organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-(2-Hy­dr­oxy-3-meth­­oxy­benzyl­­idene­amino)-6-methyl-3-sulfanyl­­idene-3,4-di­hydro-1,2,4-triazin-5(2H)-one

aDepartment of Chemistry, Yazd Branch, Islamic Azad University, Yazd, Iran, bChemistry and Chemical Engineering Research Center of Iran, Tehran, Iran, and cDepartment of Chemistry, Marburg University, Marburg, Germany
*Correspondence e-mail: tabatabaee45@gmail.com

(Received 7 August 2012; accepted 24 August 2012; online 31 August 2012)

In the title mol­ecule, C12H12N4O3S, there is an intra­molecular O—H⋯N hydrogen bond. The dihedral angle between the benzene and triazine rings is 65.9 (3)°. In the crystal, N—H⋯S and O—H⋯N hydrogen bonds link the mol­ecules into chains along [010]. In addition, there are weak ππ stacking inter­actions between symmetry-related triazine rings with a centroid–centroid distance of 3.560 (3)°.

Related literature

For the biological activity of azomethine compounds, see: Todeschini et al. (1998[Todeschini, A. R., Miranda, A. N., Silva, K. C. M., Parrini, S. C. & Barreiro, E. (1998). Eur. J. Med. Chem. 33, 189-199.]); Demirbas (2004[Demirbas, A. (2004). Turk. J. Chem. 28, 311-325.]); Rando et al. (2002[Rando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., Amaral, T., Ferreira, F. I. & &Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557-560.]). For general applications of Schiff base compounds, see: Galic et al. (2001[Galic, N., Galic, N., Peric, B., Kojic-Prodic, B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187-94.]); Wyrzykiewicz & Prukah (1998[Wyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381-87.]); Dubey et al. (1991[Dubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299-1311.]). For the crystal structures of related Schiff base compounds, see: Tabatabaee et al. (2006[Tabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421-1425.], 2007[Tabatabaee, M., Ghassemzadeh, M., Zarabi, B., Heravi, M. M., Anary-Abbasinejad, M. & Neumüller, B. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 677-686.], 2008[Tabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173-x174.], 2009[Tabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120-124.]). For the synthesis of the starting material, see: Dornow et al. (1964[Dornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173-2178.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N4O3S

  • Mr = 292.32

  • Monoclinic, P 21 /c

  • a = 13.679 (3) Å

  • b = 6.799 (1) Å

  • c = 13.797 (3) Å

  • β = 97.37 (2)°

  • V = 1272.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.17 × 0.16 × 0.05 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.19, Tmax = 1.0

  • 6252 measured reflections

  • 2466 independent reflections

  • 781 reflections with I > 2σ(I)

  • Rint = 0.168

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.148

  • S = 0.69

  • 2466 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯S1i 0.88 2.45 3.287 (5) 160
O2—H2⋯N2 0.89 1.87 2.662 (7) 146
O2—H2⋯N3ii 0.89 2.57 3.135 (7) 122
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+2.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Azomethine compounds have been extensively studied for various reasons, one of which is their biological activity (Todeschini et al., 1998; Demirbas, 2004; Rando et al., 2002). Schiff bases, containing different donor atoms, also find use in analytical applications and metal coordination (Galic et al., 2001; Wyrzykiewicz & Prukah, 1998; Dubey et al., 1991). In a sequence of studies, we have investigated the synthesis and crystal structure of several Schiff bases derived 4-amino-5-methyl-2H-1,2,4-triazole-3(4H)-thione (AMTT) and 4-amino-6-methyl-3-thio-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) compounds (Tabatabaee et al. 2006;2007;2008;2009) with various aldehydes. Herein, we report the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles agree with related compounds (Tabatabaee et al., 2006; 2007; 2008; 2009). In the crystal, N—H···S and O—H···N hydrogen bonds link molecules into chains along [010] (Fig. 2). In addition, there are weak ππ stacking interactions between triazine rings Cg···Cg(1-x,-y,2-z) = 3.560 (3)Å, where Cg is the centroid defined by N1/C1/N4/N3/C3/C2.

Related literature top

For the biological activity of azomethine compounds, see: Todeschini et al. (1998); Demirbas (2004); Rando et al. (2002). For general applications of Schiff base compounds, see: Galic et al. (2001); Wyrzykiewicz & Prukah (1998); Dubey et al. (1991). For the crystal structures of related Schiff base compounds, see: Tabatabaee et al. (2006, 2007, 2008, 2009). For the synthesis of the starting material, see: Dornow et al. (1964).

Experimental top

4-Amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one (AMTTO) was prepared according to the literature procedure (Dornow et al., 1964). A solution of (AMTTO) (0.632 g, 4 mmol) in ethanol (10 ml) was treated with 2-hydroxy-3-methoxybenzaldehyde (0.608 g, 4 mmol) and the resulting mixture was acidified with 3 drops of hydrochloric acid (37.5%). The reaction mixture was refluxed. The progress of the reaction was monitored by TLC. After completion of the reaction (8 hrs), the pale yellow precipitate was filtered off and the clear solution was kept at 277K to give yellow plates crystals of the title compound (yield 79%).

Refinement top

H atoms were placed in calculated positions with C—H = 0.95 - 0.98 Å, O—H = 0.89Å and N—H = 0.88Å. They were included in the refinement in a riding-motion approximation with a refined common displacement parameter of Uiso(H) = 0.062 (6)Å2. The diffraction from the crystal was very weak and this may affect the precision of the structure.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-RED32 (Stoe & Cie, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
Fig. 1 The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig 2. Part of the crystal structure with hydrogen bonds drawn as dashed lines.

Fig. 3 A view of a ππ stacking interaction.
(E)-4-(2-Hydroxy-3-methoxybenzylideneamino)-6-methyl-3- sulfanylidene-3,4-dihydro-1,2,4-triazin-5(2H)-one top
Crystal data top
C12H12N4O3SF(000) = 608
Mr = 292.32Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2500 reflections
a = 13.679 (3) Åθ = 1.5–25.9°
b = 6.799 (1) ŵ = 0.27 mm1
c = 13.797 (3) ÅT = 100 K
β = 97.37 (2)°Plate, yellow
V = 1272.6 (4) Å30.17 × 0.16 × 0.05 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2466 independent reflections
Radiation source: fine-focus sealed tube781 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.168
ω scansθmax = 25.9°, θmin = 1.5°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 1616
Tmin = 0.19, Tmax = 1.0k = 87
6252 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.69 w = 1/[σ2(Fo2) + (0.0454P)2]
where P = (Fo2 + 2Fc2)/3
2466 reflections(Δ/σ)max = 0.002
184 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H12N4O3SV = 1272.6 (4) Å3
Mr = 292.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.679 (3) ŵ = 0.27 mm1
b = 6.799 (1) ÅT = 100 K
c = 13.797 (3) Å0.17 × 0.16 × 0.05 mm
β = 97.37 (2)°
Data collection top
Stoe IPDS II
diffractometer
2466 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
781 reflections with I > 2σ(I)
Tmin = 0.19, Tmax = 1.0Rint = 0.168
6252 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.69Δρmax = 0.25 e Å3
2466 reflectionsΔρmin = 0.25 e Å3
184 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.63854 (13)0.3469 (2)0.97729 (12)0.0493 (5)
O10.4940 (3)0.2444 (6)0.8000 (3)0.0543 (12)
O20.8173 (3)0.1839 (6)1.0066 (3)0.0502 (11)
H20.75630.13600.99590.062 (6)*
O31.0050 (3)0.2641 (5)1.0104 (3)0.0533 (11)
N10.5557 (4)0.0250 (6)0.8869 (3)0.0424 (12)
N20.6523 (4)0.0561 (6)0.9024 (4)0.0448 (13)
N30.3669 (4)0.1720 (7)0.8798 (3)0.0466 (13)
N40.4513 (4)0.2673 (6)0.9210 (3)0.0425 (13)
H10.44220.38320.94670.062 (6)*
C10.5420 (5)0.2093 (8)0.9268 (4)0.0450 (16)
C20.4779 (5)0.0841 (8)0.8374 (4)0.0417 (15)
C30.3819 (4)0.0048 (8)0.8378 (4)0.0451 (16)
C40.2920 (5)0.1023 (8)0.7908 (4)0.0570 (19)
H410.23280.03000.80280.062 (6)*
H420.29050.23460.81880.062 (6)*
H430.29430.11210.72030.062 (6)*
C50.6952 (5)0.0721 (8)0.8260 (5)0.0473 (17)
H510.65940.03940.76450.062 (6)*
C60.7947 (5)0.1371 (9)0.8290 (5)0.0478 (16)
C70.8550 (5)0.1852 (9)0.9182 (5)0.0504 (17)
C80.9545 (5)0.2297 (8)0.9195 (5)0.0491 (17)
C90.9954 (5)0.2408 (8)0.8333 (5)0.0551 (17)
H911.06290.27450.83400.062 (6)*
C100.9358 (5)0.2017 (8)0.7439 (5)0.0462 (16)
H1010.96340.21260.68440.062 (6)*
C110.8401 (5)0.1490 (9)0.7416 (4)0.0485 (16)
H1110.80240.11940.68070.062 (6)*
C121.1069 (4)0.3021 (9)1.0169 (5)0.0521 (17)
H1211.13410.31961.08560.062 (6)*
H1221.13980.19110.98930.062 (6)*
H1231.11780.42200.98030.062 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0519 (10)0.0425 (8)0.0543 (10)0.0001 (8)0.0096 (8)0.0035 (8)
O10.066 (3)0.044 (2)0.052 (3)0.000 (2)0.008 (2)0.003 (2)
O20.042 (3)0.055 (3)0.055 (3)0.011 (2)0.011 (2)0.005 (2)
O30.047 (3)0.055 (2)0.057 (3)0.007 (2)0.003 (2)0.000 (2)
N10.045 (3)0.037 (3)0.045 (3)0.002 (2)0.007 (3)0.002 (2)
N20.042 (3)0.040 (3)0.054 (3)0.007 (2)0.014 (3)0.003 (3)
N30.056 (3)0.039 (3)0.045 (3)0.002 (3)0.008 (3)0.000 (2)
N40.040 (3)0.036 (3)0.052 (3)0.004 (3)0.008 (3)0.004 (2)
C10.042 (4)0.039 (3)0.054 (4)0.001 (3)0.008 (3)0.009 (3)
C20.053 (4)0.035 (3)0.040 (4)0.002 (3)0.019 (3)0.001 (3)
C30.050 (4)0.040 (3)0.046 (4)0.002 (3)0.010 (3)0.004 (3)
C40.084 (5)0.035 (4)0.051 (4)0.006 (3)0.004 (4)0.006 (3)
C50.047 (4)0.034 (3)0.061 (5)0.002 (3)0.003 (4)0.002 (3)
C60.045 (4)0.038 (3)0.061 (4)0.007 (3)0.007 (4)0.004 (3)
C70.057 (5)0.043 (4)0.053 (4)0.004 (3)0.013 (4)0.002 (3)
C80.044 (4)0.036 (3)0.067 (5)0.002 (3)0.006 (4)0.000 (3)
C90.059 (5)0.045 (3)0.064 (5)0.004 (3)0.018 (4)0.002 (3)
C100.047 (4)0.043 (4)0.054 (4)0.007 (3)0.025 (4)0.004 (3)
C110.051 (4)0.047 (3)0.047 (4)0.004 (3)0.009 (3)0.005 (3)
C120.033 (4)0.055 (4)0.070 (4)0.004 (3)0.015 (3)0.008 (3)
Geometric parameters (Å, º) top
S1—C11.694 (6)C4—H420.9800
O1—C21.238 (6)C4—H430.9800
O2—C71.383 (7)C5—C61.427 (8)
O2—H20.8900C5—H510.9500
O3—C81.372 (7)C6—C111.427 (8)
O3—C121.409 (7)C6—C71.428 (8)
N1—C11.391 (7)C7—C81.393 (8)
N1—C21.401 (7)C8—C91.380 (9)
N1—N21.422 (6)C9—C101.413 (8)
N2—C51.275 (7)C9—H910.9500
N3—C31.303 (7)C10—C111.354 (8)
N3—N41.381 (6)C10—H1010.9500
N4—C11.295 (7)C11—H1110.9500
N4—H10.8800C12—H1210.9800
C2—C31.447 (8)C12—H1220.9800
C3—C41.503 (8)C12—H1230.9800
C4—H410.9800
C7—O2—H2107.6N2—C5—H51118.6
C8—O3—C12117.9 (5)C6—C5—H51118.6
C1—N1—C2122.5 (5)C11—C6—C7116.7 (6)
C1—N1—N2117.3 (5)C11—C6—C5120.6 (6)
C2—N1—N2120.1 (4)C7—C6—C5122.6 (6)
C5—N2—N1115.2 (5)O2—C7—C8117.6 (6)
C3—N3—N4114.9 (5)O2—C7—C6121.3 (6)
C1—N4—N3128.8 (5)C8—C7—C6121.1 (6)
C1—N4—H1115.6O3—C8—C9124.5 (6)
N3—N4—H1115.6O3—C8—C7115.2 (6)
N4—C1—N1115.2 (5)C9—C8—C7120.3 (6)
N4—C1—S1123.2 (5)C8—C9—C10119.4 (6)
N1—C1—S1121.6 (5)C8—C9—H91120.3
O1—C2—N1120.3 (5)C10—C9—H91120.3
O1—C2—C3125.5 (6)C11—C10—C9121.2 (6)
N1—C2—C3114.2 (5)C11—C10—H101119.4
N3—C3—C2124.1 (5)C9—C10—H101119.4
N3—C3—C4116.6 (5)C10—C11—C6121.3 (6)
C2—C3—C4119.2 (5)C10—C11—H111119.4
C3—C4—H41109.5C6—C11—H111119.4
C3—C4—H42109.5O3—C12—H121109.5
H41—C4—H42109.5O3—C12—H122109.5
C3—C4—H43109.5H121—C12—H122109.5
H41—C4—H43109.5O3—C12—H123109.5
H42—C4—H43109.5H121—C12—H123109.5
N2—C5—C6122.8 (6)H122—C12—H123109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···S1i0.882.453.287 (5)160
O2—H2···N20.891.872.662 (7)146
O2—H2···N3ii0.892.573.135 (7)122
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H12N4O3S
Mr292.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.679 (3), 6.799 (1), 13.797 (3)
β (°) 97.37 (2)
V3)1272.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.17 × 0.16 × 0.05
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.19, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
6252, 2466, 781
Rint0.168
(sin θ/λ)max1)0.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.148, 0.69
No. of reflections2466
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: X-AREA (Stoe & Cie, 2008), X-RED32 (Stoe & Cie, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···S1i0.882.453.287 (5)160
O2—H2···N20.891.872.662 (7)146
O2—H2···N3ii0.892.573.135 (7)122
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2.
 

Acknowledgements

This research was supported by the Islamic Azad University, Yazd Branch.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDemirbas, A. (2004). Turk. J. Chem. 28, 311–325.  CAS Google Scholar
First citationDornow, A., Menzel, H. & Marx, P. (1964). Chem. Ber. 97, 2173–2178.  CrossRef CAS Google Scholar
First citationDubey, S. N. & Vaid, B. K. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1299–1311.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalic, N., Galic, N., Peric, B., Kojic-Prodic, B. & Cimerman, Z. (2001). J. Med. Chem. 559, 187–94.  CAS Google Scholar
First citationRando, D. G., Sato, D. N., Siqueira, L., Malvezzi, A., Leite, C. Q. F., Amaral, T., Ferreira, F. I. & &Tavares, L. C. (2002). Bioorg. Med. Chem. 10, 557–560.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Sadeghi, A., Shahriary, M. & Neumüller, B. (2009). Z. Anorg. Allg. Chem. 635, 120–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M. & Soleimani, N. (2008). Anal. Sci. 24, x173–x174.  CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, B., Heravi, M. M., Anary-Abbasinejad, M. & Neumüller, B. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 677–686.  Web of Science CSD CrossRef CAS Google Scholar
First citationTabatabaee, M., Ghassemzadeh, M., Zarabi, B. & Neumüller, B. (2006). Z. Naturforsch. Teil B, 61, 1421–1425.  CAS Google Scholar
First citationTodeschini, A. R., Miranda, A. N., Silva, K. C. M., Parrini, S. C. & Barreiro, E. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWyrzykiewicz, E. & Prukah, D. (1998). J. Heterocycl. Chem. 35, 381–87.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds