organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2788-o2789

Ethyl 6-(4-meth­­oxy­phen­yl)-2-oxo-4-phenyl­cyclo­hex-3-ene­carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P.A. College of Engineering, Mangalore 574 153, India, and cDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India
*Correspondence e-mail: hkfun@usm.my

(Received 13 August 2012; accepted 21 August 2012; online 25 August 2012)

The asymmetric unit of the title compound, C22H22O4, consists of two independent mol­ecules (A and B). The cyclo­hexene rings adopt slightly distorted sofa conformations in both mol­ecules. The dihedral angles between the benzene rings are 74.16 (13) and 71.85 (13)° in mol­ecules A and B, respectively. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into a ribbon-like structure along the b axis. Weak C—H⋯π inter­actions are also observed.

Related literature

For applications of chalcones and cyclo­hexenone derivatives, see: Padmavathi et al. (2000[Padmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281-1286.]); Senguttuvan & Nagarajan (2010[Senguttuvan, S. & Nagarajan, S. (2010). Int. J. Chem. 2, 108-112.]); Tanaka et al. (1997[Tanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871-7872.]). For related structures, see: Dutkiewicz et al. (2011a[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334-o335.],b[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.],c[Dutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445-o446.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.]); Fischer et al. (2008[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, o560.]). For conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22O4

  • Mr = 350.40

  • Orthorhombic, P n a 21

  • a = 22.3528 (13) Å

  • b = 8.1659 (5) Å

  • c = 19.7132 (12) Å

  • V = 3598.3 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.37 × 0.24 × 0.17 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.985

  • 35140 measured reflections

  • 5622 independent reflections

  • 4938 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.08

  • 5622 reflections

  • 473 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13A–C18A and C13B–C18B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5AA⋯O1Ai 0.95 2.41 3.210 (3) 141
C5B—H5BA⋯O1Bi 0.95 2.53 3.329 (3) 142
C14B—H14B⋯O2A 0.95 2.43 3.377 (3) 173
C17A—H17A⋯O2Bi 0.95 2.59 3.218 (4) 124
C21A—H21ACg1i 0.99 2.70 3.513 (3) 142
C21B—H21DCg2i 0.99 2.71 3.501 (3) 139
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones undergo a variety of chemical reactions and were found to be useful in the synthesis of various heterocyclic compounds. Michael addition of ethyl acetoacetate to chalcones yield 4,6-diaryl-2-oxo-cyclohex-3-ene-1-carboxylate derivatives, which could be used for the synthesis of fused heterocycles like isoxazoles, pyrazoles and quinazolins (Padmavathi et al., 2000; Senguttuvan & Nagarajan, 2010). Cyclohexenone derivatives are well known lead molecules for the treatment of inflammation and autoimmune diseases (Tanaka et al., 1997). The crystal structure of some of the cyclohexenone derivatives have been reported (Dutkiewicz et al., 2011a,b,c; Fun et al., 2008; Fischer et al., 2008). The present work describes the synthesis and crystal structure of the title compound which was prepared by the reaction of 1-phenyl-3-(4-methoxyphenyl)- prop-2-en-1-one with ethyl acetoacetate.

The asymmetric unit of the title compound, (Fig 1), consists of two independent molecules (A and B). The cyclohexene rings (C7A–C12A and C7B–C12B) adopt slightly distorted sofa conformations with puckering parameters (Cremer & Pople, 1975) Q = 0.495 (3) Å, Θ = 126.1 (3) Å, ϕ = 316.5 (4)° and Q = 0.491 (3) Å, Θ = 54.2 (3) Å, ϕ = 129.5 (4)°, respectively. The dihedral angle between the benzene rings (C1–C6 and C13–C18) are 74.16 (13)° in molecule A and 71.85 (13) ° in molecule B. In the crystal (Fig 2), intermolecular C—H···O hydrogen bonds link the molecules into a ribbon-like structure along the b axis. The crystal structure is further stabilized by weak C—H···π interactions (Table 1), involving the C13A–C18A ring (centroid Cg1) and C13B–C18B ring (centroid Cg2).

Related literature top

For applications of chalcones and cyclohexenone derivatives, see: Padmavathi et al. (2000); Senguttuvan & Nagarajan (2010); Tanaka et al. (1997). For related structures, see: Dutkiewicz et al. (2011a,b,c); Fun et al. (2008); Fischer et al. (2008). For conformation analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

1-Phenyl-3-(4-methoxyphenyl)-prop-2-en-1-one (2.38 g, 0.01 mol) and ethyl acetoacetate (1.30 g, 0.01 mol) were refluxed for 8–10 hrs in 30 ml methanol in presence of 0.8 ml of 10% NaOH. The reaction mixture was cooled to room temperature and the precipitate obtained was filtered. The single crystals were grown by slow evaporation from solvent ethanol. M.P = 375–377 K

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) (C—H = 0.95, 0.98, 0.99 and 1.00 Å). In the final refinement, three outliers reflections (9 2 0), (6 2 8) and (10 2 2) were omitted. A total of 5191 Friedel pairs were merged as there is no significant anomalous dispersion to determine the absolute structure.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of the title compound, viewed along the a axis.
Ethyl 6-(4-methoxyphenyl)-2-oxo-4-phenylcyclohex-3-enecarboxylate top
Crystal data top
C22H22O4F(000) = 1488
Mr = 350.40Dx = 1.294 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8949 reflections
a = 22.3528 (13) Åθ = 2.8–30.4°
b = 8.1659 (5) ŵ = 0.09 mm1
c = 19.7132 (12) ÅT = 100 K
V = 3598.3 (4) Å3Block, colourles
Z = 80.37 × 0.24 × 0.17 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5622 independent reflections
Radiation source: fine-focus sealed tube4938 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 30.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3131
Tmin = 0.968, Tmax = 0.985k = 1111
35140 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.8699P]
where P = (Fo2 + 2Fc2)/3
5622 reflections(Δ/σ)max < 0.001
473 parametersΔρmax = 0.34 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C22H22O4V = 3598.3 (4) Å3
Mr = 350.40Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 22.3528 (13) ŵ = 0.09 mm1
b = 8.1659 (5) ÅT = 100 K
c = 19.7132 (12) Å0.37 × 0.24 × 0.17 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
5622 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4938 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.985Rint = 0.052
35140 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.139H-atom parameters constrained
S = 1.08Δρmax = 0.34 e Å3
5622 reflectionsΔρmin = 0.24 e Å3
473 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.33599 (9)0.6380 (2)0.17062 (11)0.0253 (4)
O2A0.19099 (10)0.6033 (3)0.17833 (11)0.0286 (4)
O3A0.22756 (8)0.5761 (2)0.07262 (10)0.0224 (4)
O4A0.04435 (8)0.0315 (2)0.07373 (12)0.0269 (4)
C1A0.49181 (11)0.1749 (3)0.14792 (15)0.0229 (5)
H1AA0.49780.28920.14180.028*
C2A0.54107 (11)0.0714 (3)0.15406 (16)0.0257 (5)
H2AA0.58030.11600.15310.031*
C3A0.53336 (12)0.0960 (3)0.16158 (16)0.0247 (5)
H3AA0.56710.16630.16500.030*
C4A0.47572 (11)0.1600 (3)0.16412 (15)0.0230 (5)
H4AA0.47010.27460.16930.028*
C5A0.42624 (11)0.0575 (3)0.15908 (14)0.0212 (5)
H5AA0.38720.10290.16130.025*
C6A0.43327 (11)0.1118 (3)0.15070 (13)0.0190 (5)
C7A0.37995 (11)0.2194 (3)0.14599 (13)0.0182 (5)
C8A0.32006 (10)0.1426 (3)0.13001 (13)0.0173 (4)
H8AA0.30530.08540.17100.021*
H8AB0.32570.05950.09400.021*
C9A0.27230 (10)0.2658 (3)0.10665 (13)0.0189 (4)
H9AA0.28510.31060.06170.023*
C10A0.27010 (11)0.4090 (3)0.15723 (14)0.0186 (5)
H10A0.25970.36420.20290.022*
C11A0.33127 (11)0.4900 (3)0.16184 (13)0.0189 (4)
C12A0.38382 (11)0.3828 (3)0.15857 (13)0.0202 (5)
H12A0.42220.42960.16550.024*
C13A0.21137 (10)0.1869 (3)0.09738 (13)0.0188 (5)
C14A0.18482 (12)0.1828 (3)0.03368 (14)0.0228 (5)
H14A0.20510.23050.00380.027*
C15A0.12898 (11)0.1104 (3)0.02339 (14)0.0229 (5)
H15A0.11170.10750.02060.027*
C16A0.09903 (11)0.0428 (3)0.07818 (14)0.0198 (5)
C17A0.12397 (11)0.0491 (3)0.14289 (14)0.0196 (5)
H17A0.10290.00440.18050.024*
C18A0.17959 (10)0.1207 (3)0.15224 (13)0.0186 (4)
H18A0.19640.12510.19650.022*
C19A0.01679 (15)0.0360 (5)0.0087 (2)0.0410 (8)
H19A0.02220.09020.01220.061*
H19B0.04230.09710.02290.061*
H19C0.01130.07590.00810.061*
C20A0.22468 (11)0.5390 (3)0.13910 (14)0.0211 (5)
C21A0.18806 (12)0.7066 (3)0.04974 (14)0.0238 (5)
H21A0.19990.81210.07050.029*
H21B0.14620.68240.06270.029*
C22A0.19371 (14)0.7157 (5)0.02593 (16)0.0344 (7)
H22A0.16480.79490.04370.052*
H22B0.18570.60760.04560.052*
H22C0.23430.75040.03800.052*
O1B0.27371 (8)1.1276 (2)0.29846 (11)0.0228 (4)
O2B0.12384 (9)1.0816 (3)0.30559 (11)0.0311 (5)
O3B0.17048 (8)1.0763 (2)0.40694 (11)0.0236 (4)
O4B0.01709 (9)0.4697 (3)0.41096 (12)0.0291 (4)
C1B0.43083 (11)0.6756 (3)0.33072 (15)0.0229 (5)
H1BA0.43570.79100.33320.028*
C2B0.48104 (11)0.5751 (3)0.32730 (17)0.0258 (6)
H2BA0.51990.62210.32790.031*
C3B0.47452 (11)0.4060 (3)0.32307 (15)0.0235 (5)
H3BA0.50880.33770.31980.028*
C4B0.41756 (11)0.3374 (3)0.32369 (14)0.0221 (5)
H4BA0.41300.22190.32140.027*
C5B0.36740 (10)0.4366 (3)0.32766 (13)0.0184 (4)
H5BA0.32880.38820.32840.022*
C6B0.37288 (10)0.6080 (3)0.33057 (13)0.0166 (4)
C7B0.31931 (10)0.7145 (3)0.33191 (12)0.0165 (4)
C8B0.25930 (10)0.6353 (3)0.34695 (13)0.0182 (4)
H8BA0.26480.55030.38220.022*
H8BB0.24450.58060.30540.022*
C9B0.21188 (11)0.7588 (3)0.37141 (13)0.0188 (4)
H9BA0.22550.80380.41600.023*
C10B0.20819 (10)0.9020 (3)0.32083 (13)0.0186 (4)
H10B0.19590.85680.27580.022*
C11B0.26971 (10)0.9824 (3)0.31238 (13)0.0183 (4)
C12B0.32191 (10)0.8759 (3)0.31791 (14)0.0187 (5)
H12B0.36020.92340.31120.022*
C13B0.15086 (10)0.6802 (3)0.38198 (13)0.0188 (5)
C14B0.12015 (11)0.6010 (3)0.32961 (14)0.0200 (5)
H14B0.13800.59360.28600.024*
C15B0.06373 (11)0.5328 (3)0.34039 (14)0.0200 (5)
H15B0.04310.48010.30430.024*
C16B0.03806 (11)0.5427 (3)0.40436 (15)0.0208 (5)
C17B0.06745 (12)0.6203 (3)0.45726 (14)0.0241 (5)
H17B0.04960.62700.50090.029*
C18B0.12387 (11)0.6886 (3)0.44514 (14)0.0230 (5)
H18B0.14420.74210.48120.028*
C19B0.04459 (16)0.4778 (5)0.4755 (2)0.0444 (9)
H19D0.08170.41410.47490.067*
H19E0.05360.59210.48650.067*
H19F0.01740.43270.50970.067*
C20B0.16238 (11)1.0292 (3)0.34184 (14)0.0225 (5)
C21B0.12930 (12)1.2019 (4)0.43107 (15)0.0251 (5)
H21C0.08761.17280.41900.030*
H21D0.13901.30890.41010.030*
C22B0.13615 (14)1.2114 (5)0.50673 (17)0.0370 (7)
H22D0.11021.29810.52460.056*
H22E0.17791.23600.51800.056*
H22F0.12481.10630.52700.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0282 (9)0.0172 (8)0.0304 (10)0.0021 (7)0.0058 (8)0.0003 (7)
O2A0.0300 (10)0.0309 (10)0.0248 (10)0.0055 (8)0.0054 (8)0.0013 (8)
O3A0.0206 (8)0.0238 (9)0.0228 (9)0.0049 (7)0.0015 (7)0.0017 (7)
O4A0.0161 (8)0.0289 (10)0.0357 (11)0.0042 (7)0.0067 (8)0.0032 (9)
C1A0.0182 (10)0.0191 (11)0.0314 (13)0.0025 (8)0.0008 (10)0.0006 (10)
C2A0.0162 (10)0.0256 (13)0.0355 (15)0.0033 (9)0.0013 (11)0.0006 (12)
C3A0.0206 (10)0.0261 (12)0.0276 (13)0.0023 (9)0.0035 (10)0.0009 (11)
C4A0.0235 (11)0.0179 (11)0.0275 (12)0.0002 (9)0.0006 (10)0.0001 (10)
C5A0.0186 (10)0.0230 (12)0.0219 (12)0.0034 (9)0.0007 (9)0.0006 (10)
C6A0.0164 (10)0.0215 (11)0.0191 (11)0.0012 (9)0.0003 (9)0.0021 (9)
C7A0.0172 (10)0.0195 (11)0.0178 (10)0.0036 (8)0.0010 (9)0.0017 (9)
C8A0.0137 (9)0.0166 (11)0.0216 (11)0.0027 (8)0.0008 (9)0.0005 (9)
C9A0.0169 (10)0.0194 (11)0.0204 (11)0.0000 (8)0.0002 (9)0.0012 (9)
C10A0.0190 (10)0.0172 (10)0.0195 (11)0.0012 (8)0.0009 (9)0.0010 (9)
C11A0.0213 (10)0.0169 (10)0.0185 (11)0.0026 (8)0.0033 (9)0.0003 (9)
C12A0.0186 (10)0.0193 (11)0.0228 (11)0.0035 (8)0.0014 (9)0.0007 (10)
C13A0.0155 (9)0.0171 (11)0.0240 (12)0.0007 (8)0.0020 (9)0.0025 (9)
C14A0.0230 (11)0.0241 (12)0.0212 (12)0.0016 (9)0.0028 (9)0.0013 (10)
C15A0.0234 (11)0.0237 (12)0.0215 (11)0.0006 (9)0.0026 (10)0.0003 (10)
C16A0.0162 (10)0.0177 (11)0.0256 (12)0.0001 (8)0.0034 (9)0.0014 (9)
C17A0.0177 (10)0.0192 (11)0.0219 (11)0.0004 (8)0.0010 (9)0.0011 (9)
C18A0.0179 (10)0.0196 (11)0.0185 (11)0.0014 (8)0.0020 (9)0.0008 (9)
C19A0.0316 (15)0.0451 (19)0.0461 (19)0.0067 (13)0.0213 (15)0.0034 (16)
C20A0.0190 (10)0.0212 (11)0.0230 (11)0.0031 (9)0.0006 (9)0.0006 (10)
C21A0.0231 (11)0.0235 (12)0.0248 (12)0.0059 (10)0.0024 (10)0.0004 (10)
C22A0.0274 (14)0.0502 (19)0.0256 (14)0.0096 (13)0.0016 (11)0.0048 (13)
O1B0.0211 (8)0.0183 (8)0.0288 (10)0.0020 (6)0.0001 (7)0.0026 (7)
O2B0.0242 (9)0.0453 (12)0.0238 (9)0.0074 (9)0.0008 (8)0.0007 (9)
O3B0.0209 (8)0.0228 (9)0.0269 (9)0.0046 (7)0.0013 (7)0.0013 (8)
O4B0.0192 (8)0.0308 (10)0.0374 (11)0.0089 (8)0.0083 (8)0.0010 (9)
C1B0.0170 (10)0.0208 (11)0.0309 (13)0.0013 (9)0.0009 (10)0.0018 (10)
C2B0.0154 (10)0.0252 (13)0.0368 (15)0.0008 (9)0.0001 (11)0.0046 (12)
C3B0.0173 (10)0.0240 (12)0.0293 (14)0.0036 (9)0.0014 (10)0.0038 (11)
C4B0.0208 (10)0.0209 (11)0.0247 (12)0.0002 (9)0.0024 (9)0.0005 (10)
C5B0.0179 (10)0.0182 (10)0.0192 (10)0.0026 (8)0.0023 (9)0.0032 (9)
C6B0.0151 (9)0.0175 (10)0.0172 (10)0.0011 (8)0.0015 (8)0.0008 (9)
C7B0.0144 (9)0.0198 (11)0.0154 (10)0.0015 (8)0.0007 (8)0.0000 (9)
C8B0.0140 (9)0.0193 (11)0.0212 (11)0.0016 (8)0.0006 (9)0.0006 (9)
C9B0.0165 (10)0.0206 (11)0.0192 (11)0.0021 (8)0.0014 (9)0.0015 (9)
C10B0.0156 (9)0.0212 (11)0.0190 (11)0.0016 (8)0.0017 (9)0.0011 (9)
C11B0.0160 (9)0.0201 (11)0.0188 (10)0.0021 (8)0.0014 (8)0.0013 (9)
C12B0.0139 (9)0.0192 (11)0.0229 (12)0.0036 (8)0.0015 (9)0.0005 (9)
C13B0.0140 (9)0.0195 (11)0.0228 (11)0.0007 (8)0.0005 (9)0.0035 (9)
C14B0.0176 (10)0.0215 (11)0.0210 (11)0.0016 (8)0.0041 (9)0.0013 (9)
C15B0.0166 (10)0.0205 (11)0.0228 (12)0.0013 (8)0.0003 (9)0.0008 (9)
C16B0.0148 (10)0.0198 (11)0.0278 (12)0.0005 (8)0.0029 (10)0.0037 (10)
C17B0.0239 (11)0.0257 (13)0.0225 (12)0.0003 (10)0.0034 (10)0.0000 (10)
C18B0.0199 (11)0.0258 (12)0.0232 (12)0.0036 (9)0.0021 (9)0.0002 (10)
C19B0.0331 (16)0.0466 (19)0.054 (2)0.0120 (14)0.0238 (16)0.0033 (17)
C20B0.0187 (10)0.0235 (12)0.0253 (12)0.0022 (9)0.0039 (10)0.0023 (10)
C21B0.0227 (11)0.0272 (13)0.0256 (12)0.0066 (10)0.0008 (10)0.0000 (10)
C22B0.0293 (14)0.055 (2)0.0268 (14)0.0123 (14)0.0036 (12)0.0113 (14)
Geometric parameters (Å, º) top
O1A—C11A1.226 (3)O1B—C11B1.220 (3)
O2A—C20A1.200 (3)O2B—C20B1.198 (3)
O3A—C20A1.347 (3)O3B—C20B1.352 (4)
O3A—C21A1.455 (3)O3B—C21B1.458 (3)
O4A—C16A1.367 (3)O4B—C16B1.375 (3)
O4A—C19A1.423 (4)O4B—C19B1.414 (4)
C1A—C2A1.394 (4)C1B—C2B1.392 (4)
C1A—C6A1.408 (3)C1B—C6B1.408 (3)
C1A—H1AA0.9500C1B—H1BA0.9500
C2A—C3A1.385 (4)C2B—C3B1.390 (4)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—C4A1.391 (3)C3B—C4B1.391 (3)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.390 (3)C4B—C5B1.385 (3)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.401 (4)C5B—C6B1.406 (3)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.484 (3)C6B—C7B1.480 (3)
C7A—C12A1.360 (3)C7B—C12B1.348 (3)
C7A—C8A1.512 (3)C7B—C8B1.518 (3)
C8A—C9A1.537 (3)C8B—C9B1.540 (4)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C9A—C13A1.517 (3)C9B—C13B1.522 (3)
C9A—C10A1.537 (4)C9B—C10B1.539 (4)
C9A—H9AA1.0000C9B—H9BA1.0000
C10A—C20A1.512 (4)C10B—C20B1.516 (4)
C10A—C11A1.522 (3)C10B—C11B1.533 (3)
C10A—H10A1.0000C10B—H10B1.0000
C11A—C12A1.466 (3)C11B—C12B1.460 (3)
C12A—H12A0.9500C12B—H12B0.9500
C13A—C14A1.389 (4)C13B—C18B1.385 (4)
C13A—C18A1.402 (4)C13B—C14B1.398 (4)
C14A—C15A1.396 (4)C14B—C15B1.395 (3)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.386 (4)C15B—C16B1.388 (4)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.393 (4)C16B—C17B1.386 (4)
C17A—C18A1.386 (3)C17B—C18B1.400 (4)
C17A—H17A0.9500C17B—H17B0.9500
C18A—H18A0.9500C18B—H18B0.9500
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C21A—C22A1.499 (4)C21B—C22B1.501 (4)
C21A—H21A0.9900C21B—H21C0.9900
C21A—H21B0.9900C21B—H21D0.9900
C22A—H22A0.9800C22B—H22D0.9800
C22A—H22B0.9800C22B—H22E0.9800
C22A—H22C0.9800C22B—H22F0.9800
C20A—O3A—C21A115.9 (2)C20B—O3B—C21B115.2 (2)
C16A—O4A—C19A117.2 (2)C16B—O4B—C19B117.0 (3)
C2A—C1A—C6A120.6 (2)C2B—C1B—C6B120.7 (2)
C2A—C1A—H1AA119.7C2B—C1B—H1BA119.6
C6A—C1A—H1AA119.7C6B—C1B—H1BA119.6
C3A—C2A—C1A120.6 (2)C1B—C2B—C3B120.2 (2)
C3A—C2A—H2AA119.7C1B—C2B—H2BA119.9
C1A—C2A—H2AA119.7C3B—C2B—H2BA119.9
C2A—C3A—C4A119.3 (2)C4B—C3B—C2B119.7 (2)
C2A—C3A—H3AA120.3C4B—C3B—H3BA120.2
C4A—C3A—H3AA120.3C2B—C3B—H3BA120.2
C3A—C4A—C5A120.5 (2)C5B—C4B—C3B120.4 (2)
C3A—C4A—H4AA119.7C5B—C4B—H4BA119.8
C5A—C4A—H4AA119.7C3B—C4B—H4BA119.8
C4A—C5A—C6A120.9 (2)C4B—C5B—C6B120.9 (2)
C4A—C5A—H5AA119.6C4B—C5B—H5BA119.5
C6A—C5A—H5AA119.6C6B—C5B—H5BA119.5
C5A—C6A—C1A118.1 (2)C5B—C6B—C1B118.0 (2)
C5A—C6A—C7A120.1 (2)C5B—C6B—C7B121.0 (2)
C1A—C6A—C7A121.8 (2)C1B—C6B—C7B121.0 (2)
C12A—C7A—C6A121.3 (2)C12B—C7B—C6B122.4 (2)
C12A—C7A—C8A120.1 (2)C12B—C7B—C8B119.6 (2)
C6A—C7A—C8A118.6 (2)C6B—C7B—C8B117.9 (2)
C7A—C8A—C9A114.0 (2)C7B—C8B—C9B113.0 (2)
C7A—C8A—H8AA108.8C7B—C8B—H8BA109.0
C9A—C8A—H8AA108.8C9B—C8B—H8BA109.0
C7A—C8A—H8AB108.8C7B—C8B—H8BB109.0
C9A—C8A—H8AB108.8C9B—C8B—H8BB109.0
H8AA—C8A—H8AB107.7H8BA—C8B—H8BB107.8
C13A—C9A—C10A111.9 (2)C13B—C9B—C10B111.2 (2)
C13A—C9A—C8A112.4 (2)C13B—C9B—C8B112.5 (2)
C10A—C9A—C8A109.0 (2)C10B—C9B—C8B109.4 (2)
C13A—C9A—H9AA107.8C13B—C9B—H9BA107.9
C10A—C9A—H9AA107.8C10B—C9B—H9BA107.9
C8A—C9A—H9AA107.8C8B—C9B—H9BA107.9
C20A—C10A—C11A108.2 (2)C20B—C10B—C11B110.0 (2)
C20A—C10A—C9A113.7 (2)C20B—C10B—C9B112.3 (2)
C11A—C10A—C9A109.9 (2)C11B—C10B—C9B110.36 (19)
C20A—C10A—H10A108.3C20B—C10B—H10B108.0
C11A—C10A—H10A108.3C11B—C10B—H10B108.0
C9A—C10A—H10A108.3C9B—C10B—H10B108.0
O1A—C11A—C12A121.7 (2)O1B—C11B—C12B122.5 (2)
O1A—C11A—C10A121.0 (2)O1B—C11B—C10B120.4 (2)
C12A—C11A—C10A117.2 (2)C12B—C11B—C10B117.0 (2)
C7A—C12A—C11A122.9 (2)C7B—C12B—C11B124.3 (2)
C7A—C12A—H12A118.6C7B—C12B—H12B117.8
C11A—C12A—H12A118.6C11B—C12B—H12B117.8
C14A—C13A—C18A118.1 (2)C18B—C13B—C14B118.2 (2)
C14A—C13A—C9A120.2 (2)C18B—C13B—C9B119.5 (2)
C18A—C13A—C9A121.7 (2)C14B—C13B—C9B122.3 (2)
C13A—C14A—C15A121.6 (2)C15B—C14B—C13B121.1 (2)
C13A—C14A—H14A119.2C15B—C14B—H14B119.5
C15A—C14A—H14A119.2C13B—C14B—H14B119.5
C16A—C15A—C14A119.2 (2)C16B—C15B—C14B119.3 (2)
C16A—C15A—H15A120.4C16B—C15B—H15B120.4
C14A—C15A—H15A120.4C14B—C15B—H15B120.4
O4A—C16A—C15A124.0 (2)O4B—C16B—C17B123.5 (2)
O4A—C16A—C17A115.7 (2)O4B—C16B—C15B115.5 (2)
C15A—C16A—C17A120.4 (2)C17B—C16B—C15B121.0 (2)
C18A—C17A—C16A119.7 (2)C16B—C17B—C18B118.8 (2)
C18A—C17A—H17A120.1C16B—C17B—H17B120.6
C16A—C17A—H17A120.1C18B—C17B—H17B120.6
C17A—C18A—C13A121.0 (2)C13B—C18B—C17B121.7 (2)
C17A—C18A—H18A119.5C13B—C18B—H18B119.1
C13A—C18A—H18A119.5C17B—C18B—H18B119.1
O4A—C19A—H19A109.5O4B—C19B—H19D109.5
O4A—C19A—H19B109.5O4B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
O4A—C19A—H19C109.5O4B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
O2A—C20A—O3A123.9 (3)O2B—C20B—O3B124.1 (3)
O2A—C20A—C10A125.2 (3)O2B—C20B—C10B124.6 (3)
O3A—C20A—C10A110.9 (2)O3B—C20B—C10B111.3 (2)
O3A—C21A—C22A107.1 (2)O3B—C21B—C22B107.2 (2)
O3A—C21A—H21A110.3O3B—C21B—H21C110.3
C22A—C21A—H21A110.3C22B—C21B—H21C110.3
O3A—C21A—H21B110.3O3B—C21B—H21D110.3
C22A—C21A—H21B110.3C22B—C21B—H21D110.3
H21A—C21A—H21B108.6H21C—C21B—H21D108.5
C21A—C22A—H22A109.5C21B—C22B—H22D109.5
C21A—C22A—H22B109.5C21B—C22B—H22E109.5
H22A—C22A—H22B109.5H22D—C22B—H22E109.5
C21A—C22A—H22C109.5C21B—C22B—H22F109.5
H22A—C22A—H22C109.5H22D—C22B—H22F109.5
H22B—C22A—H22C109.5H22E—C22B—H22F109.5
C6A—C1A—C2A—C3A1.4 (5)C6B—C1B—C2B—C3B0.6 (5)
C1A—C2A—C3A—C4A1.1 (5)C1B—C2B—C3B—C4B1.3 (5)
C2A—C3A—C4A—C5A0.1 (5)C2B—C3B—C4B—C5B0.8 (4)
C3A—C4A—C5A—C6A0.6 (4)C3B—C4B—C5B—C6B0.5 (4)
C4A—C5A—C6A—C1A0.3 (4)C4B—C5B—C6B—C1B1.3 (4)
C4A—C5A—C6A—C7A179.5 (3)C4B—C5B—C6B—C7B177.4 (2)
C2A—C1A—C6A—C5A0.7 (4)C2B—C1B—C6B—C5B0.7 (4)
C2A—C1A—C6A—C7A178.5 (3)C2B—C1B—C6B—C7B178.0 (3)
C5A—C6A—C7A—C12A159.7 (3)C5B—C6B—C7B—C12B163.2 (3)
C1A—C6A—C7A—C12A19.5 (4)C1B—C6B—C7B—C12B15.4 (4)
C5A—C6A—C7A—C8A17.5 (4)C5B—C6B—C7B—C8B14.3 (4)
C1A—C6A—C7A—C8A163.4 (3)C1B—C6B—C7B—C8B167.0 (2)
C12A—C7A—C8A—C9A19.2 (3)C12B—C7B—C8B—C9B22.5 (3)
C6A—C7A—C8A—C9A163.6 (2)C6B—C7B—C8B—C9B159.9 (2)
C7A—C8A—C9A—C13A174.7 (2)C7B—C8B—C9B—C13B176.3 (2)
C7A—C8A—C9A—C10A50.1 (3)C7B—C8B—C9B—C10B52.2 (3)
C13A—C9A—C10A—C20A55.4 (3)C13B—C9B—C10B—C20B55.3 (3)
C8A—C9A—C10A—C20A179.7 (2)C8B—C9B—C10B—C20B179.8 (2)
C13A—C9A—C10A—C11A176.8 (2)C13B—C9B—C10B—C11B178.4 (2)
C8A—C9A—C10A—C11A58.2 (3)C8B—C9B—C10B—C11B56.7 (3)
C20A—C10A—C11A—O1A20.7 (3)C20B—C10B—C11B—O1B26.1 (3)
C9A—C10A—C11A—O1A145.4 (3)C9B—C10B—C11B—O1B150.5 (3)
C20A—C10A—C11A—C12A162.1 (2)C20B—C10B—C11B—C12B157.3 (2)
C9A—C10A—C11A—C12A37.4 (3)C9B—C10B—C11B—C12B32.9 (3)
C6A—C7A—C12A—C11A173.0 (2)C6B—C7B—C12B—C11B174.0 (2)
C8A—C7A—C12A—C11A4.1 (4)C8B—C7B—C12B—C11B3.5 (4)
O1A—C11A—C12A—C7A177.1 (3)O1B—C11B—C12B—C7B178.7 (3)
C10A—C11A—C12A—C7A5.7 (4)C10B—C11B—C12B—C7B2.2 (4)
C10A—C9A—C13A—C14A120.2 (3)C10B—C9B—C13B—C18B115.0 (3)
C8A—C9A—C13A—C14A116.8 (3)C8B—C9B—C13B—C18B121.9 (3)
C10A—C9A—C13A—C18A58.0 (3)C10B—C9B—C13B—C14B63.9 (3)
C8A—C9A—C13A—C18A65.0 (3)C8B—C9B—C13B—C14B59.1 (3)
C18A—C13A—C14A—C15A2.1 (4)C18B—C13B—C14B—C15B0.3 (4)
C9A—C13A—C14A—C15A179.6 (2)C9B—C13B—C14B—C15B178.7 (2)
C13A—C14A—C15A—C16A0.8 (4)C13B—C14B—C15B—C16B0.6 (4)
C19A—O4A—C16A—C15A1.1 (4)C19B—O4B—C16B—C17B0.8 (4)
C19A—O4A—C16A—C17A178.3 (3)C19B—O4B—C16B—C15B179.9 (3)
C14A—C15A—C16A—O4A179.8 (2)C14B—C15B—C16B—O4B178.8 (2)
C14A—C15A—C16A—C17A0.9 (4)C14B—C15B—C16B—C17B0.5 (4)
O4A—C16A—C17A—C18A179.4 (2)O4B—C16B—C17B—C18B179.1 (2)
C15A—C16A—C17A—C18A1.2 (4)C15B—C16B—C17B—C18B0.2 (4)
C16A—C17A—C18A—C13A0.2 (4)C14B—C13B—C18B—C17B0.1 (4)
C14A—C13A—C18A—C17A1.8 (4)C9B—C13B—C18B—C17B179.1 (2)
C9A—C13A—C18A—C17A180.0 (2)C16B—C17B—C18B—C13B0.1 (4)
C21A—O3A—C20A—O2A2.1 (4)C21B—O3B—C20B—O2B1.6 (4)
C21A—O3A—C20A—C10A176.8 (2)C21B—O3B—C20B—C10B178.4 (2)
C11A—C10A—C20A—O2A101.5 (3)C11B—C10B—C20B—O2B107.5 (3)
C9A—C10A—C20A—O2A136.1 (3)C9B—C10B—C20B—O2B129.1 (3)
C11A—C10A—C20A—O3A77.4 (3)C11B—C10B—C20B—O3B72.5 (3)
C9A—C10A—C20A—O3A45.0 (3)C9B—C10B—C20B—O3B50.8 (3)
C20A—O3A—C21A—C22A174.2 (2)C20B—O3B—C21B—C22B168.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13A–C18A and C13B–C18B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···O1Ai0.952.413.210 (3)141
C5B—H5BA···O1Bi0.952.533.329 (3)142
C14B—H14B···O2A0.952.433.377 (3)173
C17A—H17A···O2Bi0.952.593.218 (4)124
C21A—H21A···Cg1i0.992.703.513 (3)142
C21B—H21D···Cg2i0.992.713.501 (3)139
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H22O4
Mr350.40
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)22.3528 (13), 8.1659 (5), 19.7132 (12)
V3)3598.3 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.24 × 0.17
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
35140, 5622, 4938
Rint0.052
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.08
No. of reflections5622
No. of parameters473
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13A–C18A and C13B–C18B rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5A—H5AA···O1Ai0.952.413.210 (3)141
C5B—H5BA···O1Bi0.952.533.329 (3)142
C14B—H14B···O2A0.952.433.377 (3)173
C17A—H17A···O2Bi0.952.593.218 (4)124
C21A—H21A···Cg1i0.992.703.513 (3)142
C21B—H21D···Cg2i0.992.713.501 (3)139
Symmetry code: (i) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and AFK thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance for the BRNS project (No. 2011/34/20-BRNS/0846).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011a). Acta Cryst. E67, o334–o335.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011b). Acta Cryst. E67, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDutkiewicz, G., Narayana, B., Veena, K., Yathirajan, H. S. & Kubicki, M. (2011c). Acta Cryst. E67, o445–o446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2008). Acta Cryst. E64, o560.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPadmavathi, V., Reddy, B. J. M., Balaiah, A., Reddy, K. V. & Reddy, D. B. (2000). Molecules, 5, 1281–1286.  Web of Science CrossRef CAS Google Scholar
First citationSenguttuvan, S. & Nagarajan, S. (2010). Int. J. Chem. 2, 108–112.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, M., Nara, F., Suzuki, K., Hosoya, T. & Ogita, T. (1997). J. Am. Chem. Soc. 119, 7871–7872.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages o2788-o2789
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds