organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy­imino-2-{2-[(2-methyl­phen­­oxy)meth­yl]phen­yl}ethanol

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bNational Research Centre for Grapes, Pune 412 307, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 25 July 2012; accepted 8 August 2012; online 11 August 2012)

In the title compound, C17H19NO3, the dihedral angle between the benzene rings is 68.0 (1)°. The C—O—C—C torsion angle of the atoms joining these rings is 179.7 (2)°. The atoms of the methanol group were refined as disordered over two sets of sites with fixed occupancies of 0.86 and 0.14. The H atoms of the hy­droxy group in the major component are disordered over a further two sets of sites with equal occupancies. This is a necessary arrangement to allow for hydrogen bonding without unrealistic H⋯H contacts. In the crystal, O—H⋯N and O—H⋯O hydrogen bonds connect mol­ecules into chains along [001].

Related literature

The title compound was derived from kresoxim-methyl. For the biological activity of kresoxim-methyl, see: Anke et al. (1977[Anke, T., Oberwinkler, F., Steglich, W. & Schramm, G. (1977). J. Antibiot. 30, 806-810.]); Clinton et al. (2011[Clinton, B., Warden, A. C., Haboury, S., Easton, C. J., Kotsonis, S., Taylor, M. C., Oakeshott, J. G., Russell, R. J. & &Scott, C. (2011). Biocatal. Biotransfor. 28, 119-129.]); Balba (2007[Balba, H. (2007). J. Environ. Sci. Health B, 42, 441-451.]); Sudisha et al. (2005[Sudisha, J., Amruthesh, K. N., Deepak, S. A., Shetty, N. P., Sarosh, B. R. & Shekar Shetty, H. (2005). Pest. Biochem. Physiol. 81, 188-197.]). For related structures, see: Chopra et al. (2004[Chopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421-o2423.]); Kant et al. (2012a[Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012a). Acta Cryst. E68, o2425.],b[Kant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012b). Acta Cryst. E68, o2426.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NO3

  • Mr = 285.33

  • Monoclinic, C 2/c

  • a = 21.0394 (14) Å

  • b = 20.4128 (10) Å

  • c = 7.6711 (5) Å

  • β = 105.729 (6)°

  • V = 3171.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.790, Tmax = 1.000

  • 11340 measured reflections

  • 2788 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.212

  • S = 1.08

  • 2788 reflections

  • 204 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O11A—H11Y⋯O11Ai 0.84 1.77 2.614 (8) 178
O11A—H11Z⋯O11Aii 0.84 2.11 2.950 (14) 178
O11B—H11X⋯N3iii 0.84 2.21 3.046 (18) 177
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Kresoxim-methyl is a widely used agricultural fungicide of the strobilurin group (Anke et al., 1977; Clinton et al., 2011; Balba, 2007). It is a broad-spectrum systemic compound with novel mode of action (Sudisha et al., 2005). While exploring its fate in the environment, we have derived a new compound by the process of reduction. This may contribute to the understanding of the metabolic and environmental fate of this compound. The crystal structure of the title compound (I) is presented herein.

In (I)(Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related structures (Chopra et al., 2004; Kant et al., 2012a,b). The dihedral angle between the two benzene rings is 68.0 (1)°. The C—O—C—C torsion angle of the atoms joining these rings is 179.7 (2) °. The atoms of the methanol group were refined as disordered over two sets of sites with fixed occupancies of 0.86 and 0.14. The H atoms of the hydroxy group in the major component are disordered over a further two sets of sites with equal occupancies. This is a necessary arrangement to allow for hydrogen bonding without unrealistic H···H contacts. The O—H···O hydrogen bond motif of one the O—H disorder components is shown in Fig. 2. For the other disorder component in the O—H···O hydrogen bonds, the acceptors become donors and vice-versa. In the crystal, O—H···N and O—H···O hydrogen bonds connect molecules to form chains along [001].

Related literature top

The title compound was derived from kresoxim-methyl. For the biological activity of kresoxim-methyl, see: Anke et al. (1977); Clinton et al. (2011); Balba et al. (2007); Sudisha et al. (2005). For related structures, see: Chopra et al. (2004); Kant et al. (2012a,b).

Experimental top

Finely powdered sodium borohydride (6 eq., 0.06 mol) was suspended in tetrahydrofuran in presence of kresoxim-methyl (3.13 g m, 0.01 mol) under reflux (343 K) with stirring for 1 h. Then methanol (8 ml) was slowly added drop wise. Stirring and refluxing were maintained until the reaction was completed as monitored by TLC. After the end of the reaction, the reaction mixture was cooled to room temperature and quenched with a saturated solution of ammonium chloride (15 ml) for further period of 1.5 h. The product was separated by extraction with ethyl acetate (2x25 ml). The organic extracts were combined and dried over sodium sulfate and concentrated under low pressure to yield the final product. The synthesized compound was dissolved in methanol and subjected to slow evaporation to produce colourless crystals.

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with O—H distance of 0.84 Å and C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C,O). The disordered H atoms of the hydroxy group were placed in calculated positions which gave the most sensible hydrogen bonds.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. Part of the crystal structure showing the hydrogen bonds along [001] as dashed lines. For the other disorder component in the O—H···O hydrogen bonds, the acceptors become donors and vice-versa.
2-Methoxyimino-2-{2-[(2-methylphenoxy)methyl]phenyl}ethanol top
Crystal data top
C17H19NO3F(000) = 1216
Mr = 285.33Dx = 1.195 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2909 reflections
a = 21.0394 (14) Åθ = 3.6–29.0°
b = 20.4128 (10) ŵ = 0.08 mm1
c = 7.6711 (5) ÅT = 293 K
β = 105.729 (6)°Block, colourless
V = 3171.2 (3) Å30.3 × 0.2 × 0.1 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2788 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.1049 pixels mm-1θmax = 25.0°, θmin = 3.6°
ω scansh = 2324
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2324
Tmin = 0.790, Tmax = 1.000l = 99
11340 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0921P)2]
where P = (Fo2 + 2Fc2)/3
2788 reflections(Δ/σ)max = 0.002
204 parametersΔρmax = 0.39 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H19NO3V = 3171.2 (3) Å3
Mr = 285.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.0394 (14) ŵ = 0.08 mm1
b = 20.4128 (10) ÅT = 293 K
c = 7.6711 (5) Å0.3 × 0.2 × 0.1 mm
β = 105.729 (6)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
2788 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
1497 reflections with I > 2σ(I)
Tmin = 0.790, Tmax = 1.000Rint = 0.052
11340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0662 restraints
wR(F2) = 0.212H-atom parameters constrained
S = 1.08Δρmax = 0.39 e Å3
2788 reflectionsΔρmin = 0.22 e Å3
204 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.36797 (11)0.16370 (9)0.4565 (3)0.0749 (7)
O130.24680 (10)0.14485 (9)0.7894 (3)0.0689 (7)
N30.37326 (13)0.10321 (12)0.5462 (4)0.0709 (8)
C20.38302 (15)0.11036 (14)0.7167 (4)0.0638 (8)
C50.3638 (2)0.1523 (2)0.2722 (5)0.1041 (13)
H5A0.36300.19340.21100.156*
H5B0.32420.12830.21740.156*
H5C0.40140.12730.26290.156*
C60.39179 (15)0.17396 (14)0.8143 (3)0.0544 (8)
C70.45455 (16)0.19128 (17)0.9162 (4)0.0736 (9)
H7A0.48980.16300.92280.088*
C80.4652 (2)0.2500 (2)1.0079 (5)0.0912 (12)
H8A0.50770.26161.07360.109*
C90.4141 (3)0.2911 (2)1.0029 (5)0.0943 (12)
H9A0.42160.33071.06530.113*
C100.3504 (2)0.27400 (16)0.9042 (5)0.0785 (10)
H10A0.31550.30220.90230.094*
C110.33831 (16)0.21524 (14)0.8083 (4)0.0577 (8)
C120.27043 (14)0.19845 (14)0.7035 (4)0.0635 (9)
H12A0.24180.23610.69740.076*
H12B0.27010.18640.58100.076*
C140.18363 (16)0.12314 (14)0.7087 (4)0.0596 (8)
C150.16296 (18)0.06974 (15)0.7930 (5)0.0722 (9)
C160.0989 (2)0.04775 (18)0.7189 (6)0.0901 (12)
H16A0.08320.01290.77350.108*
C170.0578 (2)0.0762 (2)0.5666 (7)0.0991 (13)
H17A0.01520.06040.51950.119*
C180.07975 (19)0.1270 (2)0.4858 (5)0.0902 (12)
H18A0.05230.14570.38200.108*
C190.14248 (17)0.15098 (15)0.5562 (5)0.0737 (9)
H19A0.15720.18620.50060.088*
C200.2088 (2)0.03868 (18)0.9558 (5)0.1147 (15)
H20A0.24840.02500.92690.172*
H20B0.18770.00130.99190.172*
H20C0.21970.06981.05320.172*
O11A0.4567 (3)0.0312 (2)0.8725 (8)0.253 (3)0.86
H11Y0.48370.01060.95530.380*0.86
H11Z0.48060.03120.80070.380*0.86
C11A0.3946 (2)0.0467 (2)0.8269 (7)0.0952 (17)0.86
H11A0.37960.05220.93510.114*0.43
H11B0.36910.01160.75560.114*0.43
O11B0.3776 (10)0.0022 (7)0.757 (2)0.107 (7)0.14
H11X0.37460.02980.83610.161*0.14
C11B0.3637 (19)0.0532 (6)0.822 (4)0.0952 (17)0.14
H11C0.38750.05660.94910.114*0.14
H11D0.31680.05520.81230.114*0.14
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.1028 (18)0.0737 (14)0.0500 (13)0.0026 (12)0.0234 (11)0.0048 (10)
O130.0712 (15)0.0688 (13)0.0615 (13)0.0153 (11)0.0090 (11)0.0183 (10)
N30.091 (2)0.0592 (15)0.0623 (18)0.0014 (13)0.0212 (14)0.0015 (13)
C20.080 (2)0.0564 (18)0.0553 (19)0.0021 (16)0.0193 (15)0.0060 (15)
C50.141 (4)0.120 (3)0.050 (2)0.007 (3)0.023 (2)0.008 (2)
C60.067 (2)0.0615 (18)0.0362 (16)0.0124 (16)0.0163 (14)0.0013 (12)
C70.074 (2)0.095 (2)0.054 (2)0.0094 (19)0.0206 (17)0.0034 (18)
C80.088 (3)0.118 (3)0.070 (2)0.043 (3)0.026 (2)0.019 (2)
C90.128 (4)0.081 (3)0.083 (3)0.043 (3)0.045 (3)0.030 (2)
C100.110 (3)0.063 (2)0.075 (2)0.004 (2)0.046 (2)0.0010 (17)
C110.071 (2)0.0549 (17)0.0504 (17)0.0103 (17)0.0220 (15)0.0061 (13)
C120.073 (2)0.0567 (18)0.0632 (19)0.0037 (15)0.0227 (16)0.0184 (15)
C140.067 (2)0.0572 (18)0.0570 (19)0.0061 (16)0.0201 (16)0.0041 (14)
C150.082 (3)0.0623 (19)0.078 (2)0.0110 (19)0.0319 (19)0.0012 (17)
C160.094 (3)0.073 (2)0.115 (3)0.025 (2)0.050 (3)0.016 (2)
C170.070 (3)0.096 (3)0.130 (4)0.011 (2)0.026 (3)0.035 (3)
C180.071 (3)0.092 (3)0.101 (3)0.004 (2)0.011 (2)0.012 (2)
C190.068 (2)0.075 (2)0.076 (2)0.0006 (19)0.0161 (18)0.0016 (17)
C200.145 (4)0.092 (3)0.110 (3)0.029 (2)0.038 (3)0.036 (2)
O11A0.166 (5)0.175 (4)0.355 (9)0.019 (4)0.040 (4)0.159 (5)
C11A0.089 (5)0.075 (3)0.113 (4)0.026 (3)0.012 (3)0.024 (3)
O11B0.20 (2)0.031 (8)0.083 (12)0.001 (11)0.026 (12)0.011 (8)
C11B0.089 (5)0.075 (3)0.113 (4)0.026 (3)0.012 (3)0.024 (3)
Geometric parameters (Å, º) top
O4—N31.403 (3)C14—C191.375 (4)
O4—C51.412 (4)C14—C151.396 (4)
O13—C141.378 (3)C15—C161.388 (5)
O13—C121.434 (3)C15—C201.497 (5)
N3—C21.277 (3)C16—C171.379 (5)
C2—C61.485 (4)C16—H16A0.9300
C2—C11A1.533 (5)C17—C181.352 (5)
C2—C11B1.535 (7)C17—H17A0.9300
C5—H5A0.9600C18—C191.374 (4)
C5—H5B0.9600C18—H18A0.9300
C5—H5C0.9600C19—H19A0.9300
C6—C71.386 (4)C20—H20A0.9600
C6—C111.396 (4)C20—H20B0.9600
C7—C81.378 (5)C20—H20C0.9600
C7—H7A0.9300O11A—C11A1.298 (6)
C8—C91.355 (5)O11A—H11Y0.8400
C8—H8A0.9300O11A—H11Z0.8399
C9—C101.394 (5)C11A—H11A0.9700
C9—H9A0.9300C11A—H11B0.9700
C10—C111.394 (4)O11B—C11B1.300 (8)
C10—H10A0.9300O11B—H11X0.8400
C11—C121.477 (4)C11B—H11C0.9700
C12—H12A0.9700C11B—H11D0.9700
C12—H12B0.9700
N3—O4—C5108.7 (2)C19—C14—C15120.9 (3)
C14—O13—C12116.8 (2)O13—C14—C15115.2 (3)
C2—N3—O4111.8 (2)C16—C15—C14116.9 (3)
N3—C2—C6125.5 (3)C16—C15—C20122.6 (3)
N3—C2—C11A115.2 (3)C14—C15—C20120.4 (3)
C6—C2—C11A118.9 (3)C17—C16—C15121.8 (4)
N3—C2—C11B117.4 (12)C17—C16—H16A119.1
C6—C2—C11B114.4 (9)C15—C16—H16A119.1
O4—C5—H5A109.5C18—C17—C16119.9 (4)
O4—C5—H5B109.5C18—C17—H17A120.1
H5A—C5—H5B109.5C16—C17—H17A120.1
O4—C5—H5C109.5C17—C18—C19120.3 (4)
H5A—C5—H5C109.5C17—C18—H18A119.9
H5B—C5—H5C109.5C19—C18—H18A119.9
C7—C6—C11120.1 (3)C18—C19—C14120.2 (3)
C7—C6—C2118.5 (3)C18—C19—H19A119.9
C11—C6—C2121.5 (3)C14—C19—H19A119.9
C8—C7—C6120.5 (3)C15—C20—H20A109.5
C8—C7—H7A119.7C15—C20—H20B109.5
C6—C7—H7A119.7H20A—C20—H20B109.5
C9—C8—C7120.4 (4)C15—C20—H20C109.5
C9—C8—H8A119.8H20A—C20—H20C109.5
C7—C8—H8A119.8H20B—C20—H20C109.5
C8—C9—C10119.9 (3)C11A—O11A—H11Y138.5
C8—C9—H9A120.0C11A—O11A—H11Z124.1
C10—C9—H9A120.0H11Y—O11A—H11Z95.5
C9—C10—C11120.9 (3)O11A—C11A—C2110.6 (4)
C9—C10—H10A119.6O11A—C11A—H11A109.5
C11—C10—H10A119.6C2—C11A—H11A109.5
C10—C11—C6118.1 (3)O11A—C11A—H11B109.5
C10—C11—C12119.9 (3)C2—C11A—H11B109.5
C6—C11—C12122.0 (3)H11A—C11A—H11B108.1
O13—C12—C11109.4 (2)C11B—O11B—H11X104.0
O13—C12—H12A109.8O11B—C11B—C2109.9 (12)
C11—C12—H12A109.8O11B—C11B—H11C109.7
O13—C12—H12B109.8C2—C11B—H11C109.7
C11—C12—H12B109.8O11B—C11B—H11D109.7
H12A—C12—H12B108.2C2—C11B—H11D109.7
C19—C14—O13123.9 (3)H11C—C11B—H11D108.2
C5—O4—N3—C2174.3 (3)C10—C11—C12—O13110.4 (3)
O4—N3—C2—C63.3 (4)C6—C11—C12—O1369.9 (3)
O4—N3—C2—C11A175.6 (3)C12—O13—C14—C191.9 (4)
O4—N3—C2—C11B157.0 (14)C12—O13—C14—C15178.2 (2)
N3—C2—C6—C7105.8 (4)C19—C14—C15—C161.8 (5)
C11A—C2—C6—C766.3 (4)O13—C14—C15—C16178.0 (3)
C11B—C2—C6—C793.5 (16)C19—C14—C15—C20178.3 (3)
N3—C2—C6—C1175.6 (4)O13—C14—C15—C201.8 (4)
C11A—C2—C6—C11112.3 (3)C14—C15—C16—C171.5 (5)
C11B—C2—C6—C1185.1 (16)C20—C15—C16—C17178.6 (4)
C11—C6—C7—C81.9 (4)C15—C16—C17—C180.2 (6)
C2—C6—C7—C8179.5 (3)C16—C17—C18—C190.9 (6)
C6—C7—C8—C91.5 (5)C17—C18—C19—C140.5 (5)
C7—C8—C9—C100.1 (5)O13—C14—C19—C18179.0 (3)
C8—C9—C10—C110.7 (5)C15—C14—C19—C180.9 (5)
C9—C10—C11—C60.2 (4)N3—C2—C11A—O11A87.9 (5)
C9—C10—C11—C12179.5 (3)C6—C2—C11A—O11A85.0 (5)
C7—C6—C11—C101.1 (4)C11B—C2—C11A—O11A171 (3)
C2—C6—C11—C10179.6 (3)N3—C2—C11B—O11B38 (3)
C7—C6—C11—C12179.2 (2)C6—C2—C11B—O11B160 (2)
C2—C6—C11—C120.6 (4)C11A—C2—C11B—O11B53.1 (15)
C14—O13—C12—C11179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11Y···O11Ai0.841.772.614 (8)178
O11A—H11Z···O11Aii0.842.112.950 (14)178
O11B—H11X···N3iii0.842.213.046 (18)177
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+3/2; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19NO3
Mr285.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)21.0394 (14), 20.4128 (10), 7.6711 (5)
β (°) 105.729 (6)
V3)3171.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.790, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11340, 2788, 1497
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.212, 1.08
No. of reflections2788
No. of parameters204
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11A—H11Y···O11Ai0.841.772.614 (8)177.6
O11A—H11Z···O11Aii0.842.112.950 (14)178.1
O11B—H11X···N3iii0.842.213.046 (18)176.7
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+3/2; (iii) x, y, z+1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationAnke, T., Oberwinkler, F., Steglich, W. & Schramm, G. (1977). J. Antibiot. 30, 806–810.  CrossRef CAS PubMed Google Scholar
First citationBalba, H. (2007). J. Environ. Sci. Health B, 42, 441–451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationChopra, D., Mohan, T. P., Rao, K. S. & Guru Row, T. N. (2004). Acta Cryst. E60, o2421–o2423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClinton, B., Warden, A. C., Haboury, S., Easton, C. J., Kotsonis, S., Taylor, M. C., Oakeshott, J. G., Russell, R. J. & &Scott, C. (2011). Biocatal. Biotransfor. 28, 119–129.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012a). Acta Cryst. E68, o2425.  CSD CrossRef IUCr Journals Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Shripanavar, C. S. & Banerjee, K. (2012b). Acta Cryst. E68, o2426.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudisha, J., Amruthesh, K. N., Deepak, S. A., Shetty, N. P., Sarosh, B. R. & Shekar Shetty, H. (2005). Pest. Biochem. Physiol. 81, 188–197.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds