organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,4S)-3-Benzoyl-4-benzyl-2-tert-but­yl-1,3-oxazolidin-5-one

aSchool of Chemistry, The University of Sydney, NSW 2006, Australia, and bSchool of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
*Correspondence e-mail: peter.rutledge@sydney.edu.au

(Received 30 May 2012; accepted 13 August 2012; online 23 August 2012)

In the title compound, C21H23NO3, the central oxazolidinone ring is approximately planar, the maximum deviation from the plane through the central ring being 0.043 (1) Å. The tert-butyl and benzyl substituents are cis to each other and trans to the N-benzoyl group. The inter­planar angle between the aromatic rings of the C-benzyl and N-benzoyl groups is 81.10 (4)°.

Related literature

For background to this class of compound, see: Seebach & Naef (1981[Seebach, D. & Naef, R. (1981). Helv. Chim. Acta, 64, 2704-2708.]); Seebach et al. (1984[Seebach, D., Naef, R. & Calderari, G. (1984). Tetrahedron, 40, 1313-1324.]); Seebach & Fadel (1985[Seebach, D. & Fadel, A. (1985). Helv. Chim. Acta, 68, 1243-1250.]). For applications of these compounds in asymmetric synthesis, see: Krall et al. (2005[Krall, J. A., Rutledge, P. J. & Baldwin, J. E. (2005). Tetrahedron, 61, 137-143.]); Barry & Rutledge (2008[Barry, S. M. & Rutledge, P. J. (2008). Synlett, pp. 2172-2174.]); Dungan et al. (2010[Dungan, V. J., Ortin, Y., Mueller-Bunz, H. & Rutledge, P. J. (2010). Org. Biomol. Chem. 8, 1666-1673.], 2012[Dungan, V. J., Wong, S. M., Barry, S. M. & Rutledge, P. J. (2012). Tetrahedron, 68, 3231-3236.]). For related structures, see: Dungan et al. (2010[Dungan, V. J., Ortin, Y., Mueller-Bunz, H. & Rutledge, P. J. (2010). Org. Biomol. Chem. 8, 1666-1673.]); Barry et al. (2012[Barry, S. M., Mueller-Bunz, H. & Rutledge, P. J. (2012). Org. Biomol. Chem. doi: 10.1039/C2OB25834J.]).

[Scheme 1]

Experimental

Crystal data
  • C21H23NO3

  • Mr = 337.40

  • Monoclinic, C 2

  • a = 23.6627 (17) Å

  • b = 7.1449 (5) Å

  • c = 12.2265 (9) Å

  • β = 117.470 (1)°

  • V = 1834.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Bruker D8 platform diffractometer with SMART APEX CCD area detector

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.886, Tmax = 0.992

  • 15833 measured reflections

  • 2390 independent reflections

  • 2335 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.05

  • 2390 reflections

  • 229 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The stucture of the title compound (2S,4S)-3-benzoyl-4-benzyl-2-(tert-butyl)oxazolidin-5-one is shown below (Fig. 1). This structure reveals that the oxazolidinone ring is approximately planar, with the tert-butyl and benzyl groups occupying the same face of the ring plane. Observation of the cis isomer is in accord with previously reported NMR experiments (Seebach & Fadel, 1985) and the crystal structures of related compounds (Dungan et al. 2010; Barry et al. 2012). In the crystal, the angle between the oxazolidinone ring and the phenyl ring of the N-benzoyl group (C1 to C6) is 65.74 (4)°, while the angle between the oxazolidinone and the phenyl ring of the C-benzyl group (C16 to C21) is 25.66 (7)°.

Oxazolidinones of this type are of interest due to their capacity to undergo stereoselective α-alkylation via the cyclic enolate, a reaction that exploits the principle of "self-reproduction of chirality centres" introduced by Seebach and co-workers (Seebach & Naef, 1981, Seebach et al., 1984, Seebach & Fadel, 1985). Thus the tert-butyl group directs an incoming electrophile to the opposite face of the planar enolate, giving an enantiopure product with retention of stereochemistry from the original oxazolidinone.

We have recently applied this strategy in the synthesis of ligand architectures designed to mimic the structure and function of non-heme iron enzymes (Krall et al. 2005, Barry & Rutledge, 2008, Dungan et al. 2010, Dungan et al. 2012, Barry et al. 2012)

Related literature top

For background to this class of compound, see: Seebach & Naef (1981); Seebach et al. (1984); Seebach & Fadel (1985). For applications of these compounds in asymmetric synthesis, see: Krall et al. (2005); Barry & Rutledge (2008); Dungan et al. (2010, 2012). For related structures, see: Dungan et al. (2010); Barry et al. (2012).

Experimental top

The title compound was prepared following the procedure reported by Seebach (Seebach & Fadel, 1985). Thus the sodium salt of L-phenylalanine was condensed with pivalaldehyde, by heating at reflux in pentane overnight under Dean-Stark conditions to affect azeotropic removal of water. The intermediate Schiff base thus formed was treated with benzoyl chloride in dichloromethane at 233 K, prompting cyclization to give the crude product. Recrystallization from methanol gave white needles in a low overall yield (31%).

Refinement top

A floating origin restraint was automatically generated by SHELXL. Hydrogen atoms were added at calculated positions and refined using a riding model. Their isotropic displacement parameters were fixed to 1.2 (1.5 for methyl groups) times the equivalent one of the parent atom. C—H bond lengths range from 0.95 Å to 1.00 Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
View of (2S,4S)-3-benzoyl-4-benzyl-2-(tert-butyl)oxazolidin-5-one showing displacement ellipsoids at the 50% probability level. Note the cis arrangement of the tert-butyl and benzyl groups.
(2S,4S)-3-Benzoyl-4-benzyl-2-(tert-butyl)-1,3- oxazolidin-5-one top
Crystal data top
C21H23NO3F(000) = 720
Mr = 337.40Dx = 1.222 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 9756 reflections
a = 23.6627 (17) Åθ = 3.0–28.4°
b = 7.1449 (5) ŵ = 0.08 mm1
c = 12.2265 (9) ÅT = 100 K
β = 117.470 (1)°Rod, colourless
V = 1834.0 (2) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker D8 platform
diffractometer SMART APEX CCD area detector
2390 independent reflections
Radiation source: sealed tube2335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 8.366 pixels mm-1θmax = 28.5°, θmin = 1.9°
ϕ and ω scansh = 3131
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 99
Tmin = 0.886, Tmax = 0.992l = 1616
15833 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.4977P]
where P = (Fo2 + 2Fc2)/3
2390 reflections(Δ/σ)max = 0.005
229 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C21H23NO3V = 1834.0 (2) Å3
Mr = 337.40Z = 4
Monoclinic, C2Mo Kα radiation
a = 23.6627 (17) ŵ = 0.08 mm1
b = 7.1449 (5) ÅT = 100 K
c = 12.2265 (9) Å0.50 × 0.10 × 0.10 mm
β = 117.470 (1)°
Data collection top
Bruker D8 platform
diffractometer SMART APEX CCD area detector
2390 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2335 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.992Rint = 0.019
15833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.088H-atom parameters constrained
S = 1.05Δρmax = 0.32 e Å3
2390 reflectionsΔρmin = 0.19 e Å3
229 parameters
Special details top

Experimental. R(int) for selected reflections was 0.037 before and 0.019 after correction for absorption. The Ratio of minimum to maximum transmission is 0.893567. The λ/2 correction factor is 0.0015. Friedel pairs were merged.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32528 (7)0.0666 (2)0.72715 (13)0.0201 (3)
H10.29360.16150.69910.024*
C20.35910 (8)0.0255 (3)0.85255 (14)0.0238 (3)
H20.35040.09290.91010.029*
C30.40519 (8)0.1129 (3)0.89347 (14)0.0269 (4)
H30.42850.13900.97910.032*
C40.41737 (8)0.2135 (3)0.80964 (16)0.0274 (3)
H40.44850.31000.83790.033*
C50.38402 (7)0.1736 (2)0.68398 (15)0.0232 (3)
H50.39240.24220.62650.028*
C60.33832 (7)0.0322 (2)0.64354 (13)0.0174 (3)
C70.29922 (7)0.0067 (2)0.50761 (13)0.0168 (3)
O10.24806 (5)0.06990 (19)0.44701 (10)0.0243 (3)
N0.32549 (6)0.12804 (19)0.45687 (11)0.0160 (3)
C80.28720 (7)0.1929 (2)0.32915 (13)0.0167 (3)
H80.24100.18780.30770.020*
C90.29772 (7)0.0885 (2)0.22984 (13)0.0186 (3)
C100.36825 (7)0.0743 (3)0.26437 (15)0.0248 (3)
H10A0.37310.01560.19670.037*
H10B0.39010.00160.33910.037*
H10C0.38700.20000.27950.037*
C110.26947 (8)0.1078 (2)0.21368 (14)0.0240 (3)
H11A0.29220.17820.29060.036*
H11B0.27380.17250.14720.036*
H11C0.22430.09890.19280.036*
C120.26277 (8)0.1979 (3)0.10837 (14)0.0269 (3)
H12A0.26360.12570.04100.040*
H12B0.28400.31850.11580.040*
H12C0.21850.21930.09100.040*
O20.30612 (5)0.38597 (16)0.33203 (9)0.0201 (2)
C130.35521 (7)0.4321 (2)0.44092 (13)0.0182 (3)
O30.38072 (5)0.58182 (17)0.45787 (10)0.0239 (2)
C140.37239 (6)0.2706 (2)0.53073 (12)0.0155 (3)
H140.36490.30770.60190.019*
C150.44249 (6)0.2112 (2)0.57882 (13)0.0179 (3)
H15A0.44650.07640.59990.022*
H15B0.45470.22810.51210.022*
C160.48839 (6)0.3203 (2)0.69091 (13)0.0171 (3)
C170.49970 (7)0.2615 (3)0.80782 (14)0.0239 (3)
H170.47640.15900.81620.029*
C180.54481 (8)0.3517 (3)0.91234 (15)0.0301 (4)
H180.55190.31120.99170.036*
C190.57940 (8)0.4999 (3)0.90157 (15)0.0296 (4)
H190.61110.55880.97330.035*
C200.56771 (8)0.5622 (3)0.78598 (16)0.0293 (4)
H200.59100.66530.77820.035*
C210.52189 (7)0.4739 (2)0.68114 (14)0.0224 (3)
H210.51340.51900.60190.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (6)0.0198 (7)0.0207 (7)0.0012 (6)0.0096 (5)0.0004 (6)
C20.0277 (8)0.0263 (8)0.0187 (7)0.0026 (6)0.0117 (6)0.0014 (6)
C30.0270 (8)0.0269 (8)0.0213 (7)0.0038 (7)0.0064 (6)0.0055 (6)
C40.0262 (8)0.0199 (8)0.0313 (8)0.0045 (6)0.0093 (7)0.0049 (7)
C50.0244 (7)0.0191 (7)0.0261 (7)0.0007 (6)0.0116 (6)0.0032 (6)
C60.0169 (6)0.0178 (7)0.0176 (6)0.0037 (6)0.0079 (5)0.0013 (5)
C70.0169 (6)0.0185 (7)0.0164 (6)0.0011 (5)0.0090 (5)0.0030 (5)
O10.0211 (5)0.0310 (7)0.0206 (5)0.0092 (5)0.0095 (4)0.0036 (5)
N0.0146 (5)0.0178 (6)0.0139 (5)0.0020 (5)0.0051 (5)0.0030 (5)
C80.0157 (6)0.0170 (7)0.0154 (6)0.0014 (5)0.0054 (5)0.0011 (5)
C90.0220 (7)0.0187 (7)0.0145 (6)0.0045 (6)0.0079 (5)0.0022 (5)
C100.0254 (7)0.0278 (8)0.0247 (7)0.0024 (7)0.0145 (6)0.0062 (7)
C110.0326 (8)0.0205 (8)0.0195 (6)0.0074 (7)0.0124 (6)0.0042 (6)
C120.0348 (8)0.0257 (8)0.0169 (7)0.0033 (7)0.0092 (6)0.0023 (6)
O20.0205 (5)0.0164 (5)0.0197 (5)0.0009 (4)0.0062 (4)0.0005 (4)
C130.0166 (6)0.0181 (7)0.0202 (6)0.0016 (6)0.0087 (5)0.0024 (6)
O30.0274 (6)0.0173 (5)0.0259 (5)0.0038 (5)0.0113 (5)0.0034 (5)
C140.0139 (6)0.0156 (6)0.0165 (6)0.0024 (5)0.0065 (5)0.0036 (5)
C150.0139 (6)0.0188 (7)0.0199 (6)0.0013 (6)0.0068 (5)0.0036 (6)
C160.0126 (6)0.0189 (7)0.0188 (6)0.0008 (5)0.0065 (5)0.0024 (6)
C170.0189 (7)0.0296 (8)0.0223 (7)0.0001 (6)0.0087 (6)0.0039 (7)
C180.0253 (7)0.0419 (11)0.0186 (7)0.0069 (8)0.0062 (6)0.0013 (7)
C190.0207 (7)0.0327 (9)0.0250 (7)0.0024 (7)0.0017 (6)0.0119 (7)
C200.0247 (8)0.0241 (8)0.0350 (9)0.0071 (7)0.0103 (7)0.0082 (8)
C210.0225 (7)0.0222 (8)0.0227 (7)0.0037 (6)0.0105 (6)0.0022 (6)
Geometric parameters (Å, º) top
C1—C61.389 (2)C11—H11A0.9800
C1—C21.395 (2)C11—H11B0.9800
C1—H10.9500C11—H11C0.9800
C2—C31.384 (2)C12—H12A0.9800
C2—H20.9500C12—H12B0.9800
C3—C41.387 (3)C12—H12C0.9800
C3—H30.9500O2—C131.3431 (17)
C4—C51.395 (2)C13—O31.198 (2)
C4—H40.9500C13—C141.514 (2)
C5—C61.393 (2)C14—C151.5418 (18)
C5—H50.9500C14—H141.0000
C6—C71.5090 (19)C15—C161.5141 (19)
C7—O11.2194 (18)C15—H15A0.9900
C7—N1.3706 (19)C15—H15B0.9900
N—C141.4695 (18)C16—C211.391 (2)
N—C81.4728 (18)C16—C171.392 (2)
C8—O21.4455 (19)C17—C181.389 (2)
C8—C91.540 (2)C17—H170.9500
C8—H81.0000C18—C191.381 (3)
C9—C101.524 (2)C18—H180.9500
C9—C111.527 (2)C19—C201.383 (3)
C9—C121.539 (2)C19—H190.9500
C10—H10A0.9800C20—C211.391 (2)
C10—H10B0.9800C20—H200.9500
C10—H10C0.9800C21—H210.9500
C6—C1—C2119.49 (15)H11A—C11—H11B109.5
C6—C1—H1120.3C9—C11—H11C109.5
C2—C1—H1120.3H11A—C11—H11C109.5
C3—C2—C1120.32 (15)H11B—C11—H11C109.5
C3—C2—H2119.8C9—C12—H12A109.5
C1—C2—H2119.8C9—C12—H12B109.5
C2—C3—C4120.08 (14)H12A—C12—H12B109.5
C2—C3—H3120.0C9—C12—H12C109.5
C4—C3—H3120.0H12A—C12—H12C109.5
C3—C4—C5120.20 (15)H12B—C12—H12C109.5
C3—C4—H4119.9C13—O2—C8112.03 (12)
C5—C4—H4119.9O3—C13—O2121.81 (14)
C6—C5—C4119.44 (15)O3—C13—C14127.58 (14)
C6—C5—H5120.3O2—C13—C14110.60 (13)
C4—C5—H5120.3N—C14—C13102.04 (11)
C1—C6—C5120.46 (14)N—C14—C15114.74 (12)
C1—C6—C7119.02 (13)C13—C14—C15111.59 (12)
C5—C6—C7120.39 (13)N—C14—H14109.4
O1—C7—N122.64 (13)C13—C14—H14109.4
O1—C7—C6121.26 (13)C15—C14—H14109.4
N—C7—C6116.08 (12)C16—C15—C14113.58 (12)
C7—N—C14122.12 (12)C16—C15—H15A108.9
C7—N—C8119.56 (12)C14—C15—H15A108.9
C14—N—C8110.75 (12)C16—C15—H15B108.9
O2—C8—N104.03 (11)C14—C15—H15B108.9
O2—C8—C9108.70 (12)H15A—C15—H15B107.7
N—C8—C9116.05 (12)C21—C16—C17118.63 (14)
O2—C8—H8109.3C21—C16—C15121.86 (13)
N—C8—H8109.3C17—C16—C15119.45 (14)
C9—C8—H8109.3C18—C17—C16120.44 (16)
C10—C9—C11109.45 (14)C18—C17—H17119.8
C10—C9—C12109.46 (13)C16—C17—H17119.8
C11—C9—C12109.49 (12)C19—C18—C17120.37 (16)
C10—C9—C8111.61 (12)C19—C18—H18119.8
C11—C9—C8109.08 (12)C17—C18—H18119.8
C12—C9—C8107.72 (13)C18—C19—C20119.76 (16)
C9—C10—H10A109.5C18—C19—H19120.1
C9—C10—H10B109.5C20—C19—H19120.1
H10A—C10—H10B109.5C19—C20—C21119.95 (17)
C9—C10—H10C109.5C19—C20—H20120.0
H10A—C10—H10C109.5C21—C20—H20120.0
H10B—C10—H10C109.5C16—C21—C20120.78 (15)
C9—C11—H11A109.5C16—C21—H21119.6
C9—C11—H11B109.5C20—C21—H21119.6
C6—C1—C2—C30.1 (2)N—C8—C9—C12170.29 (12)
C1—C2—C3—C40.9 (3)N—C8—O2—C137.13 (15)
C2—C3—C4—C51.1 (3)C9—C8—O2—C13117.09 (13)
C3—C4—C5—C60.2 (3)C8—O2—C13—O3174.27 (13)
C2—C1—C6—C51.1 (2)C8—O2—C13—C144.26 (16)
C2—C1—C6—C7177.00 (14)C7—N—C14—C13144.40 (13)
C4—C5—C6—C10.9 (2)C8—N—C14—C135.00 (14)
C4—C5—C6—C7176.77 (15)C7—N—C14—C1594.76 (16)
C1—C6—C7—O184.5 (2)C8—N—C14—C15115.84 (13)
C5—C6—C7—O191.41 (19)O3—C13—C14—N178.96 (14)
C1—C6—C7—N97.27 (16)O2—C13—C14—N0.53 (15)
C5—C6—C7—N86.80 (18)O3—C13—C14—C1556.0 (2)
O1—C7—N—C14156.59 (15)O2—C13—C14—C15122.48 (13)
C6—C7—N—C1425.2 (2)N—C14—C15—C16157.45 (12)
O1—C7—N—C89.8 (2)C13—C14—C15—C1687.12 (15)
C6—C7—N—C8172.04 (13)C14—C15—C16—C2196.99 (16)
C7—N—C8—O2142.88 (12)C14—C15—C16—C1785.79 (17)
C14—N—C8—O27.41 (14)C21—C16—C17—C181.7 (2)
C7—N—C8—C997.78 (16)C15—C16—C17—C18175.60 (15)
C14—N—C8—C9111.93 (13)C16—C17—C18—C190.6 (3)
O2—C8—C9—C1066.66 (16)C17—C18—C19—C201.9 (3)
N—C8—C9—C1050.11 (18)C18—C19—C20—C210.9 (3)
O2—C8—C9—C11172.28 (12)C17—C16—C21—C202.7 (2)
N—C8—C9—C1170.95 (15)C15—C16—C21—C20174.55 (15)
O2—C8—C9—C1253.52 (15)C19—C20—C21—C161.4 (3)

Experimental details

Crystal data
Chemical formulaC21H23NO3
Mr337.40
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)23.6627 (17), 7.1449 (5), 12.2265 (9)
β (°) 117.470 (1)
V3)1834.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerBruker D8 platform
diffractometer SMART APEX CCD area detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.886, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
15833, 2390, 2335
Rint0.019
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.05
No. of reflections2390
No. of parameters229
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the University of Sydney and by the School of Chemistry and Chemical Biology and the Centre for Synthesis & Chemical Biology at University College Dublin under the Programme for Research in Third Level Institutions (PRTLI) administered by the HEA.

References

First citationBarry, S. M., Mueller-Bunz, H. & Rutledge, P. J. (2012). Org. Biomol. Chem. doi: 10.1039/C2OB25834J.  Google Scholar
First citationBarry, S. M. & Rutledge, P. J. (2008). Synlett, pp. 2172–2174.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDungan, V. J., Ortin, Y., Mueller-Bunz, H. & Rutledge, P. J. (2010). Org. Biomol. Chem. 8, 1666–1673.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDungan, V. J., Wong, S. M., Barry, S. M. & Rutledge, P. J. (2012). Tetrahedron, 68, 3231–3236.  Web of Science CrossRef CAS Google Scholar
First citationKrall, J. A., Rutledge, P. J. & Baldwin, J. E. (2005). Tetrahedron, 61, 137–143.  Web of Science CrossRef CAS Google Scholar
First citationSeebach, D. & Fadel, A. (1985). Helv. Chim. Acta, 68, 1243–1250.  CrossRef CAS Web of Science Google Scholar
First citationSeebach, D. & Naef, R. (1981). Helv. Chim. Acta, 64, 2704–2708.  CrossRef CAS Web of Science Google Scholar
First citationSeebach, D., Naef, R. & Calderari, G. (1984). Tetrahedron, 40, 1313–1324.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds