organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­­oxy­phen­yl)-4-chloro­benzene­sulfonamide

aDepartment of Studies in Physics, Manasagangotri, University of Mysore, Mysore 570 006, India, bPG Department of Studies in Chemistry, JSS College of Arts, Commerce and Science, Ooty Road, Mysore 570 025, India, and cX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India
*Correspondence e-mail: mas@physics.uni-mysore.ac.in

(Received 22 August 2012; accepted 23 August 2012; online 31 August 2012)

In the title compound, C21H20BrClN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by a dihedral angle of 70.2 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.5 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular ππ stacking inter­action between the pyrimidine and the 4-chloro­benzene rings [centroid–centroid distance = 3.978 (2) Å]. The morpholine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯N hydrogen bonds and these dimers are further connected by N—H⋯O hydrogen bonds, forming a tape along the a axis.

Related literature

For related structures of sulfonamides, see: Rodrigues et al. (2011[Rodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.]); Akkurt et al. (2011[Akkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.]); Kant et al. (2012[Kant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590-o2591.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20BrClN4O4S2

  • Mr = 571.89

  • Monoclinic, P 21 /n

  • a = 10.0311 (3) Å

  • b = 17.3096 (6) Å

  • c = 13.9223 (4) Å

  • β = 91.829 (3)°

  • V = 2416.16 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.438, Tmax = 0.668

  • 26979 measured reflections

  • 4744 independent reflections

  • 3408 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.03

  • 4744 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O25i 0.86 2.09 2.849 (4) 148
C20—H20⋯N19ii 0.93 2.52 3.352 (5) 149
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bond lengths and angles in the title compound (Fig. 1) have normal values (Allen et al., 1987) and are comparable with the similar crystal structures (Rodrigues et al., 2011; Akkurt et al., 2011; Kant et al., 2012). The molecule is twisted at atom S1 with a C1—S1—N7—C8 torsion angle of 60.8 (3)°. The morpholine ring is exhibiting a chair conformation [asymmetry parameters are: ΔC2(N22—C23) = 2.53; ΔCs(N22—O25) = 1/5; Duax & Norton, 1975]. The two benzene rings (C1—C6/C8—C13) are tilted relative to each other by 70.2 (1)° and the dihedral angle between the sulfur bridged pyrimidine and benzene rings is 69.5 (1)°. The molecular conformation is stabilized by a weak intramolecular stacking interaction between the pyrimidine and the 4-chloro benzene rings [centroid–centroid distance = 3.978 (2) Å, interplanar spacing = 3.340 Å, and centroid shift = 2.16 Å]. In the crystal, molecules are linked into dimers by pairs of C20—H20···N19 hydrogen bonds and these dimers are further linked by N7—H7···O25 hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For related structures of sulfonamides, see: Rodrigues et al. (2011); Akkurt et al. (2011); Kant et al. (2012). For bond-length data, see: Allen et al. (1987). For ring conformations, see: Duax & Norton (1975).

Experimental top

The reaction of N-[2-(5-bromo-2-chloro-pyrimidin-4-ylsulfanyl)-4-methoxy-phenyl]-4-chloro-benzenesulfonamide (5.22 g, 0.01 mol) with morpholine (0.88 g, 0.01) were carried out in the presence of triethylamine and the reaction mixture was allowed to stir at room temperature for 6–7 h in dry dichloromethane. The progress of the reaction was monitored by TLC. Upon completion, the solvent was removed under reduced pressure and residue was extracted with ethyl acetate. The compound was purified by successive recrystallization from methanol (yield 80%, m.p. 462–464 K)

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C and N atoms, with C—H distances of 0.93–0.97 Å and N—H distance of 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
Fig. 1. ORTEP view of the title molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2. A molecular packing view of the title compound down the a axis, showing intermolecular interactions. For clarity, hydrogen atoms which are not involved in hydrogen bonding have been omitted.
N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfanyl}-4- methoxyphenyl)-4-chlorobenzenesulfonamide top
Crystal data top
C21H20BrClN4O4S2F(000) = 1160
Mr = 571.89Dx = 1.572 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9194 reflections
a = 10.0311 (3) Åθ = 3.5–29.0°
b = 17.3096 (6) ŵ = 2.02 mm1
c = 13.9223 (4) ÅT = 293 K
β = 91.829 (3)°Block, white
V = 2416.16 (13) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4744 independent reflections
Radiation source: fine-focus sealed tube3408 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.7°
w scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2121
Tmin = 0.438, Tmax = 0.668l = 1717
26979 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.7709P]
where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C21H20BrClN4O4S2V = 2416.16 (13) Å3
Mr = 571.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0311 (3) ŵ = 2.02 mm1
b = 17.3096 (6) ÅT = 293 K
c = 13.9223 (4) Å0.3 × 0.2 × 0.2 mm
β = 91.829 (3)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4744 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3408 reflections with I > 2σ(I)
Tmin = 0.438, Tmax = 0.668Rint = 0.048
26979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.03Δρmax = 0.42 e Å3
4744 reflectionsΔρmin = 0.65 e Å3
299 parameters
Special details top

Experimental. Absorption correction: CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5036 (3)0.16095 (19)0.0690 (2)0.0825 (9)
O20.6714 (4)0.24236 (18)0.00871 (19)0.0816 (9)
Br10.66487 (4)0.12100 (3)0.53546 (3)0.06449 (16)
S20.69475 (8)0.25466 (5)0.37229 (6)0.0451 (2)
S10.62576 (11)0.20307 (6)0.07413 (7)0.0605 (3)
Cl11.06308 (15)0.03829 (9)0.18890 (14)0.1136 (5)
C10.7553 (4)0.1383 (2)0.1103 (3)0.0516 (9)
C20.8716 (5)0.1366 (3)0.0617 (3)0.0750 (12)
H20.88580.17170.01250.090*
C30.9679 (5)0.0824 (3)0.0860 (4)0.0851 (14)
H31.04700.08030.05310.102*
C40.9451 (4)0.0318 (3)0.1593 (4)0.0711 (12)
C50.8317 (4)0.0349 (2)0.2101 (3)0.0647 (11)
H50.81970.00120.26110.078*
C60.7347 (4)0.0882 (2)0.1854 (3)0.0582 (10)
H60.65610.09030.21900.070*
N70.6095 (3)0.26564 (17)0.1598 (2)0.0492 (7)
H70.53430.26860.18760.059*
C80.7152 (3)0.31610 (19)0.1908 (2)0.0405 (7)
C90.7703 (4)0.3677 (2)0.1266 (3)0.0503 (9)
H90.73670.36990.06360.060*
C100.8737 (4)0.4154 (2)0.1548 (3)0.0509 (9)
H100.91060.44870.11050.061*
C110.9235 (3)0.41437 (19)0.2487 (3)0.0461 (8)
C120.8665 (3)0.36557 (19)0.3139 (2)0.0431 (8)
H120.89640.36590.37790.052*
C130.7647 (3)0.31593 (18)0.2847 (2)0.0382 (7)
O141.0244 (3)0.46473 (15)0.2706 (2)0.0633 (7)
C151.0716 (5)0.4676 (3)0.3673 (4)0.0833 (14)
H15A0.99830.47740.40830.125*
H15B1.13620.50830.37480.125*
H15C1.11230.41910.38450.125*
C160.8284 (3)0.18979 (17)0.3927 (2)0.0365 (7)
N170.9356 (2)0.19637 (14)0.33991 (18)0.0367 (6)
C181.0363 (3)0.14619 (18)0.3584 (2)0.0412 (8)
N191.0348 (3)0.08998 (17)0.4253 (2)0.0555 (8)
C200.9257 (4)0.0853 (2)0.4755 (3)0.0574 (10)
H200.92150.04740.52270.069*
C210.8188 (3)0.13305 (19)0.4616 (2)0.0424 (8)
N221.1446 (3)0.15306 (17)0.3042 (2)0.0521 (7)
C231.2648 (4)0.1067 (3)0.3206 (4)0.0713 (12)
H23A1.25120.07080.37290.086*
H23B1.28240.07690.26340.086*
C241.3790 (4)0.1560 (3)0.3443 (4)0.0766 (13)
H24A1.36690.17960.40660.092*
H24B1.45910.12460.34860.092*
O251.3958 (3)0.2151 (2)0.2743 (2)0.0899 (11)
C261.2790 (4)0.2613 (3)0.2621 (4)0.0846 (15)
H26A1.29340.29950.21250.101*
H26B1.26320.28860.32150.101*
C271.1609 (4)0.2154 (3)0.2354 (3)0.0649 (11)
H27A1.08240.24820.23430.078*
H27B1.17040.19400.17160.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0727 (19)0.083 (2)0.089 (2)0.0082 (16)0.0313 (16)0.0141 (18)
O20.127 (3)0.079 (2)0.0388 (15)0.0099 (19)0.0027 (15)0.0047 (14)
Br10.0599 (3)0.0763 (3)0.0583 (3)0.0100 (2)0.01681 (19)0.0202 (2)
S20.0322 (4)0.0552 (5)0.0482 (5)0.0007 (4)0.0061 (3)0.0165 (4)
S10.0729 (7)0.0615 (6)0.0461 (5)0.0010 (5)0.0126 (5)0.0021 (5)
Cl10.0878 (9)0.0894 (10)0.1623 (15)0.0286 (8)0.0144 (9)0.0113 (9)
C10.058 (2)0.049 (2)0.048 (2)0.0077 (17)0.0057 (17)0.0081 (17)
C20.082 (3)0.076 (3)0.068 (3)0.001 (3)0.018 (2)0.006 (2)
C30.069 (3)0.091 (4)0.096 (4)0.000 (3)0.018 (3)0.014 (3)
C40.064 (3)0.058 (3)0.091 (3)0.003 (2)0.006 (2)0.014 (2)
C50.064 (3)0.048 (2)0.082 (3)0.010 (2)0.007 (2)0.005 (2)
C60.057 (2)0.054 (2)0.063 (2)0.0094 (19)0.0005 (19)0.001 (2)
N70.0450 (16)0.0564 (18)0.0462 (16)0.0007 (14)0.0001 (13)0.0004 (14)
C80.0393 (17)0.0421 (19)0.0405 (18)0.0066 (14)0.0061 (14)0.0035 (14)
C90.063 (2)0.052 (2)0.0365 (18)0.0063 (18)0.0070 (16)0.0057 (16)
C100.057 (2)0.045 (2)0.052 (2)0.0012 (17)0.0192 (17)0.0131 (17)
C110.0397 (18)0.0387 (19)0.060 (2)0.0016 (15)0.0103 (16)0.0091 (16)
C120.0398 (17)0.044 (2)0.0454 (19)0.0028 (15)0.0019 (15)0.0102 (15)
C130.0346 (16)0.0376 (17)0.0426 (18)0.0048 (13)0.0061 (14)0.0103 (14)
O140.0573 (15)0.0597 (16)0.0730 (19)0.0169 (13)0.0053 (14)0.0132 (14)
C150.073 (3)0.086 (3)0.089 (3)0.032 (3)0.016 (3)0.017 (3)
C160.0339 (16)0.0369 (17)0.0384 (17)0.0049 (13)0.0027 (13)0.0033 (14)
N170.0300 (13)0.0380 (15)0.0420 (15)0.0040 (11)0.0004 (11)0.0057 (12)
C180.0352 (17)0.0381 (18)0.050 (2)0.0063 (14)0.0007 (15)0.0013 (15)
N190.0500 (17)0.0424 (17)0.074 (2)0.0040 (14)0.0052 (16)0.0190 (15)
C200.060 (2)0.047 (2)0.065 (2)0.0005 (18)0.0028 (19)0.0229 (19)
C210.0440 (18)0.0411 (19)0.0425 (19)0.0075 (15)0.0064 (15)0.0137 (15)
N220.0364 (15)0.0505 (18)0.070 (2)0.0009 (13)0.0085 (14)0.0098 (16)
C230.048 (2)0.067 (3)0.099 (3)0.015 (2)0.013 (2)0.000 (2)
C240.042 (2)0.092 (3)0.095 (3)0.005 (2)0.006 (2)0.032 (3)
O250.0371 (14)0.136 (3)0.096 (2)0.0163 (16)0.0023 (14)0.056 (2)
C260.064 (3)0.101 (4)0.088 (3)0.025 (3)0.010 (2)0.043 (3)
C270.040 (2)0.095 (3)0.060 (2)0.003 (2)0.0070 (17)0.017 (2)
Geometric parameters (Å, º) top
O1—S11.426 (3)C12—C131.386 (4)
O2—S11.427 (3)C12—H120.9300
Br1—C211.894 (3)O14—C151.414 (5)
S2—C161.765 (3)C15—H15A0.9600
S2—C131.777 (3)C15—H15B0.9600
S1—N71.623 (3)C15—H15C0.9600
S1—C11.777 (4)C16—N171.326 (4)
Cl1—C41.736 (5)C16—C211.379 (4)
C1—C21.367 (6)N17—C181.351 (4)
C1—C61.379 (5)C18—N191.347 (4)
C2—C31.381 (7)C18—N221.348 (4)
C2—H20.9300N19—C201.320 (5)
C3—C41.368 (7)C20—C211.363 (5)
C3—H30.9300C20—H200.9300
C4—C51.360 (6)N22—C271.455 (5)
C5—C61.376 (6)N22—C231.461 (5)
C5—H50.9300C23—C241.458 (6)
C6—H60.9300C23—H23A0.9700
N7—C81.430 (4)C23—H23B0.9700
N7—H70.8600C24—O251.426 (5)
C8—C131.384 (4)C24—H24A0.9700
C8—C91.391 (5)C24—H24B0.9700
C9—C101.374 (5)O25—C261.424 (5)
C9—H90.9300C26—C271.465 (6)
C10—C111.384 (5)C26—H26A0.9700
C10—H100.9300C26—H26B0.9700
C11—O141.363 (4)C27—H27A0.9700
C11—C121.378 (4)C27—H27B0.9700
C16—S2—C13100.11 (14)O14—C15—H15B109.5
O1—S1—O2120.05 (19)H15A—C15—H15B109.5
O1—S1—N7105.76 (18)O14—C15—H15C109.5
O2—S1—N7108.56 (17)H15A—C15—H15C109.5
O1—S1—C1108.13 (18)H15B—C15—H15C109.5
O2—S1—C1106.19 (19)N17—C16—C21121.5 (3)
N7—S1—C1107.62 (16)N17—C16—S2118.8 (2)
C2—C1—C6120.8 (4)C21—C16—S2119.7 (2)
C2—C1—S1120.1 (3)C16—N17—C18117.0 (3)
C6—C1—S1119.1 (3)N19—C18—N22118.5 (3)
C1—C2—C3119.6 (4)N19—C18—N17124.9 (3)
C1—C2—H2120.2N22—C18—N17116.6 (3)
C3—C2—H2120.2C20—N19—C18116.0 (3)
C4—C3—C2119.0 (4)N19—C20—C21123.3 (3)
C4—C3—H3120.5N19—C20—H20118.3
C2—C3—H3120.5C21—C20—H20118.3
C5—C4—C3121.7 (4)C20—C21—C16117.3 (3)
C5—C4—Cl1118.6 (4)C20—C21—Br1120.5 (2)
C3—C4—Cl1119.7 (4)C16—C21—Br1122.2 (2)
C4—C5—C6119.6 (4)C18—N22—C27122.9 (3)
C4—C5—H5120.2C18—N22—C23122.7 (3)
C6—C5—H5120.2C27—N22—C23113.7 (3)
C5—C6—C1119.3 (4)C24—C23—N22110.6 (4)
C5—C6—H6120.4C24—C23—H23A109.5
C1—C6—H6120.4N22—C23—H23A109.5
C8—N7—S1122.6 (2)C24—C23—H23B109.5
C8—N7—H7118.7N22—C23—H23B109.5
S1—N7—H7118.7H23A—C23—H23B108.1
C13—C8—C9118.1 (3)O25—C24—C23112.0 (4)
C13—C8—N7121.6 (3)O25—C24—H24A109.2
C9—C8—N7120.3 (3)C23—C24—H24A109.2
C10—C9—C8120.9 (3)O25—C24—H24B109.2
C10—C9—H9119.5C23—C24—H24B109.2
C8—C9—H9119.5H24A—C24—H24B107.9
C9—C10—C11120.6 (3)C26—O25—C24111.7 (3)
C9—C10—H10119.7O25—C26—C27112.4 (4)
C11—C10—H10119.7O25—C26—H26A109.1
O14—C11—C12124.5 (3)C27—C26—H26A109.1
O14—C11—C10116.4 (3)O25—C26—H26B109.1
C12—C11—C10119.0 (3)C27—C26—H26B109.1
C11—C12—C13120.3 (3)H26A—C26—H26B107.8
C11—C12—H12119.9N22—C27—C26110.0 (3)
C13—C12—H12119.9N22—C27—H27A109.7
C8—C13—C12121.0 (3)C26—C27—H27A109.7
C8—C13—S2120.8 (2)N22—C27—H27B109.7
C12—C13—S2118.1 (2)C26—C27—H27B109.7
C11—O14—C15117.3 (3)H27A—C27—H27B108.2
O14—C15—H15A109.5
O1—S1—C1—C2132.3 (3)C11—C12—C13—S2179.8 (2)
O2—S1—C1—C22.2 (4)C16—S2—C13—C8111.6 (3)
N7—S1—C1—C2113.9 (3)C16—S2—C13—C1270.9 (3)
O1—S1—C1—C645.3 (3)C12—C11—O14—C151.2 (5)
O2—S1—C1—C6175.4 (3)C10—C11—O14—C15176.6 (4)
N7—S1—C1—C668.5 (3)C13—S2—C16—N174.3 (3)
C6—C1—C2—C32.1 (6)C13—S2—C16—C21176.6 (3)
S1—C1—C2—C3175.5 (4)C21—C16—N17—C181.6 (4)
C1—C2—C3—C40.6 (7)S2—C16—N17—C18179.3 (2)
C2—C3—C4—C51.6 (7)C16—N17—C18—N190.8 (5)
C2—C3—C4—Cl1178.4 (4)C16—N17—C18—N22179.7 (3)
C3—C4—C5—C62.4 (7)N22—C18—N19—C20179.2 (3)
Cl1—C4—C5—C6177.6 (3)N17—C18—N19—C200.3 (5)
C4—C5—C6—C10.9 (6)C18—N19—C20—C210.6 (6)
C2—C1—C6—C51.3 (6)N19—C20—C21—C161.4 (6)
S1—C1—C6—C5176.3 (3)N19—C20—C21—Br1178.9 (3)
O1—S1—N7—C8176.2 (3)N17—C16—C21—C201.9 (5)
O2—S1—N7—C853.7 (3)S2—C16—C21—C20179.0 (3)
C1—S1—N7—C860.8 (3)N17—C16—C21—Br1178.3 (2)
S1—N7—C8—C13121.0 (3)S2—C16—C21—Br10.8 (4)
S1—N7—C8—C959.7 (4)N19—C18—N22—C27175.0 (3)
C13—C8—C9—C102.0 (5)N17—C18—N22—C276.0 (5)
N7—C8—C9—C10178.7 (3)N19—C18—N22—C235.6 (5)
C8—C9—C10—C111.4 (5)N17—C18—N22—C23175.4 (3)
C9—C10—C11—O14178.8 (3)C18—N22—C23—C24118.5 (4)
C9—C10—C11—C121.0 (5)C27—N22—C23—C2451.7 (5)
O14—C11—C12—C13179.6 (3)N22—C23—C24—O2553.3 (5)
C10—C11—C12—C132.8 (5)C23—C24—O25—C2656.6 (6)
C9—C8—C13—C120.2 (5)C24—O25—C26—C2756.8 (5)
N7—C8—C13—C12179.5 (3)C18—N22—C27—C26118.8 (4)
C9—C8—C13—S2177.3 (2)C23—N22—C27—C2651.5 (5)
N7—C8—C13—S22.0 (4)O25—C26—C27—N2253.5 (5)
C11—C12—C13—C82.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O25i0.862.092.849 (4)148
C20—H20···N19ii0.932.523.352 (5)149
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC21H20BrClN4O4S2
Mr571.89
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.0311 (3), 17.3096 (6), 13.9223 (4)
β (°) 91.829 (3)
V3)2416.16 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.438, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
26979, 4744, 3408
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.03
No. of reflections4744
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.65

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O25i0.862.092.849 (4)148
C20—H20···N19ii0.932.523.352 (5)149
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z+1.
 

Acknowledgements

MK acknowledges the help of Bahubali College of Engineering for his research work. RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAkkurt, M., Mariam, I., Naseer, I., Khan, I. U. & Sharif, S. (2011). Acta Cryst. E67, o186.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1, New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Kumar, M., Mallesha, L. & Sridhar, M. A. (2012). Acta Cryst. E68, o2590–o2591.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o2891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds