organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2812-o2813

6-(4-Amino­phen­yl)-4-(4-eth­­oxy­phen­yl)-2-meth­­oxy­nicotino­nitrile

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 6 August 2012; accepted 20 August 2012; online 31 August 2012)

In the title mol­ecule, C21H19N3O2, the central pyridine ring makes dihedral angles of 14.46 (9) and 34.67 (8)° with the 4-amino- and 4-eth­oxy-substituted benzene rings, respectively. The eth­oxy group is essentially coplanar with the attached benzene ring [C—O—C—C torsion angle = 178.70 (16)°] as is the meth­oxy group with the pyridine ring [C—O—C—N torsion angle = −3.0 (3)°]. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds into chains along [201]. Weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions are also present.

Related literature

The title nicotinonitrile derivative is a cyclized product of a chalcone and a malononitrile in the present of sodium methoxide. For the synthesis and applications of substituted pyridines and nicotinonitrile derivatives, see: Al-Jaber et al. (2012[Al-Jaber, N. A., Bougasim, A. S. A. & Karah, M. M. S. (2012). J. Saudi Chem. Soc. 16, 45-53.]); Brandt et al. (2010[Brandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919-2927.]); El-Sayed et al. (2011[El-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948-2954.]); Goda et al. (2004[Goda, F. E., Abdel-Aziz, Alaa A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845-1852.]); Ji et al. (2007[Ji, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253-1262.]); Kamal et al. (2007[Kamal, A., Khan, M. N. A., Srinivasa, Reddy, K. S. & Rohini, K. (2007). Bio. Med. Chem. 15, 1004-1013.]); Kim et al. (2005[Kim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63-70.]); Kolev et al. (2005[Kolev, T., Stamboliyska, B. & Yancheva, D. (2005). Chem. Phys. 324, 489-496.]); Koner et al. (2012[Koner, R. R., Sinha, S., Kumar, S., Nandi, C. K. & Ghosh, S. (2012). Tetrahedron Lett. 53, 2302-2307.]); Zhou et al. (2006[Zhou, W.-J., Ji, S.-J. & Shen, Z.-L. (2006). J. Organomet. Chem. 691, 1356-1360.]). For a related structure, see: Chantrapromma et al. (2010[Chantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2010). Acta Cryst. E66, o79-o80.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C21H19N3O2

  • Mr = 345.39

  • Monoclinic, P 21 /c

  • a = 5.3924 (2) Å

  • b = 16.5111 (5) Å

  • c = 20.1415 (6) Å

  • β = 91.315 (2)°

  • V = 1792.82 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.54 × 0.25 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.982

  • 17814 measured reflections

  • 5216 independent reflections

  • 3013 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.159

  • S = 1.04

  • 5216 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N3⋯N2i 0.88 (3) 2.20 (3) 3.084 (3) 177 (2)
C21—H21A⋯O1ii 0.96 2.52 3.439 (2) 160
C18—H18ACgiii 0.96 2.84 3.7135 (18) 151
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridines have been reported for their applications in a number of areas (Goda et al., 2004; Kamal et al., 2007; Kolev et al., 2005). There are several methods reported for the synthesis of substituted pyridine derivatives including nicotinonitrile derivatives (Al-Jaber et al., 2012; Zhou et al., 2006). Nicotinonitrile derivatives have a wide range of applications such as antitumor, antimicrobial, analgesic, anti-hyperglycemic and antiproliferative activities (Brandt et al., 2010; El-Sayed et al., 2011; Ji et al., 2007; Kim et al., 2005) and fluorescent materials (Koner et al., 2012). Our research is aimed at the synthesis and preliminary fluorescent and antibacterial screening of nicotinonitrile derivatives. The title compound (I) was synthesized by the cyclization of a chalcone derivative with malononitrile to investigate its fluorescent properties. It was found that (I) exhibits fluorescence with the maximum emission at 498 nm when was excited at 370 nm in DMSO.

The molecular structure of the title compound is shown in Fig. 1. The central pyridine ring is inclined to the 4-aminophenyl and 4-ethoxyphenyl rings with the dihedral angles of 14.46 (9) and 34.67 (8)°, respectively. The dihedral angle between these two substituted benzene rings is 44.84 (9)°. The ethoxy substituent of the 4-ethoxyphenyl group is essentially co-planar with the attached benzene ring with the torsion angle C15–O1–C18–C19 = 178.70 (16)° and C18–O1–C15–C16 = 1.8 (3)°. The methoxy group is also approximately co-planar to the pyridine ring as indictated by the torsion angle C21–O2–C11–N1 = -3.0 (3)°. The bond distances agree with the literature values (Allen et al., 1987) and are comparable with those for a related structure (Chantrapromma et al., 2010).

In the crystal (Fig. 2), molecules are linked by N—H···N hydrogen bonds into chains along [201]. Weak C—H···O hydrogen bonds and C—H···π interactions are also present (Table 1).

Related literature top

The title nicotinonitrile derivative is a cyclized product of a chalcone and a malononitrile in the present of sodium methoxide. For the synthesis and applications of substituted pyridines and nicotinonitrile derivatives, see: Al-Jaber et al. (2012); Brandt et al. (2010); El-Sayed et al. (2011); Goda et al. (2004); Ji et al. (2007); Kamal et al. (2007); Kim et al. (2005); Kolev et al. (2005); Koner et al. (2012); Zhou et al. (2006). For a related structure, see: Chantrapromma et al. (2010). For standard bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (I) was synthesized by stirring the solution of (E)-1-(4-aminophenyl)-3-(4-ethoxyphenyl)prop-2-en-1-one (0.27 g, 1 mmol) in methanol (10 ml) with a freshly prepared sodium methoxide (1.0 mmol of sodium in 20 ml of methanol). Excess malononitrile (0.13 g, 2.0 mmol) was then added with continuous stirring at room temperature until the precipitate was separated out. The resulting solid was filtered. Pale brown block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature over several days, Mp. 477–478 K.

Refinement top

Amino H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic, 0.97 for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines.
6-(4-Aminophenyl)-4-(4-ethoxyphenyl)-2-methoxynicotinonitrile top
Crystal data top
C21H19N3O2F(000) = 728
Mr = 345.39Dx = 1.280 Mg m3
Monoclinic, P21/cMelting point = 477–478 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.3924 (2) ÅCell parameters from 5216 reflections
b = 16.5111 (5) Åθ = 2.0–30.0°
c = 20.1415 (6) ŵ = 0.08 mm1
β = 91.315 (2)°T = 298 K
V = 1792.82 (10) Å3Block, pale-brown
Z = 40.54 × 0.25 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5216 independent reflections
Radiation source: sealed tube3013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.956, Tmax = 0.982k = 2323
17814 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.3033P]
where P = (Fo2 + 2Fc2)/3
5216 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H19N3O2V = 1792.82 (10) Å3
Mr = 345.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3924 (2) ŵ = 0.08 mm1
b = 16.5111 (5) ÅT = 298 K
c = 20.1415 (6) Å0.54 × 0.25 × 0.22 mm
β = 91.315 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3013 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.982Rint = 0.028
17814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
5216 reflectionsΔρmin = 0.16 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3134 (2)0.38320 (7)0.14470 (6)0.0637 (3)
O21.3927 (3)0.09389 (7)0.37553 (7)0.0737 (4)
N11.3663 (3)0.21531 (8)0.43089 (6)0.0543 (3)
N21.0455 (4)0.08668 (10)0.23879 (9)0.0858 (6)
N31.6313 (5)0.48378 (15)0.64781 (10)0.0987 (7)
C11.5687 (4)0.32043 (10)0.52550 (9)0.0654 (5)
H1A1.65560.27430.51330.078*
C21.6575 (4)0.36652 (11)0.57804 (9)0.0675 (5)
H2A1.80180.35060.60060.081*
C31.5363 (4)0.43554 (12)0.59760 (9)0.0663 (5)
C41.3212 (5)0.45547 (16)0.56331 (12)0.1042 (9)
H4A1.23320.50120.57590.125*
C51.2329 (4)0.40959 (14)0.51089 (11)0.0874 (7)
H5A1.08770.42540.48870.105*
C61.3538 (3)0.34094 (10)0.49045 (8)0.0514 (4)
C71.2622 (3)0.28980 (9)0.43520 (8)0.0501 (4)
C81.0805 (3)0.31513 (10)0.38963 (8)0.0540 (4)
H8A1.01100.36630.39410.065*
C91.0004 (3)0.26572 (9)0.33750 (7)0.0485 (4)
C101.1104 (3)0.18863 (9)0.33383 (8)0.0509 (4)
C111.2909 (3)0.16807 (9)0.38214 (8)0.0537 (4)
C120.8139 (3)0.29470 (9)0.28753 (7)0.0484 (4)
C130.8087 (3)0.37611 (10)0.26827 (8)0.0547 (4)
H13A0.92140.41220.28760.066*
C140.6399 (3)0.40372 (10)0.22128 (8)0.0564 (4)
H14A0.63920.45810.20930.068*
C150.4699 (3)0.35068 (10)0.19151 (8)0.0511 (4)
C160.4713 (3)0.27011 (10)0.21019 (8)0.0544 (4)
H16A0.35850.23410.19080.065*
C170.6410 (3)0.24309 (10)0.25784 (8)0.0534 (4)
H17A0.63910.18890.27030.064*
C180.1324 (3)0.33169 (12)0.11351 (9)0.0643 (5)
H18A0.02570.30820.14650.077*
H18B0.21310.28810.09000.077*
C190.0167 (4)0.38315 (14)0.06586 (11)0.0864 (7)
H19A0.14790.35130.04610.130*
H19B0.08870.40300.03170.130*
H19C0.08650.42810.08930.130*
C201.0686 (3)0.13264 (10)0.28075 (9)0.0608 (5)
C211.5900 (4)0.07236 (12)0.42137 (11)0.0818 (7)
H21A1.65160.01960.41050.123*
H21B1.52850.07190.46570.123*
H21C1.72170.11120.41850.123*
H2N31.747 (5)0.4641 (15)0.6750 (13)0.101 (8)*
H1N31.536 (5)0.5205 (19)0.6634 (15)0.129 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0660 (7)0.0607 (7)0.0629 (8)0.0029 (6)0.0309 (6)0.0055 (6)
O20.0944 (9)0.0481 (6)0.0765 (9)0.0129 (6)0.0432 (8)0.0048 (6)
N10.0654 (8)0.0489 (7)0.0478 (7)0.0002 (6)0.0171 (6)0.0033 (6)
N20.1065 (14)0.0644 (10)0.0843 (12)0.0134 (9)0.0443 (11)0.0191 (9)
N30.1089 (16)0.1055 (16)0.0794 (13)0.0313 (13)0.0496 (12)0.0399 (12)
C10.0775 (12)0.0515 (9)0.0655 (11)0.0122 (8)0.0303 (9)0.0019 (8)
C20.0783 (12)0.0623 (10)0.0603 (11)0.0073 (9)0.0347 (9)0.0019 (8)
C30.0720 (11)0.0775 (12)0.0485 (10)0.0090 (9)0.0192 (9)0.0112 (8)
C40.0993 (16)0.1191 (19)0.0918 (16)0.0551 (14)0.0506 (13)0.0563 (15)
C50.0796 (13)0.1055 (16)0.0750 (14)0.0393 (12)0.0402 (11)0.0366 (12)
C60.0576 (9)0.0548 (9)0.0411 (8)0.0016 (7)0.0128 (7)0.0017 (7)
C70.0555 (9)0.0513 (8)0.0431 (8)0.0004 (7)0.0106 (7)0.0030 (6)
C80.0626 (10)0.0513 (8)0.0472 (9)0.0068 (7)0.0148 (7)0.0027 (7)
C90.0510 (8)0.0499 (8)0.0439 (8)0.0027 (7)0.0108 (7)0.0037 (6)
C100.0586 (9)0.0466 (8)0.0468 (8)0.0045 (7)0.0156 (7)0.0023 (6)
C110.0651 (10)0.0436 (8)0.0516 (9)0.0004 (7)0.0162 (8)0.0048 (7)
C120.0505 (8)0.0499 (8)0.0442 (8)0.0006 (7)0.0123 (7)0.0004 (6)
C130.0628 (10)0.0474 (8)0.0530 (9)0.0030 (7)0.0209 (8)0.0033 (7)
C140.0675 (10)0.0444 (8)0.0562 (10)0.0000 (7)0.0212 (8)0.0020 (7)
C150.0523 (8)0.0531 (8)0.0471 (9)0.0016 (7)0.0146 (7)0.0007 (7)
C160.0503 (9)0.0545 (9)0.0576 (10)0.0071 (7)0.0172 (7)0.0012 (7)
C170.0543 (9)0.0487 (8)0.0568 (9)0.0036 (7)0.0122 (7)0.0068 (7)
C180.0598 (10)0.0711 (11)0.0608 (11)0.0038 (8)0.0226 (8)0.0032 (8)
C190.0809 (14)0.0989 (16)0.0775 (14)0.0139 (12)0.0418 (11)0.0149 (12)
C200.0703 (11)0.0479 (8)0.0630 (11)0.0020 (8)0.0256 (9)0.0007 (8)
C210.0986 (15)0.0603 (11)0.0843 (14)0.0193 (10)0.0444 (12)0.0005 (10)
Geometric parameters (Å, º) top
O1—C151.3612 (17)C9—C101.407 (2)
O1—C181.4291 (19)C9—C121.485 (2)
O2—C111.3502 (19)C10—C111.402 (2)
O2—C211.437 (2)C10—C201.427 (2)
N1—C111.3114 (19)C12—C171.388 (2)
N1—C71.356 (2)C12—C131.399 (2)
N2—C201.141 (2)C13—C141.376 (2)
N3—C31.377 (2)C13—H13A0.9300
N3—H2N30.88 (3)C14—C151.393 (2)
N3—H1N30.86 (3)C14—H14A0.9300
C1—C21.380 (2)C15—C161.382 (2)
C1—C61.385 (2)C16—C171.385 (2)
C1—H1A0.9300C16—H16A0.9300
C2—C31.376 (3)C17—H17A0.9300
C2—H2A0.9300C18—C191.501 (3)
C3—C41.376 (3)C18—H18A0.9700
C4—C51.375 (3)C18—H18B0.9700
C4—H4A0.9300C19—H19A0.9600
C5—C61.375 (3)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.473 (2)C21—H21A0.9600
C7—C81.391 (2)C21—H21B0.9600
C8—C91.391 (2)C21—H21C0.9600
C8—H8A0.9300
C15—O1—C18118.42 (13)O2—C11—C10115.38 (14)
C11—O2—C21117.24 (13)C17—C12—C13117.46 (14)
C11—N1—C7117.77 (13)C17—C12—C9122.12 (14)
C3—N3—H2N3119.3 (17)C13—C12—C9120.42 (13)
C3—N3—H1N3117 (2)C14—C13—C12121.20 (14)
H2N3—N3—H1N3117 (3)C14—C13—H13A119.4
C2—C1—C6121.82 (17)C12—C13—H13A119.4
C2—C1—H1A119.1C13—C14—C15120.40 (15)
C6—C1—H1A119.1C13—C14—H14A119.8
C3—C2—C1121.18 (16)C15—C14—H14A119.8
C3—C2—H2A119.4O1—C15—C16124.59 (14)
C1—C2—H2A119.4O1—C15—C14116.19 (14)
C2—C3—C4117.04 (17)C16—C15—C14119.22 (14)
C2—C3—N3121.22 (18)C15—C16—C17119.88 (14)
C4—C3—N3121.7 (2)C15—C16—H16A120.1
C5—C4—C3121.77 (19)C17—C16—H16A120.1
C5—C4—H4A119.1C16—C17—C12121.83 (15)
C3—C4—H4A119.1C16—C17—H17A119.1
C6—C5—C4121.70 (17)C12—C17—H17A119.1
C6—C5—H5A119.1O1—C18—C19107.14 (15)
C4—C5—H5A119.1O1—C18—H18A110.3
C5—C6—C1116.47 (15)C19—C18—H18A110.3
C5—C6—C7123.06 (15)O1—C18—H18B110.3
C1—C6—C7120.46 (15)C19—C18—H18B110.3
N1—C7—C8121.12 (14)H18A—C18—H18B108.5
N1—C7—C6115.86 (13)C18—C19—H19A109.5
C8—C7—C6123.02 (14)C18—C19—H19B109.5
C9—C8—C7121.57 (15)H19A—C19—H19B109.5
C9—C8—H8A119.2C18—C19—H19C109.5
C7—C8—H8A119.2H19A—C19—H19C109.5
C8—C9—C10116.51 (13)H19B—C19—H19C109.5
C8—C9—C12121.09 (14)N2—C20—C10177.0 (2)
C10—C9—C12122.38 (13)O2—C21—H21A109.5
C11—C10—C9118.00 (14)O2—C21—H21B109.5
C11—C10—C20117.27 (14)H21A—C21—H21B109.5
C9—C10—C20124.46 (13)O2—C21—H21C109.5
N1—C11—O2119.58 (13)H21A—C21—H21C109.5
N1—C11—C10125.03 (15)H21B—C21—H21C109.5
C6—C1—C2—C30.5 (3)C7—N1—C11—C100.1 (3)
C1—C2—C3—C41.2 (3)C21—O2—C11—N13.0 (3)
C1—C2—C3—N3176.7 (2)C21—O2—C11—C10176.03 (17)
C2—C3—C4—C51.3 (4)C9—C10—C11—N10.0 (3)
N3—C3—C4—C5176.6 (3)C20—C10—C11—N1174.15 (17)
C3—C4—C5—C60.7 (5)C9—C10—C11—O2179.00 (15)
C4—C5—C6—C10.1 (4)C20—C10—C11—O24.8 (2)
C4—C5—C6—C7179.0 (2)C8—C9—C12—C17146.49 (17)
C2—C1—C6—C50.2 (3)C10—C9—C12—C1735.4 (2)
C2—C1—C6—C7179.14 (17)C8—C9—C12—C1334.1 (2)
C11—N1—C7—C80.3 (2)C10—C9—C12—C13144.01 (17)
C11—N1—C7—C6179.60 (15)C17—C12—C13—C140.5 (3)
C5—C6—C7—N1165.10 (19)C9—C12—C13—C14178.94 (16)
C1—C6—C7—N113.8 (2)C12—C13—C14—C150.2 (3)
C5—C6—C7—C815.0 (3)C18—O1—C15—C161.8 (3)
C1—C6—C7—C8166.12 (17)C18—O1—C15—C14178.89 (15)
N1—C7—C8—C90.8 (3)C13—C14—C15—O1178.79 (16)
C6—C7—C8—C9179.16 (16)C13—C14—C15—C160.6 (3)
C7—C8—C9—C100.8 (2)O1—C15—C16—C17179.15 (16)
C7—C8—C9—C12177.43 (15)C14—C15—C16—C170.2 (3)
C8—C9—C10—C110.4 (2)C15—C16—C17—C120.6 (3)
C12—C9—C10—C11177.79 (15)C13—C12—C17—C161.0 (3)
C8—C9—C10—C20174.09 (17)C9—C12—C17—C16178.51 (16)
C12—C9—C10—C204.1 (3)C15—O1—C18—C19178.70 (16)
C7—N1—C11—O2178.99 (16)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N2i0.88 (3)2.20 (3)3.084 (3)177 (2)
C21—H21A···O1ii0.962.523.439 (2)160
C18—H18A···Cgiii0.962.843.7135 (18)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC21H19N3O2
Mr345.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.3924 (2), 16.5111 (5), 20.1415 (6)
β (°) 91.315 (2)
V3)1792.82 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.54 × 0.25 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
17814, 5216, 3013
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.159, 1.03
No. of reflections5216
No. of parameters245
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N3—H2N3···N2i0.88 (3)2.20 (3)3.084 (3)177 (2)
C21—H21A···O1ii0.962.523.439 (2)160
C18—H18A···Cgiii0.962.843.7135 (18)151
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

TS thanks the Thailand Research Fund through the Royal Golden Jubilee PhD Program and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education, Ministry of Education, Thailand for financial support. The authors thank the Thailand Research Fund (grant No. RSA 5280033), Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAl-Jaber, N. A., Bougasim, A. S. A. & Karah, M. M. S. (2012). J. Saudi Chem. Soc. 16, 45–53.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandt, W., Mologni, L., Preu, L., Lemcke, T., Gambacorti-Passerini, C. & Kunick, C. (2010). Eur. J. Med. Chem. 45, 2919–2927.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Fun, H.-K., Suwunwong, T., Padaki, M. & Isloor, A. M. (2010). Acta Cryst. E66, o79–o80.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEl-Sayed, H. A., Moustafa, A. H., Haikal, A. E.-F. Z., Abu-El-Halawa, R. & Ashry, E. S. H. E. (2011). Eur. J. Med. Chem. 46, 2948–2954.  Web of Science CAS PubMed Google Scholar
First citationGoda, F. E., Abdel-Aziz, Alaa A.-M. & Attef, O. A. (2004). Bioorg. Med. Chem. 12, 1845–1852.  Google Scholar
First citationJi, J., Bunnelle, W. H., Anderson, D. J., Faltynek, C., Dyhring, T., Ahring, P. K., Rueter, L. E., Curzon, P., Buckley, M. J., Marsh, K. C., Kempf-Grote, A. & Meyer, M. D. (2007). Biochem. Pharmacol. 74, 1253–1262.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamal, A., Khan, M. N. A., Srinivasa, Reddy, K. S. & Rohini, K. (2007). Bio. Med. Chem. 15, 1004–1013.  CrossRef CAS Google Scholar
First citationKim, K.-R., Rhee, S.-D., Kim, H. Y., Jung, W. H., Yang, S.-D., Kim, S. S., Ahn, J. H. & Cheon, H. G. (2005). Eur. J. Pharmacol. 518, 63–70.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKolev, T., Stamboliyska, B. & Yancheva, D. (2005). Chem. Phys. 324, 489–496.  CrossRef Google Scholar
First citationKoner, R. R., Sinha, S., Kumar, S., Nandi, C. K. & Ghosh, S. (2012). Tetrahedron Lett. 53, 2302–2307.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, W.-J., Ji, S.-J. & Shen, Z.-L. (2006). J. Organomet. Chem. 691, 1356–1360.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2812-o2813
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds