3)N5C—C10C—C11C—C12C177.5 (2)
O4B—N4B—C4B—C5B10.2 (4)C10C—C11C—C12C—C13C0.6 (4)
C3B—C4B—C5B—C6B1.3 (4)C11C—C12C—C13C—C8C1.1 (4)
N4B—C4B—C5B—C6B177.9 (2)C9C—C8C—C13C—C12C0.3 (3)
C4B—C5B—C6B—C1B0.9 (4)C7C—C8C—C13C—C12C179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1A0.881.982.615 (3)128
N1B—H1BA···O1B0.882.012.637 (3)127
N1C—H1CA···O1C0.881.982.617 (3)129
C3A—H3AA···O2Ai0.952.443.320 (3)154
C3B—H3BA···O2Cii0.952.403.188 (3)140
C3C—H3CA···O2Biii0.952.523.413 (3)156
C14B—H14F···O4Aiv0.982.533.316 (4)137
C14C—H14J···O4Ciii0.982.543.253 (4)129
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H11N5O6
Mr345.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.3309 (2), 38.3569 (8), 16.8027 (4)
β (°) 115.158 (1)
V3)4276.57 (18)
Z12
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.49 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.940, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
49752, 12460, 7719
Rint0.072
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.159, 1.07
No. of reflections12460
No. of parameters679
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.38

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O1A0.881.982.615 (3)128
N1B—H1BA···O1B0.882.012.637 (3)127
N1C—H1CA···O1C0.881.982.617 (3)129
C3A—H3AA···O2Ai0.952.443.320 (3)154
C3B—H3BA···O2Cii0.952.403.188 (3)140
C3C—H3CA···O2Biii0.952.523.413 (3)156
C14B—H14F···O4Aiv0.982.533.316 (4)137
C14C—H14J···O4Ciii0.982.543.253 (4)129
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+3/2, z+1/2; (iii) x1, y+3/2, z1/2; (iv) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

BN and TK thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. NB thanks Prince of Songkla University for a postdoctoral fellowship. The authors thank Prince of Songkla University and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. Mr Teerasak Anantapong, Department of Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, is acknowledged for the bacterial assay.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Fun, H.-K. (2011). Acta Cryst. E67, o3499–o3500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCui, Z., Li, Y., Ling, Y., Huang, J., Cui, J., Wang, R. & Yang, X. (2010). Eur. J. Med. Chem. 45, 5576–5584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrishnamoorthy, P., Sathyadevi, P., Senthikumar, K., Muthiah, T., Ramesh, R. & Dharmaraj, N. (2011). Inorg. Chem. Commun. 14, 1318–1322.  Web of Science CSD CrossRef CAS Google Scholar
First citationMolyneux, P. (2004). Songklanakarin J. Sci. Technol. 26, 211–219.  CAS Google Scholar
First citationRaja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Eur. J. Med. Chem. 47, 73–85.  PubMed Google Scholar
First citationSathyadevi, P., Krishnamoorthy, P., Alagesan, M., Thanigaimani, K. & Muthiah, P. T. (2012). Polyhedron, 31, 294–306.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2684-o2685
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds