organic compounds
(E)-4-(2-Hydroxy-3-methoxybenzylideneamino)-6-methyl-3-sulfanylidene-3,4-dihydro-1,2,4-triazin-5(2H)-one
aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran, bChemistry and Chemical Engineering Research Center of Iran, Tehran, Iran, and cDepartment of Chemistry, Marburg University, Marburg, Germany
*Correspondence e-mail: tabatabaee45@gmail.com
In the title molecule, C12H12N4O3S, there is an intramolecular O—H⋯N hydrogen bond. The dihedral angle between the benzene and triazine rings is 65.9 (3)°. In the crystal, N—H⋯S and O—H⋯N hydrogen bonds link the molecules into chains along [010]. In addition, there are weak π–π stacking interactions between symmetry-related triazine rings with a centroid–centroid distance of 3.560 (3)°.
Related literature
For the biological activity of azomethine compounds, see: Todeschini et al. (1998); Demirbas (2004); Rando et al. (2002). For general applications of Schiff base compounds, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Dubey et al. (1991). For the crystal structures of related Schiff base compounds, see: Tabatabaee et al. (2006, 2007, 2008, 2009). For the synthesis of the starting material, see: Dornow et al. (1964).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2008); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812036756/lh5515sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812036756/lh5515Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812036756/lh5515Isup3.cml
4-Amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) was prepared according to the literature procedure (Dornow et al., 1964). A solution of (AMTTO) (0.632 g, 4 mmol) in ethanol (10 ml) was treated with 2-hydroxy-3-methoxybenzaldehyde (0.608 g, 4 mmol) and the resulting mixture was acidified with 3 drops of hydrochloric acid (37.5%). The reaction mixture was refluxed. The progress of the reaction was monitored by TLC. After completion of the reaction (8 hrs), the pale yellow precipitate was filtered off and the clear solution was kept at 277K to give yellow plates crystals of the title compound (yield 79%).
H atoms were placed in calculated positions with C—H = 0.95 - 0.98 Å, O—H = 0.89Å and N—H = 0.88Å. They were included in the
in a riding-motion approximation with a refined common displacement parameter of Uiso(H) = 0.062 (6)Å2. The diffraction from the crystal was very weak and this may affect the precision of the structure.Data collection: X-AREA (Stoe & Cie, 2008); cell
X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1 The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Fig 2. Part of the with hydrogen bonds drawn as dashed lines. Fig. 3 A view of a π–π stacking interaction. |
C12H12N4O3S | F(000) = 608 |
Mr = 292.32 | Dx = 1.526 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2500 reflections |
a = 13.679 (3) Å | θ = 1.5–25.9° |
b = 6.799 (1) Å | µ = 0.27 mm−1 |
c = 13.797 (3) Å | T = 100 K |
β = 97.37 (2)° | Plate, yellow |
V = 1272.6 (4) Å3 | 0.17 × 0.16 × 0.05 mm |
Z = 4 |
Stoe IPDS II diffractometer | 2466 independent reflections |
Radiation source: fine-focus sealed tube | 781 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.168 |
ω scans | θmax = 25.9°, θmin = 1.5° |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) | h = −16→16 |
Tmin = 0.19, Tmax = 1.0 | k = −8→7 |
6252 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 0.69 | w = 1/[σ2(Fo2) + (0.0454P)2] where P = (Fo2 + 2Fc2)/3 |
2466 reflections | (Δ/σ)max = 0.002 |
184 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C12H12N4O3S | V = 1272.6 (4) Å3 |
Mr = 292.32 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.679 (3) Å | µ = 0.27 mm−1 |
b = 6.799 (1) Å | T = 100 K |
c = 13.797 (3) Å | 0.17 × 0.16 × 0.05 mm |
β = 97.37 (2)° |
Stoe IPDS II diffractometer | 2466 independent reflections |
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) | 781 reflections with I > 2σ(I) |
Tmin = 0.19, Tmax = 1.0 | Rint = 0.168 |
6252 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 0.69 | Δρmax = 0.25 e Å−3 |
2466 reflections | Δρmin = −0.25 e Å−3 |
184 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.63854 (13) | 0.3469 (2) | 0.97729 (12) | 0.0493 (5) | |
O1 | 0.4940 (3) | −0.2444 (6) | 0.8000 (3) | 0.0543 (12) | |
O2 | 0.8173 (3) | −0.1839 (6) | 1.0066 (3) | 0.0502 (11) | |
H2 | 0.7563 | −0.1360 | 0.9959 | 0.062 (6)* | |
O3 | 1.0050 (3) | −0.2641 (5) | 1.0104 (3) | 0.0533 (11) | |
N1 | 0.5557 (4) | 0.0250 (6) | 0.8869 (3) | 0.0424 (12) | |
N2 | 0.6523 (4) | −0.0561 (6) | 0.9024 (4) | 0.0448 (13) | |
N3 | 0.3669 (4) | 0.1720 (7) | 0.8798 (3) | 0.0466 (13) | |
N4 | 0.4513 (4) | 0.2673 (6) | 0.9210 (3) | 0.0425 (13) | |
H1 | 0.4422 | 0.3832 | 0.9467 | 0.062 (6)* | |
C1 | 0.5420 (5) | 0.2093 (8) | 0.9268 (4) | 0.0450 (16) | |
C2 | 0.4779 (5) | −0.0841 (8) | 0.8374 (4) | 0.0417 (15) | |
C3 | 0.3819 (4) | 0.0048 (8) | 0.8378 (4) | 0.0451 (16) | |
C4 | 0.2920 (5) | −0.1023 (8) | 0.7908 (4) | 0.0570 (19) | |
H41 | 0.2328 | −0.0300 | 0.8028 | 0.062 (6)* | |
H42 | 0.2905 | −0.2346 | 0.8188 | 0.062 (6)* | |
H43 | 0.2943 | −0.1121 | 0.7203 | 0.062 (6)* | |
C5 | 0.6952 (5) | −0.0721 (8) | 0.8260 (5) | 0.0473 (17) | |
H51 | 0.6594 | −0.0394 | 0.7645 | 0.062 (6)* | |
C6 | 0.7947 (5) | −0.1371 (9) | 0.8290 (5) | 0.0478 (16) | |
C7 | 0.8550 (5) | −0.1852 (9) | 0.9182 (5) | 0.0504 (17) | |
C8 | 0.9545 (5) | −0.2297 (8) | 0.9195 (5) | 0.0491 (17) | |
C9 | 0.9954 (5) | −0.2408 (8) | 0.8333 (5) | 0.0551 (17) | |
H91 | 1.0629 | −0.2745 | 0.8340 | 0.062 (6)* | |
C10 | 0.9358 (5) | −0.2017 (8) | 0.7439 (5) | 0.0462 (16) | |
H101 | 0.9634 | −0.2126 | 0.6844 | 0.062 (6)* | |
C11 | 0.8401 (5) | −0.1490 (9) | 0.7416 (4) | 0.0485 (16) | |
H111 | 0.8024 | −0.1194 | 0.6807 | 0.062 (6)* | |
C12 | 1.1069 (4) | −0.3021 (9) | 1.0169 (5) | 0.0521 (17) | |
H121 | 1.1341 | −0.3196 | 1.0856 | 0.062 (6)* | |
H122 | 1.1398 | −0.1911 | 0.9893 | 0.062 (6)* | |
H123 | 1.1178 | −0.4220 | 0.9803 | 0.062 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0519 (10) | 0.0425 (8) | 0.0543 (10) | −0.0001 (8) | 0.0096 (8) | −0.0035 (8) |
O1 | 0.066 (3) | 0.044 (2) | 0.052 (3) | 0.000 (2) | 0.008 (2) | −0.003 (2) |
O2 | 0.042 (3) | 0.055 (3) | 0.055 (3) | 0.011 (2) | 0.011 (2) | 0.005 (2) |
O3 | 0.047 (3) | 0.055 (2) | 0.057 (3) | 0.007 (2) | 0.003 (2) | 0.000 (2) |
N1 | 0.045 (3) | 0.037 (3) | 0.045 (3) | 0.002 (2) | 0.007 (3) | 0.002 (2) |
N2 | 0.042 (3) | 0.040 (3) | 0.054 (3) | 0.007 (2) | 0.014 (3) | 0.003 (3) |
N3 | 0.056 (3) | 0.039 (3) | 0.045 (3) | 0.002 (3) | 0.008 (3) | 0.000 (2) |
N4 | 0.040 (3) | 0.036 (3) | 0.052 (3) | −0.004 (3) | 0.008 (3) | −0.004 (2) |
C1 | 0.042 (4) | 0.039 (3) | 0.054 (4) | −0.001 (3) | 0.008 (3) | 0.009 (3) |
C2 | 0.053 (4) | 0.035 (3) | 0.040 (4) | 0.002 (3) | 0.019 (3) | −0.001 (3) |
C3 | 0.050 (4) | 0.040 (3) | 0.046 (4) | 0.002 (3) | 0.010 (3) | 0.004 (3) |
C4 | 0.084 (5) | 0.035 (4) | 0.051 (4) | 0.006 (3) | 0.004 (4) | −0.006 (3) |
C5 | 0.047 (4) | 0.034 (3) | 0.061 (5) | 0.002 (3) | 0.003 (4) | 0.002 (3) |
C6 | 0.045 (4) | 0.038 (3) | 0.061 (4) | −0.007 (3) | 0.007 (4) | 0.004 (3) |
C7 | 0.057 (5) | 0.043 (4) | 0.053 (4) | −0.004 (3) | 0.013 (4) | −0.002 (3) |
C8 | 0.044 (4) | 0.036 (3) | 0.067 (5) | 0.002 (3) | 0.006 (4) | 0.000 (3) |
C9 | 0.059 (5) | 0.045 (3) | 0.064 (5) | −0.004 (3) | 0.018 (4) | 0.002 (3) |
C10 | 0.047 (4) | 0.043 (4) | 0.054 (4) | −0.007 (3) | 0.025 (4) | 0.004 (3) |
C11 | 0.051 (4) | 0.047 (3) | 0.047 (4) | −0.004 (3) | 0.009 (3) | −0.005 (3) |
C12 | 0.033 (4) | 0.055 (4) | 0.070 (4) | 0.004 (3) | 0.015 (3) | 0.008 (3) |
S1—C1 | 1.694 (6) | C4—H42 | 0.9800 |
O1—C2 | 1.238 (6) | C4—H43 | 0.9800 |
O2—C7 | 1.383 (7) | C5—C6 | 1.427 (8) |
O2—H2 | 0.8900 | C5—H51 | 0.9500 |
O3—C8 | 1.372 (7) | C6—C11 | 1.427 (8) |
O3—C12 | 1.409 (7) | C6—C7 | 1.428 (8) |
N1—C1 | 1.391 (7) | C7—C8 | 1.393 (8) |
N1—C2 | 1.401 (7) | C8—C9 | 1.380 (9) |
N1—N2 | 1.422 (6) | C9—C10 | 1.413 (8) |
N2—C5 | 1.275 (7) | C9—H91 | 0.9500 |
N3—C3 | 1.303 (7) | C10—C11 | 1.354 (8) |
N3—N4 | 1.381 (6) | C10—H101 | 0.9500 |
N4—C1 | 1.295 (7) | C11—H111 | 0.9500 |
N4—H1 | 0.8800 | C12—H121 | 0.9800 |
C2—C3 | 1.447 (8) | C12—H122 | 0.9800 |
C3—C4 | 1.503 (8) | C12—H123 | 0.9800 |
C4—H41 | 0.9800 | ||
C7—O2—H2 | 107.6 | N2—C5—H51 | 118.6 |
C8—O3—C12 | 117.9 (5) | C6—C5—H51 | 118.6 |
C1—N1—C2 | 122.5 (5) | C11—C6—C7 | 116.7 (6) |
C1—N1—N2 | 117.3 (5) | C11—C6—C5 | 120.6 (6) |
C2—N1—N2 | 120.1 (4) | C7—C6—C5 | 122.6 (6) |
C5—N2—N1 | 115.2 (5) | O2—C7—C8 | 117.6 (6) |
C3—N3—N4 | 114.9 (5) | O2—C7—C6 | 121.3 (6) |
C1—N4—N3 | 128.8 (5) | C8—C7—C6 | 121.1 (6) |
C1—N4—H1 | 115.6 | O3—C8—C9 | 124.5 (6) |
N3—N4—H1 | 115.6 | O3—C8—C7 | 115.2 (6) |
N4—C1—N1 | 115.2 (5) | C9—C8—C7 | 120.3 (6) |
N4—C1—S1 | 123.2 (5) | C8—C9—C10 | 119.4 (6) |
N1—C1—S1 | 121.6 (5) | C8—C9—H91 | 120.3 |
O1—C2—N1 | 120.3 (5) | C10—C9—H91 | 120.3 |
O1—C2—C3 | 125.5 (6) | C11—C10—C9 | 121.2 (6) |
N1—C2—C3 | 114.2 (5) | C11—C10—H101 | 119.4 |
N3—C3—C2 | 124.1 (5) | C9—C10—H101 | 119.4 |
N3—C3—C4 | 116.6 (5) | C10—C11—C6 | 121.3 (6) |
C2—C3—C4 | 119.2 (5) | C10—C11—H111 | 119.4 |
C3—C4—H41 | 109.5 | C6—C11—H111 | 119.4 |
C3—C4—H42 | 109.5 | O3—C12—H121 | 109.5 |
H41—C4—H42 | 109.5 | O3—C12—H122 | 109.5 |
C3—C4—H43 | 109.5 | H121—C12—H122 | 109.5 |
H41—C4—H43 | 109.5 | O3—C12—H123 | 109.5 |
H42—C4—H43 | 109.5 | H121—C12—H123 | 109.5 |
N2—C5—C6 | 122.8 (6) | H122—C12—H123 | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1···S1i | 0.88 | 2.45 | 3.287 (5) | 160 |
O2—H2···N2 | 0.89 | 1.87 | 2.662 (7) | 146 |
O2—H2···N3ii | 0.89 | 2.57 | 3.135 (7) | 122 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C12H12N4O3S |
Mr | 292.32 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.679 (3), 6.799 (1), 13.797 (3) |
β (°) | 97.37 (2) |
V (Å3) | 1272.6 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.27 |
Crystal size (mm) | 0.17 × 0.16 × 0.05 |
Data collection | |
Diffractometer | Stoe IPDS II diffractometer |
Absorption correction | Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008) |
Tmin, Tmax | 0.19, 1.0 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6252, 2466, 781 |
Rint | 0.168 |
(sin θ/λ)max (Å−1) | 0.614 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.148, 0.69 |
No. of reflections | 2466 |
No. of parameters | 184 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.25 |
Computer programs: X-AREA (Stoe & Cie, 2008), X-RED32 (Stoe & Cie, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1···S1i | 0.88 | 2.45 | 3.287 (5) | 160 |
O2—H2···N2 | 0.89 | 1.87 | 2.662 (7) | 146 |
O2—H2···N3ii | 0.89 | 2.57 | 3.135 (7) | 122 |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y, −z+2. |
Acknowledgements
This research was supported by the Islamic Azad University, Yazd Branch.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Demirbas, A. (2004). Turk. J. Chem. 28, 311–325. CAS Google Scholar
Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178. CrossRef CAS Google Scholar
Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299–1311. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Galic, N., Galic, N., Peric, B., Kojic-Prodic, B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–94. CAS Google Scholar
Rando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., Amaral, T., Ferreira, F. I. & &Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557–560. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Tabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120–124. Web of Science CSD CrossRef CAS Google Scholar
Tabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173–x174. CAS Google Scholar
Tabatabaee, M., Ghassemzadeh, M., Zarabi, B., Heravi, M. M., Anary-Abbasinejad, M. & Neumüller, B. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 677–686. Web of Science CSD CrossRef CAS Google Scholar
Tabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421–1425. CAS Google Scholar
Todeschini, A. R., Miranda, A. N., Silva, K. C. M., Parrini, S. C. & Barreiro, E. (1998). Eur. J. Med. Chem. 33, 189–199. Web of Science CrossRef CAS Google Scholar
Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–87. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Azomethine compounds have been extensively studied for various reasons, one of which is their biological activity (Todeschini et al., 1998; Demirbas, 2004; Rando et al., 2002). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Prukah, 1998; Dubey et al., 1991). In a sequence of studies, we have investigated the synthesis and crystal structure of several Schiff bases derived 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione (AMTT) and 4-amino-6-methyl-3-thio-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) compounds (Tabatabaee et al. 2006;2007;2008;2009) with various aldehydes. Herein, we report the crystal structure of the title compound.
The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles agree with related compounds (Tabatabaee et al., 2006; 2007; 2008; 2009). In the crystal, N—H···S and O—H···N hydrogen bonds link molecules into chains along [010] (Fig. 2). In addition, there are weak π–π stacking interactions between triazine rings Cg···Cg(1-x,-y,2-z) = 3.560 (3)Å, where Cg is the centroid defined by N1/C1/N4/N3/C3/C2.