organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-(4-carboxyl­atophen­yl)­pyridinium monohydrate

aCollege of Mechanical and Materials Engineering, China Three Gorges University, Yichang 443002, People's Republic of China
*Correspondence e-mail: wxhong1@126.com

(Received 11 August 2012; accepted 15 August 2012; online 23 August 2012)

The title compound, C12H10N2O2·H2O, crystallizes as a zwitterion in which the pyridine N atom is protonated and the carb­oxy –OH group is deprotonated. The benzene and pyridinium rings are inclined with a dihedral angle of 6.63 (5)° between them. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen-bonding inter­actions link adjacent mol­ecules into a two-dimensional double layered supra­molecular network.

Related literature

For the use of pyridine­carboxyl­ate acid in coordination chemistry and for related structures, see: Jia et al. (2007[Jia, J. H., Lin, X., Wilson, C., Blake, A. J., Champness, N. R., Hubberstey, P., Walker, G., Cussen, E. J. & Schröder, M. (2007). Chem. Commun. 8, 840-842.]); Zhang et al. (2011[Zhang, X. M., Wang, Y. Q., Song, Y. & Gao, E. Q. (2011). Inorg. Chem. 50, 7284-7294.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2·H2O

  • Mr = 232.24

  • Monoclinic, P 21 /n

  • a = 7.796 (2) Å

  • b = 7.808 (2) Å

  • c = 18.480 (5) Å

  • β = 95.165 (14)°

  • V = 1120.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.23 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.985

  • 11449 measured reflections

  • 2554 independent reflections

  • 1505 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.208

  • S = 1.01

  • 2554 reflections

  • 160 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 1.82 2.648 (3) 160
N2—H2A⋯O2i 0.86 2.07 2.911 (4) 167
N2—H2B⋯O3 0.86 2.09 2.921 (4) 163
O3—H3C⋯O2ii 0.86 (2) 1.99 (2) 2.849 (4) 178 (4)
O3—H3D⋯O1iii 0.86 (2) 1.91 (2) 2.768 (4) 176 (5)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rigid pyridinecarboxylate ligands have been extensively employed to react with metal ions and generate coordination polymers with fascinating structures and properties(Jia et al., 2007; Zhang et al., 2011). We attempted to synthesize a ZnIIcomplex with the ligand in hydrothermal synthesis conditions. However the title compound was obtained, its structure is reported here.

The asymmetric unit comprises one 2-amino-5-(4-carboxylatophenyl)pyridinium molecule and one lattice water. The dihedral angel between the benzene ring and pyridinium ring is 6.63 (5)°, while the deprotonated carboxylate COO(O1—C12—O2) group is slightly twisted with an angle of 13.74 (3) o (Fig. 1). Intermolecular O—H···O and N—H···O hydrogen- bonding interactions (Table 1)) link adjacent molecules into a two-dimensional double layered supramolecular network (Fig. 2).

Related literature top

For the use of pyridinecarboxylate acid in coordination chemistry and for related structures, see: Jia et al. (2007); Zhang et al. (2011).

Experimental top

A mixture of 4-(6-aminopyridin-3-yl)benzoic acid (0.0214 g, 0.1 mmol), Zn(CH3COO)2.2H2O (0.0219 g, 0.1 mmol) and water (8 ml) was stired vigorously for 30 min and then sealed in a Teflon-lined stainless-steel autoclave. The autoclave was heated and maintained at 393 K for 2 days, and then cooled to room temperature at 5 K h-1 to obtain colorless prism crystals suitable for X-ray analysis.

Refinement top

The H atoms bonded to C and N atoms were positioned geometrically (C—H = 0.93 Å, N—H = 0.86 Å) and allowed to ride on their parent atoms, with Uiso(H) value equal to 1.2Ueq(C or N). The H atoms bonded to water O atoms were located in a difference Fourier map and refined with O—H distance restraint of 0.85±0.02 Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The structure of the title compound with the atom-numbering scheme showing displacement ellipsoids at the 30% probability level for non-H atoms.

Fig. 2. The two-dimensional supramolecular network formed by N—H···O and O—H···O (dashed lines) hydrogen-bonding interactions.
2-Amino-5-(4-carboxylatophenyl)pyridinium monohydrate top
Crystal data top
C12H10N2O2·H2OF(000) = 488
Mr = 232.24Dx = 1.377 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ynCell parameters from 1672 reflections
a = 7.796 (2) Åθ = 2.8–27.5°
b = 7.808 (2) ŵ = 0.10 mm1
c = 18.480 (5) ÅT = 296 K
β = 95.165 (14)°Prism, colorless
V = 1120.4 (6) Å30.23 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2554 independent reflections
Radiation source: fine-focus sealed tube1505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
phi and ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.977, Tmax = 0.985k = 1010
11449 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.595P]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.17 e Å3
3 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H10N2O2·H2OV = 1120.4 (6) Å3
Mr = 232.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.796 (2) ŵ = 0.10 mm1
b = 7.808 (2) ÅT = 296 K
c = 18.480 (5) Å0.23 × 0.16 × 0.15 mm
β = 95.165 (14)°
Data collection top
Bruker SMART CCD
diffractometer
2554 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1505 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.985Rint = 0.090
11449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0803 restraints
wR(F2) = 0.208H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.17 e Å3
2554 reflectionsΔρmin = 0.16 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5962 (4)0.7159 (4)0.15326 (17)0.0568 (8)
C20.6222 (4)0.7885 (4)0.08526 (18)0.0669 (9)
H2C0.60030.90420.07670.080*
C30.6796 (4)0.6884 (4)0.03225 (17)0.0647 (9)
H3A0.69270.73730.01280.078*
C40.7203 (4)0.5123 (4)0.04277 (15)0.0522 (7)
C50.6949 (4)0.4505 (4)0.11010 (16)0.0600 (8)
H5A0.72000.33620.12050.072*
C60.7823 (4)0.4004 (4)0.01377 (15)0.0528 (7)
C70.8241 (4)0.4649 (4)0.08022 (16)0.0642 (9)
H7B0.81210.58150.08950.077*
C80.8830 (4)0.3594 (4)0.13264 (16)0.0648 (9)
H8C0.91190.40670.17610.078*
C90.8999 (4)0.1853 (4)0.12169 (15)0.0555 (7)
C100.8584 (5)0.1196 (4)0.05641 (17)0.0728 (10)
H10A0.86830.00250.04780.087*
C110.8022 (5)0.2251 (4)0.00347 (18)0.0770 (11)
H11A0.77700.17740.04040.092*
C120.9664 (4)0.0670 (4)0.17777 (17)0.0634 (8)
N10.6345 (3)0.5496 (3)0.16235 (13)0.0606 (7)
H1A0.62000.50330.20360.073*
N20.5351 (3)0.8023 (4)0.20782 (15)0.0693 (8)
H2A0.52100.75110.24810.083*
H2B0.51000.90910.20270.083*
O11.0359 (3)0.1364 (3)0.22902 (12)0.0757 (7)
O20.9515 (4)0.0921 (3)0.17007 (13)0.0853 (8)
O30.4085 (4)1.1412 (3)0.16247 (15)0.0866 (8)
H3C0.300 (3)1.128 (6)0.165 (2)0.130*
H3D0.447 (5)1.207 (5)0.1977 (19)0.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0564 (17)0.0549 (18)0.0606 (19)0.0067 (14)0.0137 (14)0.0057 (14)
C20.085 (2)0.0504 (17)0.068 (2)0.0074 (16)0.0206 (17)0.0030 (16)
C30.082 (2)0.0570 (18)0.0581 (19)0.0106 (16)0.0216 (16)0.0042 (15)
C40.0583 (17)0.0535 (17)0.0454 (16)0.0112 (14)0.0088 (13)0.0015 (12)
C50.075 (2)0.0542 (17)0.0516 (17)0.0010 (16)0.0116 (15)0.0009 (14)
C60.0579 (17)0.0570 (17)0.0441 (16)0.0110 (14)0.0079 (13)0.0008 (13)
C70.091 (2)0.0542 (17)0.0480 (17)0.0022 (17)0.0119 (16)0.0042 (14)
C80.091 (2)0.065 (2)0.0397 (16)0.0048 (18)0.0144 (15)0.0046 (14)
C90.0617 (17)0.0595 (18)0.0452 (16)0.0059 (14)0.0042 (13)0.0028 (13)
C100.109 (3)0.058 (2)0.0543 (19)0.0010 (19)0.0242 (18)0.0045 (15)
C110.124 (3)0.058 (2)0.0527 (18)0.003 (2)0.0330 (19)0.0092 (15)
C120.072 (2)0.069 (2)0.0497 (18)0.0034 (17)0.0087 (15)0.0035 (16)
N10.0786 (17)0.0604 (16)0.0444 (14)0.0014 (13)0.0153 (12)0.0001 (12)
N20.0809 (18)0.0634 (16)0.0668 (17)0.0017 (14)0.0254 (15)0.0080 (13)
O10.1006 (18)0.0747 (15)0.0557 (13)0.0044 (13)0.0287 (13)0.0042 (11)
O20.130 (2)0.0615 (15)0.0686 (16)0.0009 (15)0.0326 (15)0.0012 (12)
O30.117 (2)0.0677 (16)0.0786 (18)0.0107 (16)0.0272 (16)0.0095 (13)
Geometric parameters (Å, º) top
C1—N21.336 (4)C8—C91.379 (4)
C1—N11.339 (4)C8—H8C0.9300
C1—C21.410 (4)C9—C101.376 (4)
C2—C31.360 (4)C9—C121.514 (4)
C2—H2C0.9300C10—C111.380 (4)
C3—C41.421 (4)C10—H10A0.9300
C3—H3A0.9300C11—H11A0.9300
C4—C51.365 (4)C12—O11.256 (4)
C4—C61.477 (4)C12—O21.257 (4)
C5—N11.355 (4)N1—H1A0.8600
C5—H5A0.9300N2—H2A0.8600
C6—C111.389 (4)N2—H2B0.8600
C6—C71.393 (4)O3—H3C0.860 (18)
C7—C81.381 (4)O3—H3D0.861 (18)
C7—H7B0.9300
N2—C1—N1119.0 (3)C9—C8—H8C119.4
N2—C1—C2124.0 (3)C7—C8—H8C119.4
N1—C1—C2117.0 (3)C10—C9—C8118.0 (3)
C3—C2—C1119.6 (3)C10—C9—C12119.6 (3)
C3—C2—H2C120.2C8—C9—C12122.3 (3)
C1—C2—H2C120.2C9—C10—C11120.9 (3)
C2—C3—C4122.8 (3)C9—C10—H10A119.6
C2—C3—H3A118.6C11—C10—H10A119.6
C4—C3—H3A118.6C10—C11—C6122.0 (3)
C5—C4—C3114.7 (3)C10—C11—H11A119.0
C5—C4—C6121.3 (3)C6—C11—H11A119.0
C3—C4—C6124.0 (3)O1—C12—O2124.3 (3)
N1—C5—C4122.4 (3)O1—C12—C9116.8 (3)
N1—C5—H5A118.8O2—C12—C9119.0 (3)
C4—C5—H5A118.8C1—N1—C5123.5 (3)
C11—C6—C7116.4 (3)C1—N1—H1A118.2
C11—C6—C4121.7 (3)C5—N1—H1A118.2
C7—C6—C4121.8 (3)C1—N2—H2A120.0
C8—C7—C6121.4 (3)C1—N2—H2B120.0
C8—C7—H7B119.3H2A—N2—H2B120.0
C6—C7—H7B119.3H3C—O3—H3D108 (3)
C9—C8—C7121.2 (3)
N2—C1—C2—C3177.8 (3)C7—C8—C9—C100.8 (5)
N1—C1—C2—C31.7 (5)C7—C8—C9—C12179.2 (3)
C1—C2—C3—C42.0 (5)C8—C9—C10—C110.3 (5)
C2—C3—C4—C50.9 (5)C12—C9—C10—C11178.1 (3)
C2—C3—C4—C6179.8 (3)C9—C10—C11—C61.1 (6)
C3—C4—C5—N10.4 (4)C7—C6—C11—C100.8 (5)
C6—C4—C5—N1178.5 (3)C4—C6—C11—C10179.3 (3)
C5—C4—C6—C116.1 (5)C10—C9—C12—O1165.4 (3)
C3—C4—C6—C11172.8 (3)C8—C9—C12—O112.9 (5)
C5—C4—C6—C7173.9 (3)C10—C9—C12—O213.6 (5)
C3—C4—C6—C77.3 (5)C8—C9—C12—O2168.1 (3)
C11—C6—C7—C80.3 (5)N2—C1—N1—C5179.1 (3)
C4—C6—C7—C8179.6 (3)C2—C1—N1—C50.4 (5)
C6—C7—C8—C91.2 (5)C4—C5—N1—C10.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.822.648 (3)160
N2—H2A···O2i0.862.072.911 (4)167
N2—H2B···O30.862.092.921 (4)163
O3—H3C···O2ii0.86 (2)1.99 (2)2.849 (4)178 (4)
O3—H3D···O1iii0.86 (2)1.91 (2)2.768 (4)176 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N2O2·H2O
Mr232.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.796 (2), 7.808 (2), 18.480 (5)
β (°) 95.165 (14)
V3)1120.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
11449, 2554, 1505
Rint0.090
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.208, 1.01
No. of reflections2554
No. of parameters160
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.861.822.648 (3)160.3
N2—H2A···O2i0.862.072.911 (4)167.1
N2—H2B···O30.862.092.921 (4)163.0
O3—H3C···O2ii0.860 (18)1.990 (18)2.849 (4)178 (4)
O3—H3D···O1iii0.861 (18)1.909 (18)2.768 (4)176 (5)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1/2, y+3/2, z+1/2.
 

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJia, J. H., Lin, X., Wilson, C., Blake, A. J., Champness, N. R., Hubberstey, P., Walker, G., Cussen, E. J. & Schröder, M. (2007). Chem. Commun. 8, 840–842.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. M., Wang, Y. Q., Song, Y. & Gao, E. Q. (2011). Inorg. Chem. 50, 7284–7294.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds