organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[(Pyridin-3-yl)(pyrrolidin-1-yl)meth­yl]naphthalen-2-ol

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhouqinqin623@sina.com

(Received 31 March 2012; accepted 24 July 2012; online 1 August 2012)

The title compound, C20H20N2O, was synthesized by a solvent-free one-pot three-component domino reaction of naph­tha­len-2-ol, nicotinaldehyde and pyrrolidine. The dihedral angle between the naphthalene ring system and the pyridine ring is 74.22 (6)°. The pyrrolidine ring assumes an envelope conformation with the N atom as the flap. An intra­molecular O—H⋯N hydrogen bond stabilizes the mol­ecular conformation.

Related literature

For the synthesis and structure of a related compound, see: Wang (2012[Wang, W. (2012). Acta Cryst. E68, o884.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O

  • Mr = 304.38

  • Monoclinic, C c

  • a = 9.966 (2) Å

  • b = 15.587 (3) Å

  • c = 10.477 (2) Å

  • β = 91.60 (3)°

  • V = 1626.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.38 × 0.32 × 0.27 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.967, Tmax = 0.982

  • 8194 measured reflections

  • 1857 independent reflections

  • 1361 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.02

  • 1857 reflections

  • 209 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.572 (3) 147

Data collection: CrystalClear (Rigaku,2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The so-called Betti base derivatives, which can be synthesized by many routes (Wang, 2012), have been of great interest in coordination chemistry. Herein the crystal structure of one such compound, obtained by a solvent-free, one-pot, three-component, domino reaction of naphthalen-2-ol, nicotinaldehyde and pyrrolidine is reported.

In the title compound the bond lengths and angles are well within the expected ranges. The dihedral angle between the naphthalene ring system and the pyridine ring is 74.22 (6)°. The pyrrolidine ring adopts an envelope conformation. An intramolecular O—H···N hydrogen bond (Table 1) stabilizes the molecular conformation.

Related literature top

For the synthesis and structure of a related compound, see: Wang (2012).

Experimental top

A dry 50 mL flask was charged with nicotinaldehyde (10 mmol), naphthalen-2-ol (10 mmol) and pyrrolidine (10 mmol). The mixture was stirred at 100°C for 5 h and then ethanol (15 mL) was added. After refluxing for 30 minutes, the solution was filtered and crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation.

Refinement top

All H atoms were calculated geometrically and refined using a riding model with C—H = 0.93–0.98 Å, O—H = 0.82 Å and with Uiso(H) = 1.2 Ueq(C)for carbon-bound or 1.5 Ueq (O) for oxygen-bound H atoms.

Computing details top

Data collection: CrystalClear (Rigaku,2005); cell refinement: CrystalClear (Rigaku,2005); data reduction: CrystalClear (Rigaku,2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The intramolecular hydrogen bond is shown as a dashed line.
1-[(Pyridin-3-yl)(pyrrolidin-1-yl)methyl]naphthalen-2-ol top
Crystal data top
C20H20N2OF(000) = 648
Mr = 304.38Dx = 1.243 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3664 reflections
a = 9.966 (2) Åθ = 3.1–27.5°
b = 15.587 (3) ŵ = 0.08 mm1
c = 10.477 (2) ÅT = 293 K
β = 91.60 (3)°Block, colourless
V = 1626.9 (6) Å30.38 × 0.32 × 0.27 mm
Z = 4
Data collection top
Rigaku SCXmini CCD
diffractometer
1857 independent reflections
Radiation source: fine-focus sealed tube1361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1212
Tmin = 0.967, Tmax = 0.982k = 2020
8194 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
1857 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H20N2OV = 1626.9 (6) Å3
Mr = 304.38Z = 4
Monoclinic, CcMo Kα radiation
a = 9.966 (2) ŵ = 0.08 mm1
b = 15.587 (3) ÅT = 293 K
c = 10.477 (2) Å0.38 × 0.32 × 0.27 mm
β = 91.60 (3)°
Data collection top
Rigaku SCXmini CCD
diffractometer
1857 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1361 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.982Rint = 0.067
8194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.02Δρmax = 0.13 e Å3
1857 reflectionsΔρmin = 0.13 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0405 (4)0.2124 (2)0.2764 (4)0.0609 (9)
H1A0.11000.17050.29250.073*
H1B0.07240.25150.21020.073*
C20.0017 (5)0.2605 (3)0.3966 (4)0.0862 (13)
H2A0.07490.25990.45570.103*
H2B0.01990.31960.37700.103*
C30.1203 (4)0.2148 (3)0.4541 (3)0.0728 (11)
H3A0.10140.19240.53810.087*
H3B0.19640.25340.46140.087*
C40.1484 (4)0.1422 (2)0.3617 (3)0.0560 (8)
H4A0.24430.13410.35340.067*
H4B0.10910.08900.39070.067*
C50.0588 (3)0.09834 (19)0.1473 (3)0.0452 (7)
H50.01190.06220.18200.054*
C60.1826 (3)0.04266 (18)0.1305 (3)0.0447 (7)
C70.1969 (3)0.0334 (2)0.1964 (3)0.0575 (8)
H70.12960.04800.25220.069*
C80.3946 (4)0.0638 (2)0.1086 (4)0.0711 (10)
H80.46900.09940.10200.085*
C90.3914 (4)0.0095 (2)0.0368 (4)0.0701 (10)
H90.46060.02250.01780.084*
C100.2826 (3)0.0636 (2)0.0475 (4)0.0587 (9)
H100.27680.11370.00070.070*
C110.0069 (3)0.13455 (19)0.0201 (3)0.0457 (7)
C120.0554 (3)0.2112 (2)0.0248 (3)0.0521 (8)
C130.0112 (3)0.2441 (2)0.1444 (3)0.0596 (9)
H130.04780.29490.17440.072*
C140.0833 (4)0.2028 (2)0.2156 (3)0.0626 (10)
H140.11140.22560.29390.075*
C150.1403 (3)0.1251 (2)0.1726 (3)0.0528 (8)
C160.2440 (4)0.0822 (3)0.2422 (3)0.0635 (10)
H160.27810.10660.31740.076*
C170.2945 (4)0.0070 (3)0.2023 (4)0.0688 (10)
H170.36240.02020.24980.083*
C180.2443 (3)0.0301 (2)0.0888 (3)0.0614 (9)
H180.27890.08220.06140.074*
C190.1451 (3)0.0095 (2)0.0180 (3)0.0526 (8)
H190.11180.01680.05600.063*
C200.0921 (3)0.08934 (19)0.0545 (3)0.0465 (7)
N10.0857 (3)0.16953 (15)0.2391 (2)0.0476 (6)
N20.2995 (3)0.08781 (18)0.1867 (3)0.0720 (9)
O10.1471 (2)0.25894 (14)0.0428 (2)0.0616 (6)
H10.15540.23980.11550.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.0530 (18)0.070 (2)0.0123 (16)0.0124 (17)0.0068 (17)
C20.105 (4)0.079 (3)0.076 (3)0.026 (3)0.019 (3)0.005 (2)
C30.091 (3)0.072 (2)0.055 (2)0.002 (2)0.007 (2)0.0058 (18)
C40.065 (2)0.0566 (19)0.0461 (17)0.0057 (16)0.0002 (15)0.0067 (15)
C50.0402 (15)0.0456 (18)0.0496 (16)0.0014 (13)0.0030 (13)0.0079 (13)
C60.0420 (16)0.0414 (15)0.0502 (16)0.0009 (13)0.0074 (13)0.0022 (13)
C70.055 (2)0.0502 (18)0.067 (2)0.0037 (15)0.0013 (16)0.0044 (16)
C80.057 (2)0.062 (2)0.094 (3)0.0183 (18)0.012 (2)0.006 (2)
C90.051 (2)0.073 (2)0.087 (3)0.0090 (17)0.0106 (19)0.001 (2)
C100.0516 (19)0.0483 (18)0.076 (2)0.0023 (15)0.0050 (18)0.0067 (17)
C110.0413 (16)0.0467 (18)0.0490 (17)0.0039 (13)0.0009 (14)0.0079 (13)
C120.0474 (18)0.0503 (19)0.059 (2)0.0009 (14)0.0017 (16)0.0061 (15)
C130.065 (2)0.056 (2)0.058 (2)0.0037 (17)0.0039 (18)0.0202 (16)
C140.068 (2)0.070 (2)0.0501 (19)0.0148 (18)0.0006 (18)0.0165 (17)
C150.0473 (17)0.0655 (19)0.0453 (17)0.0141 (16)0.0021 (14)0.0004 (15)
C160.061 (2)0.078 (3)0.0500 (19)0.0149 (19)0.0091 (18)0.0046 (18)
C170.062 (2)0.080 (3)0.063 (2)0.001 (2)0.0129 (18)0.016 (2)
C180.054 (2)0.068 (2)0.062 (2)0.0062 (16)0.0013 (18)0.0053 (18)
C190.0503 (18)0.0544 (18)0.0529 (18)0.0018 (14)0.0016 (15)0.0019 (15)
C200.0382 (15)0.0534 (17)0.0479 (16)0.0102 (13)0.0027 (13)0.0026 (13)
N10.0490 (14)0.0443 (13)0.0497 (14)0.0044 (11)0.0034 (12)0.0036 (11)
N20.067 (2)0.0563 (19)0.092 (2)0.0165 (16)0.0065 (19)0.0065 (17)
O10.0666 (15)0.0538 (13)0.0643 (14)0.0110 (12)0.0020 (13)0.0119 (11)
Geometric parameters (Å, º) top
C1—N11.486 (4)C8—H80.9300
C1—C21.506 (6)C9—C101.381 (5)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C10—H100.9300
C2—C31.520 (6)C11—C121.376 (4)
C2—H2A0.9700C11—C201.427 (4)
C2—H2B0.9700C12—O11.362 (4)
C3—C41.520 (5)C12—C131.413 (4)
C3—H3A0.9700C13—C141.349 (5)
C3—H3B0.9700C13—H130.9300
C4—N11.476 (4)C14—C151.416 (5)
C4—H4A0.9700C14—H140.9300
C4—H4B0.9700C15—C161.416 (5)
C5—N11.488 (4)C15—C201.428 (4)
C5—C61.523 (4)C16—C171.347 (5)
C5—C111.524 (4)C16—H160.9300
C5—H50.9800C17—C181.402 (5)
C6—C71.377 (4)C17—H170.9300
C6—C101.380 (4)C18—C191.367 (5)
C7—N21.334 (4)C18—H180.9300
C7—H70.9300C19—C201.409 (4)
C8—N21.324 (5)C19—H190.9300
C8—C91.368 (6)O1—H10.8200
N1—C1—C2104.2 (3)C8—C9—H9120.9
N1—C1—H1A110.9C10—C9—H9120.9
C2—C1—H1A110.9C6—C10—C9119.3 (3)
N1—C1—H1B110.9C6—C10—H10120.4
C2—C1—H1B110.9C9—C10—H10120.4
H1A—C1—H1B108.9C12—C11—C20119.0 (3)
C1—C2—C3106.4 (3)C12—C11—C5120.4 (3)
C1—C2—H2A110.5C20—C11—C5120.6 (2)
C3—C2—H2A110.5O1—C12—C11122.2 (3)
C1—C2—H2B110.5O1—C12—C13116.8 (3)
C3—C2—H2B110.5C11—C12—C13121.0 (3)
H2A—C2—H2B108.6C14—C13—C12120.8 (3)
C2—C3—C4104.8 (3)C14—C13—H13119.6
C2—C3—H3A110.8C12—C13—H13119.6
C4—C3—H3A110.8C13—C14—C15120.8 (3)
C2—C3—H3B110.8C13—C14—H14119.6
C4—C3—H3B110.8C15—C14—H14119.6
H3A—C3—H3B108.9C16—C15—C14122.3 (3)
N1—C4—C3105.0 (3)C16—C15—C20119.0 (3)
N1—C4—H4A110.7C14—C15—C20118.8 (3)
C3—C4—H4A110.7C17—C16—C15121.7 (3)
N1—C4—H4B110.7C17—C16—H16119.1
C3—C4—H4B110.7C15—C16—H16119.2
H4A—C4—H4B108.8C16—C17—C18119.6 (3)
N1—C5—C6111.6 (2)C16—C17—H17120.2
N1—C5—C11109.8 (2)C18—C17—H17120.2
C6—C5—C11111.5 (2)C19—C18—C17120.6 (4)
N1—C5—H5107.9C19—C18—H18119.7
C6—C5—H5107.9C17—C18—H18119.7
C11—C5—H5107.9C18—C19—C20121.5 (3)
C7—C6—C10116.9 (3)C18—C19—H19119.2
C7—C6—C5120.4 (3)C20—C19—H19119.2
C10—C6—C5122.6 (3)C19—C20—C11123.1 (3)
N2—C7—C6125.3 (3)C19—C20—C15117.4 (3)
N2—C7—H7117.3C11—C20—C15119.5 (3)
C6—C7—H7117.3C4—N1—C1104.0 (2)
N2—C8—C9124.8 (3)C4—N1—C5114.3 (2)
N2—C8—H8117.6C1—N1—C5111.5 (3)
C9—C8—H8117.6C8—N2—C7115.5 (3)
C8—C9—C10118.1 (4)C12—O1—H1109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (3)147

Experimental details

Crystal data
Chemical formulaC20H20N2O
Mr304.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)9.966 (2), 15.587 (3), 10.477 (2)
β (°) 91.60 (3)
V3)1626.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.38 × 0.32 × 0.27
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.967, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
8194, 1857, 1361
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.02
No. of reflections1857
No. of parameters209
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: CrystalClear (Rigaku,2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (3)147
 

Acknowledgements

This work was supported by Southeast University

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. (2012). Acta Cryst. E68, o884.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds