organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An ortho­rhom­bic polymorph of 2-(1,3-benzo­thia­zol-2-yl)-6-eth­­oxy­phenol

aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cStructural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, dDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, eDepartment of Chemistry and Chemical Engineering, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran, and fDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 22 July 2012; accepted 28 July 2012; online 4 August 2012)

In the title mol­ecule, C15H13NO2S, an intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. The benzothia­zole ring system and the benzene ring form a dihedral angle of 8.9 (3) Å. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along the b axis. In addition, ππ inter­actions [centroid–centroid distances = 3.772 (4) and 3.879 (4) Å] are observed.

Related literature

For the monoclinic polymorph, see: Lakshmanan et al. (2011[Lakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.]). For background to and examples of the structures of Schiff base ligands see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13NO2S

  • Mr = 271.32

  • Orthorhombic, P 21 21 21

  • a = 4.8728 (10) Å

  • b = 11.711 (3) Å

  • c = 23.378 (6) Å

  • V = 1334.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.33 × 0.23 × 0.21 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.952

  • 4083 measured reflections

  • 2239 independent reflections

  • 1207 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.144

  • S = 0.99

  • 2239 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 874 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.88 1.76 2.592 (6) 158
C2—H2⋯O1i 0.93 2.55 3.372 (8) 148
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structures of Schiff base ligands from different substituted salicylaldehyde and amines (Kargar et al., 2011; Kia et al., 2010), we have determined the X-ray structure of the title compound. The crystal structure of a monoclinic polymorph of the title compound has already been published (Lakshmanan et al., 2011).

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. An intramolecular O—H···N hydrogen bond forms a S(6) ring motif (Bernstein et al., 1995). In the crystal, molecules are linked by weak intermolecular C—H···O hydrogen bonds forming one-dimensional chains along the b axis (Table 2, Fig. 2). In addition, weak intermolecular ππ interactions are observed [Cg1···Cg2ii = 3.772 (4) Å, (ii) -1 + x, y, z; Cg1···Cg3iii = 3.879 (4), (iii) 1 + x, y, z, Cg1, Cg2 and Cg3 are centroid of S1/C1/C6/N1/C7, C1–C6, and C8–C13 rings].

Related literature top

For the monoclinic polymorph, see: Lakshmanan et al. (2011). For background to and examples of the structures of Schiff base ligands see: Kargar et al. (2011); Kia et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding 3-ethoxysalicylaldehyde (2 mmol) to a solution of 2-aminothiophenol (2mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Light-yellow prismatic single crystals of the title compound suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvent at room temperature over several days.

Refinement top

The O-bound H atom was located in a difference Fourier map and constrained to refine on the parent atom with Uiso(H) = 1.5Ueq(O). The other H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H-atoms, respectively, with Uiso (H) = k × Ueq(C), k = 1.2 for CH, CH2 and 1.5 for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure with weak hydrogen bonds shown as dashed lines.
2-(1,3-Benzothiazol-2-yl)-6-ethoxyphenol top
Crystal data top
C15H13NO2SF(000) = 568
Mr = 271.32Dx = 1.351 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 864 reflections
a = 4.8728 (10) Åθ = 2.5–28.8°
b = 11.711 (3) ŵ = 0.24 mm1
c = 23.378 (6) ÅT = 296 K
V = 1334.1 (6) Å3Prism, light-yellow
Z = 40.33 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2239 independent reflections
Radiation source: fine-focus sealed tube1207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 35
Tmin = 0.925, Tmax = 0.952k = 913
4083 measured reflectionsl = 2719
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2239 reflectionsΔρmax = 0.19 e Å3
173 parametersΔρmin = 0.30 e Å3
0 restraintsAbsolute structure: Flack (1983), 874 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C15H13NO2SV = 1334.1 (6) Å3
Mr = 271.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.8728 (10) ŵ = 0.24 mm1
b = 11.711 (3) ÅT = 296 K
c = 23.378 (6) Å0.33 × 0.23 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2239 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1207 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.952Rint = 0.073
4083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.19 e Å3
S = 0.99Δρmin = 0.30 e Å3
2239 reflectionsAbsolute structure: Flack (1983), 874 Friedel pairs
173 parametersAbsolute structure parameter: 0.1 (2)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2770 (11)0.2177 (4)0.2096 (3)0.0485 (16)
C21.4128 (13)0.1882 (5)0.1606 (3)0.0647 (19)
H21.37250.11960.14230.078*
C31.6064 (14)0.2590 (6)0.1386 (3)0.073 (2)
H31.69700.23970.10490.087*
C41.6692 (13)0.3614 (6)0.1667 (3)0.0670 (18)
H41.80300.40930.15160.080*
C51.5378 (14)0.3923 (5)0.2160 (3)0.0599 (17)
H51.58160.46060.23420.072*
C61.3392 (11)0.3211 (5)0.2386 (3)0.0458 (15)
N11.1883 (9)0.3431 (4)0.2872 (2)0.0468 (12)
C80.8322 (12)0.2602 (5)0.3462 (3)0.0509 (16)
C90.8043 (12)0.3576 (5)0.3797 (3)0.0530 (16)
C100.6091 (12)0.3608 (6)0.4232 (3)0.0603 (17)
C110.4481 (14)0.2664 (6)0.4350 (3)0.0664 (19)
H110.32180.26850.46480.080*
C120.4756 (15)0.1698 (6)0.4026 (3)0.0686 (18)
H120.36610.10670.41050.082*
C130.6598 (12)0.1642 (5)0.3590 (3)0.0568 (16)
H130.67400.09790.33730.068*
C140.3939 (15)0.4754 (6)0.4949 (3)0.084 (2)
H14A0.41620.41850.52460.101*
H14B0.21330.46630.47800.101*
C150.4237 (18)0.5927 (7)0.5194 (3)0.118 (3)
H15A0.61440.60880.52570.176*
H15B0.32650.59700.55510.176*
H15C0.34920.64760.49320.176*
C71.0189 (12)0.2585 (4)0.2991 (2)0.0472 (15)
O10.9557 (8)0.4529 (3)0.37058 (16)0.0633 (12)
H11.05950.43170.34170.095*
O20.5994 (9)0.4617 (4)0.45248 (18)0.0741 (13)
S11.0285 (3)0.14638 (12)0.24914 (8)0.0574 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (4)0.049 (4)0.057 (4)0.007 (3)0.008 (3)0.004 (3)
C20.064 (5)0.063 (4)0.067 (5)0.008 (4)0.006 (4)0.003 (4)
C30.065 (5)0.088 (6)0.064 (5)0.004 (4)0.007 (4)0.009 (5)
C40.064 (4)0.063 (5)0.074 (5)0.013 (4)0.008 (4)0.019 (4)
C50.066 (5)0.048 (4)0.066 (4)0.001 (4)0.012 (4)0.003 (4)
C60.038 (3)0.036 (3)0.063 (5)0.005 (3)0.005 (3)0.009 (3)
N10.040 (3)0.036 (3)0.064 (3)0.001 (3)0.010 (3)0.001 (3)
C80.043 (4)0.045 (4)0.065 (4)0.001 (3)0.010 (3)0.008 (4)
C90.043 (4)0.049 (4)0.067 (5)0.005 (3)0.006 (3)0.018 (4)
C100.055 (4)0.066 (4)0.060 (4)0.005 (4)0.006 (3)0.001 (4)
C110.055 (5)0.076 (5)0.068 (5)0.005 (4)0.002 (4)0.010 (4)
C120.063 (4)0.065 (5)0.078 (5)0.011 (4)0.004 (4)0.019 (4)
C130.057 (4)0.041 (4)0.072 (5)0.006 (4)0.008 (4)0.008 (4)
C140.083 (6)0.105 (6)0.063 (5)0.004 (5)0.014 (4)0.007 (5)
C150.142 (8)0.116 (7)0.095 (6)0.016 (6)0.027 (6)0.035 (5)
C70.046 (4)0.038 (3)0.057 (4)0.008 (3)0.015 (3)0.000 (3)
O10.066 (3)0.045 (2)0.078 (3)0.000 (2)0.011 (2)0.004 (2)
O20.073 (3)0.077 (3)0.072 (3)0.004 (3)0.015 (3)0.007 (3)
S10.0528 (9)0.0410 (7)0.0784 (11)0.0014 (8)0.0047 (10)0.0030 (10)
Geometric parameters (Å, º) top
C1—C21.368 (8)C9—C101.393 (7)
C1—C61.421 (7)C10—O21.366 (7)
C1—S11.737 (6)C10—C111.384 (8)
C2—C31.358 (8)C11—C121.368 (8)
C2—H20.9300C11—H110.9300
C3—C41.402 (8)C12—C131.360 (8)
C3—H30.9300C12—H120.9300
C4—C51.368 (8)C13—H130.9300
C4—H40.9300C14—O21.418 (7)
C5—C61.382 (7)C14—C151.496 (9)
C5—H50.9300C14—H14A0.9700
C6—N11.377 (7)C14—H14B0.9700
N1—C71.318 (6)C15—H15A0.9600
C8—C91.391 (8)C15—H15B0.9600
C8—C71.428 (7)C15—H15C0.9600
C8—C131.435 (8)C7—S11.758 (5)
C9—O11.355 (6)O1—H10.8797
C2—C1—C6120.8 (6)C12—C11—C10119.7 (6)
C2—C1—S1131.4 (5)C12—C11—H11120.2
C6—C1—S1107.7 (4)C10—C11—H11120.2
C3—C2—C1120.0 (6)C13—C12—C11121.3 (6)
C3—C2—H2120.0C13—C12—H12119.3
C1—C2—H2120.0C11—C12—H12119.3
C2—C3—C4119.7 (6)C12—C13—C8120.3 (6)
C2—C3—H3120.1C12—C13—H13119.8
C4—C3—H3120.1C8—C13—H13119.8
C5—C4—C3121.4 (6)O2—C14—C15107.7 (6)
C5—C4—H4119.3O2—C14—H14A110.2
C3—C4—H4119.3C15—C14—H14A110.2
C4—C5—C6119.4 (6)O2—C14—H14B110.2
C4—C5—H5120.3C15—C14—H14B110.2
C6—C5—H5120.3H14A—C14—H14B108.5
N1—C6—C5125.2 (6)C14—C15—H15A109.5
N1—C6—C1116.0 (5)C14—C15—H15B109.5
C5—C6—C1118.7 (5)H15A—C15—H15B109.5
C7—N1—C6111.6 (5)C14—C15—H15C109.5
C9—C8—C7120.5 (5)H15A—C15—H15C109.5
C9—C8—C13117.9 (6)H15B—C15—H15C109.5
C7—C8—C13121.5 (6)N1—C7—C8123.4 (5)
O1—C9—C8122.2 (5)N1—C7—S1113.9 (4)
O1—C9—C10117.7 (6)C8—C7—S1122.6 (5)
C8—C9—C10120.0 (6)C9—O1—H1101.7
O2—C10—C11124.9 (6)C10—O2—C14118.2 (5)
O2—C10—C9114.3 (6)C1—S1—C790.7 (3)
C11—C10—C9120.7 (6)
C6—C1—C2—C31.2 (8)C8—C9—C10—C112.3 (9)
S1—C1—C2—C3178.3 (5)O2—C10—C11—C12179.8 (6)
C1—C2—C3—C41.0 (9)C9—C10—C11—C121.8 (9)
C2—C3—C4—C50.5 (10)C10—C11—C12—C130.4 (10)
C3—C4—C5—C60.1 (9)C11—C12—C13—C80.5 (10)
C4—C5—C6—N1178.7 (5)C9—C8—C13—C120.1 (9)
C4—C5—C6—C10.3 (8)C7—C8—C13—C12177.2 (6)
C2—C1—C6—N1179.4 (5)C6—N1—C7—C8178.1 (5)
S1—C1—C6—N12.9 (6)C6—N1—C7—S11.6 (6)
C2—C1—C6—C50.8 (8)C9—C8—C7—N15.5 (8)
S1—C1—C6—C5178.6 (4)C13—C8—C7—N1177.3 (5)
C5—C6—N1—C7178.6 (5)C9—C8—C7—S1170.7 (4)
C1—C6—N1—C73.0 (6)C13—C8—C7—S16.6 (8)
C7—C8—C9—O11.9 (8)C11—C10—O2—C145.8 (9)
C13—C8—C9—O1179.3 (5)C9—C10—O2—C14175.7 (5)
C7—C8—C9—C10175.9 (5)C15—C14—O2—C10178.9 (6)
C13—C8—C9—C101.5 (8)C2—C1—S1—C7179.0 (6)
O1—C9—C10—O21.2 (8)C6—C1—S1—C71.5 (4)
C8—C9—C10—O2179.1 (5)N1—C7—S1—C10.0 (4)
O1—C9—C10—C11179.8 (5)C8—C7—S1—C1176.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.881.762.592 (6)158
C2—H2···O1i0.932.553.372 (8)148
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13NO2S
Mr271.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)4.8728 (10), 11.711 (3), 23.378 (6)
V3)1334.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.33 × 0.23 × 0.21
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.925, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
4083, 2239, 1207
Rint0.073
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.144, 0.99
No. of reflections2239
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.30
Absolute structureFlack (1983), 874 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.881.762.592 (6)158
C2—H2···O1i0.932.553.372 (8)148
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLakshmanan, D., Raj, R. M., Selvakumar, R., Bakthadoss, M. & Murugavel, S. (2011). Acta Cryst. E67, o2259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds