metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1156-m1157

Bis(2,2′-bi­pyridine-κ2N,N′)(3-methyl­benzoato-κ2O,O′)zinc 3-methyl­benzo­ate–3-methyl­benzoic acid–water (1/1/2)

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: linjianli@nbu.edu.cn

(Received 4 July 2012; accepted 1 August 2012; online 8 August 2012)

The title compound, [Zn(C8H7O2)(C10H8N2)2](C8H7O2)·C8H8O2·2H2O, is comprised of a Zn2+ cation, two 2,2′-bipydine (bipy) ligands and one 3-methyl­benzoate anion (L) together with one uncoordinating L anion, one uncoordinating HL mol­ecule and two lattice water mol­ecules. The ZnII atom is coordinated by four N atoms of two bipy ligands and two O atoms from one L ligand in a distorted octa­hedral geometry. Pairs of centrosymmetrically related complex mol­ecules form dimers via slipped π-stacking inter­actions between bipy ligands with an inter­planar distance of 3.470 (4) Å. The dimers are linked into supra­molecular chains along [111], via C—H⋯O hydrogen bonds. The uncoordinated L anions, HL mol­ecules and water mol­ecules are connected with each other via O—H⋯O hydrogen bonds, forming chains between the metal complex chains and binding them together via C—H⋯O contacts. The resulting layers parallel to (010) are further assembled into a three-dimensional supra­molecular architecture through additional C—H⋯O inter­actions.

Related literature

For general background to complexes with intriguing topological structures, see: Chen et al. (2010[Chen, P. K., Qi, Y., Che, Y. X. & Zheng, J. M. (2010). CrystEngComm, 12, 720-724.]) and for complexes with potential applications in gas storage and separation, magnetism, luminescence and catalysis see: Bettencourt-Dias & Viswanathan (2006[Bettencourt-Dias, A. D. & Viswanathan, S. (2006). Dalton Trans. pp. 4093-1403.]); Liu et al. (2006[Liu, F. Q., Wang, Q. X., Jiao, K., Jian, F. F., Guang, Y. L. & Li, R. X. (2006). Inorg. Chim. Acta, 359, 1524-1530.]); Xu et al. (2010[Xu, J., Su, W. P. & Hong, M. C. (2010). Cryst. Growth Des. 11, 337-346.], 2011[Xu, W., Liu, W., Yao, F. Y. & Zheng, Y. Q. (2011). Inorg. Chim. Acta, 365, 297-301.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H7O2)(C10H8N2)2](C8H7O2)·C8H8O2·2H2O

  • Mr = 820.21

  • Triclinic, [P \overline 1]

  • a = 12.690 (3) Å

  • b = 13.632 (3) Å

  • c = 14.493 (3) Å

  • α = 96.87 (3)°

  • β = 115.47 (3)°

  • γ = 110.96 (3)°

  • V = 1999.4 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 293 K

  • 0.39 × 0.34 × 0.32 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.769, Tmax = 0.806

  • 19803 measured reflections

  • 9165 independent reflections

  • 5744 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.147

  • S = 1.14

  • 9077 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O5i 0.86 1.63 2.492 (5) 175
O7—H7B⋯O5ii 0.86 2.45 3.028 (6) 125
O7—H7C⋯O8 0.88 2.14 2.938 (6) 151
O8—H8B⋯O6 0.88 2.10 2.973 (5) 178
O8—H8C⋯O6ii 0.85 2.05 2.871 (6) 163
C7—H7A⋯O2iii 0.93 2.45 3.234 (5) 142
C17—H17A⋯O1iv 0.93 2.44 3.297 (5) 152
C18—H18A⋯O8 0.93 2.47 3.280 (7) 146
Symmetry codes: (i) x-1, y, z-1; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+2, -z+2; (iv) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976)[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the design and synthesis of metal-organic frameworks (MOFs) have attracted considerable attention due to their intriguing topological structures (Chen et al., 2010) and potential applications in gas storage and separation, magnetism, luminescence, and catalysis (Bettencourt-Dias et al., 2006; Liu et al., 2006; Xu et al., 2010; Xu et al., 2011). Our interest in self-assemblies of Zn2+ ions and 2,2'-bipyridine (bipy) with 3-methylbenzoic acid (HL = m-CH3-C6H4COOH), led to the preparation of [Zn(C10H8N2)2(C8H7O2)](C8H7O2).(C8H8O2).2H2O.

The asymmetric unit contains a Zn2+ ion complexed by two 2,2'-bipydine ligands and one 3-methylbenzoate anion (L- = m-CH3-C6H4COO-) together with one uncoordinated L- anion, one uncoordinated HL molecule and two lattice water molecules. The Zn ion is coordinated by four nitrogen atoms (N1, N2, N3, N4) of two bipy ligands and two oxygen atoms (O1, O2) from one L- ligand in a tetragonally distorted octahedral geometry (Fig.1). The ligating atoms form a ZnN4O2 coordination environment with one carboxylate O2 atom, one pyridyl N3 atom in the axial positions and the other pyridyl N atoms and the other carboxylate O1 atom at the corners of the basal plane. The Cu-O and Cu-N bond lengths in the basal plane are in the range 2.114 (3) to 2.129 (3) Å and are slightly shorter than the axial Cu-O and Cu-N bond lengths (2.138 (3) and 2.308 (3) Å). Around the Zn2+ion the cisoid bond angles fall in the range 59.27 (9)-103.38 (10)°, and the transoid ones are 147.48 (10) and 171.36 (10)° thus exhibiting substantial deviations from 90° and 180° for an ideal octahedral geometry. The above observation indicates that the coordination geometry is a 4 + 1 + 1 type.

Two centrosymmetrically-related metal complexes molecules have bipy rings which are parallel with an interplanar distance of 3.470 (4) Å suggesting a slipped π···π stacking interaction. This together with weak, pairwise C17-H17A···O1 hydrogen bonds (Table 1) form dimeric units. Along the [111] direction the dimeric units are linked into one-dimensional supramolecular chains via pairwise C7-H7A···O2 hydrogen bonds (Table 1) and π···π stacking interactions with a distance of 3.455 (4) Å between the bipy rings which are not engaged in π···π stacking within the dimeric units (Fig.2). The uncoordinated L- anions, HL molecules and water molecules connect with each other via O–H···O hydrogen bonds to form chains between the metal complex chains and connect with the latter via C8–H18A···O8 contacts (Table 1). The resulting layers are further assembled into a three-dimensional supramolecular architecture through additional C–H···O interactions.

Related literature top

For general background to complexes with intriguing topological structures, see: Chen et al. (2010) and for complexes with potential applications in gas storage and separation, magnetism, luminescence and catalysis see: Bettencourt-Dias & Viswanathan (2006); Liu et al. (2006); Xu et al. (2010, 2011).

Experimental top

1 mL of 1M aqueous K2CO3 solution was added to an aqueous solution of ZnSO4.7H2O (0.291 g, 1 mmol) to give a white precipitate from which SO42- anions were removed by centrifugation. The white precipitate was added to 20.0 mL of a H2O/CH3OH solution (1:1 v/v) of 3-methylbenzoic acid (0.271 g, 2.0 mmol). To the resulting solution was added 2,2'-bipydine (0.310 g, 2.0 mmol) whereupon the color of the solution became a light magenta and the pH was about 5. The solution was allowed to evaporate at room temperature for several days to give colourless block-shaped crystals.

Refinement top

H atoms bonded to C were placed in calculated positions and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O were placed in locations indicated by a difference Fourier synthesis and were refined using a riding model with Uiso(H) values set at 1.2 Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. One-dimensional supramolecular chain along [111] formed by C7-H7A···O2 hydrogen bonds and π···π stacking interactions.
Bis(2,2'-bipyridine-κ2N,N')(3-methylbenzoato- κ2O,O')zinc 3-methylbenzoate–3-methylbenzoic acid–water (1/1/2) top
Crystal data top
[Zn(C8H7O2)(C10H8N2)2](C8H7O2)·C8H8O2·2H2OZ = 2
Mr = 820.21F(000) = 856
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.690 (3) ÅCell parameters from 19803 reflections
b = 13.632 (3) Åθ = 3.0–27.5°
c = 14.493 (3) ŵ = 0.67 mm1
α = 96.87 (3)°T = 293 K
β = 115.47 (3)°Block, colorless
γ = 110.96 (3)°0.39 × 0.34 × 0.32 mm
V = 1999.4 (13) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9165 independent reflections
Radiation source: fine-focus sealed tube5744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1516
Tmin = 0.769, Tmax = 0.806k = 1717
19803 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.4221P]
where P = (Fo2 + 2Fc2)/3
9077 reflections(Δ/σ)max = 0.001
514 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Zn(C8H7O2)(C10H8N2)2](C8H7O2)·C8H8O2·2H2Oγ = 110.96 (3)°
Mr = 820.21V = 1999.4 (13) Å3
Triclinic, P1Z = 2
a = 12.690 (3) ÅMo Kα radiation
b = 13.632 (3) ŵ = 0.67 mm1
c = 14.493 (3) ÅT = 293 K
α = 96.87 (3)°0.39 × 0.34 × 0.32 mm
β = 115.47 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9165 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5744 reflections with I > 2σ(I)
Tmin = 0.769, Tmax = 0.806Rint = 0.028
19803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.14Δρmax = 0.77 e Å3
9077 reflectionsΔρmin = 0.86 e Å3
514 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.71782 (4)0.74557 (3)0.74582 (3)0.05259 (13)
O10.6240 (2)0.79631 (18)0.61420 (18)0.0632 (6)
O20.8392 (2)0.88498 (18)0.70427 (18)0.0640 (6)
N10.6910 (3)0.8470 (2)0.8486 (2)0.0607 (7)
N20.8825 (3)0.7897 (2)0.8995 (2)0.0545 (6)
N30.5646 (3)0.5914 (2)0.7187 (2)0.0519 (6)
N40.7404 (2)0.6278 (2)0.6566 (2)0.0512 (6)
C10.5911 (5)0.8719 (3)0.8168 (4)0.0818 (12)
H1A0.52610.84210.74410.098*
C20.5799 (6)0.9392 (4)0.8863 (5)0.1013 (16)
H2A0.50850.95440.86170.122*
C30.6764 (6)0.9836 (4)0.9928 (5)0.1014 (17)
H3A0.67121.02951.04190.122*
C40.7802 (5)0.9601 (3)1.0268 (3)0.0820 (13)
H4A0.84720.99131.09880.098*
C50.7856 (4)0.8900 (2)0.9540 (3)0.0595 (9)
C60.8922 (3)0.8578 (2)0.9814 (2)0.0574 (8)
C70.9989 (4)0.8958 (3)1.0859 (3)0.0759 (11)
H7A1.00540.94311.14210.091*
C81.0940 (5)0.8625 (4)1.1047 (4)0.0896 (14)
H8A1.16520.88671.17430.108*
C91.0846 (4)0.7935 (4)1.0215 (4)0.0854 (12)
H9A1.14850.77031.03330.103*
C100.9776 (4)0.7598 (3)0.9199 (3)0.0688 (9)
H10A0.97120.71400.86280.083*
C110.4801 (4)0.5770 (3)0.7542 (3)0.0656 (9)
H11A0.48540.63960.79340.079*
C120.3869 (4)0.4753 (3)0.7356 (3)0.0797 (11)
H12A0.32950.46860.76090.096*
C130.3801 (4)0.3831 (3)0.6788 (4)0.0822 (12)
H13A0.31850.31270.66620.099*
C140.4645 (4)0.3951 (3)0.6402 (3)0.0653 (9)
H14A0.46020.33320.60100.078*
C150.5560 (3)0.5011 (2)0.6610 (2)0.0474 (7)
C160.6491 (3)0.5217 (2)0.6214 (2)0.0469 (7)
C170.6421 (3)0.4389 (3)0.5502 (3)0.0575 (8)
H17A0.57780.36600.52570.069*
C180.7316 (4)0.4660 (3)0.5161 (3)0.0669 (9)
H18A0.72840.41150.46830.080*
C190.8248 (4)0.5734 (3)0.5529 (3)0.0695 (10)
H19A0.88600.59300.53070.083*
C200.8270 (3)0.6521 (3)0.6229 (3)0.0621 (9)
H20A0.89100.72520.64800.074*
C210.7311 (3)0.8689 (2)0.6291 (3)0.0550 (8)
C220.7267 (3)0.9366 (2)0.5545 (2)0.0476 (7)
C230.6095 (3)0.9316 (3)0.4820 (3)0.0607 (8)
H23A0.53250.88530.47850.073*
C240.6056 (4)0.9951 (3)0.4143 (3)0.0705 (10)
H24A0.52640.99250.36610.085*
C250.7197 (4)1.0622 (3)0.4187 (3)0.0637 (9)
H25A0.71621.10480.37290.076*
C260.8386 (3)1.0681 (2)0.4890 (3)0.0527 (7)
C270.8408 (3)1.0045 (2)0.5577 (2)0.0511 (7)
H27A0.92011.00770.60660.061*
C280.9624 (4)1.1415 (3)0.4927 (3)0.0728 (10)
H28A0.94231.17880.44020.109*
H28B1.00031.09700.47670.109*
H28C1.02371.19540.56340.109*
O30.3649 (3)0.7905 (3)0.0113 (3)0.1100 (11)
O40.3535 (2)0.6528 (2)0.0970 (2)0.0831 (8)
H4B0.27120.63320.13610.125*
C290.4130 (4)0.7343 (3)0.0073 (4)0.0706 (10)
C300.5475 (3)0.7524 (3)0.0702 (3)0.0576 (8)
C310.6275 (4)0.8414 (3)0.1670 (3)0.0736 (11)
H31A0.59550.88750.18530.088*
C320.7526 (4)0.8601 (3)0.2344 (3)0.0815 (12)
H32A0.80610.91990.29820.098*
C330.8006 (4)0.7927 (3)0.2098 (3)0.0713 (10)
H33A0.88620.80710.25720.086*
C340.7241 (3)0.7031 (3)0.1155 (3)0.0550 (8)
C350.5977 (3)0.6843 (2)0.0478 (2)0.0514 (7)
H35A0.54430.62350.01520.062*
C360.7767 (4)0.6290 (3)0.0881 (4)0.0773 (11)
H36A0.71020.57180.02010.116*
H36B0.80210.59580.14350.116*
H36C0.85160.67190.08320.116*
O51.1125 (3)0.5888 (3)0.7941 (3)0.1124 (12)
O61.0556 (3)0.4608 (3)0.6469 (3)0.1140 (12)
C371.0410 (4)0.4929 (4)0.7220 (5)0.0855 (13)
C380.9301 (3)0.4148 (3)0.7315 (3)0.0568 (8)
C390.8539 (3)0.3053 (3)0.6656 (3)0.0617 (8)
H39A0.87160.27780.61500.074*
C400.7520 (4)0.2372 (3)0.6752 (3)0.0690 (10)
H40A0.70120.16320.63160.083*
C410.7246 (4)0.2779 (3)0.7488 (3)0.0718 (10)
H41A0.65410.23090.75330.086*
C420.7983 (4)0.3861 (3)0.8160 (3)0.0667 (9)
C430.9022 (3)0.4527 (3)0.8068 (3)0.0635 (9)
H43A0.95540.52570.85290.076*
C440.7685 (6)0.4310 (5)0.8969 (4)0.1070 (16)
H44A0.83030.50790.93570.160*
H44B0.77490.38990.94670.160*
H44C0.68130.42390.85980.160*
O70.8097 (4)0.1827 (3)0.2299 (3)0.1370 (15)
H7B0.81630.21310.18270.206*
H7C0.79340.22160.26990.206*
O80.8568 (4)0.3458 (3)0.4133 (3)0.1142 (12)
H8B0.91550.37830.48250.171*
H8C0.86610.39900.38740.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0613 (3)0.0425 (2)0.0479 (2)0.02161 (17)0.02557 (18)0.01111 (15)
O10.0661 (15)0.0479 (12)0.0643 (14)0.0136 (12)0.0342 (12)0.0186 (11)
O20.0690 (16)0.0485 (12)0.0554 (13)0.0205 (11)0.0217 (12)0.0158 (10)
N10.078 (2)0.0464 (14)0.0648 (17)0.0330 (14)0.0386 (16)0.0174 (13)
N20.0645 (17)0.0384 (13)0.0479 (14)0.0186 (12)0.0229 (13)0.0122 (11)
N30.0627 (16)0.0497 (14)0.0472 (13)0.0248 (13)0.0316 (13)0.0166 (11)
N40.0533 (15)0.0439 (13)0.0524 (14)0.0198 (12)0.0269 (13)0.0107 (11)
C10.106 (3)0.081 (3)0.089 (3)0.060 (3)0.060 (3)0.034 (2)
C20.153 (5)0.092 (3)0.133 (4)0.086 (4)0.103 (4)0.056 (3)
C30.178 (5)0.074 (3)0.118 (4)0.074 (3)0.113 (4)0.041 (3)
C40.137 (4)0.051 (2)0.072 (2)0.037 (2)0.069 (3)0.0191 (18)
C50.088 (3)0.0359 (15)0.0550 (18)0.0198 (16)0.0435 (19)0.0173 (14)
C60.071 (2)0.0349 (14)0.0487 (17)0.0105 (15)0.0272 (16)0.0142 (13)
C70.086 (3)0.0500 (19)0.052 (2)0.005 (2)0.025 (2)0.0125 (16)
C80.078 (3)0.072 (3)0.066 (2)0.011 (2)0.012 (2)0.026 (2)
C90.072 (3)0.076 (3)0.084 (3)0.028 (2)0.022 (2)0.036 (2)
C100.075 (2)0.058 (2)0.067 (2)0.0316 (19)0.029 (2)0.0239 (17)
C110.083 (3)0.066 (2)0.062 (2)0.032 (2)0.050 (2)0.0216 (17)
C120.088 (3)0.080 (3)0.083 (3)0.027 (2)0.061 (2)0.031 (2)
C130.082 (3)0.063 (2)0.097 (3)0.015 (2)0.054 (3)0.030 (2)
C140.067 (2)0.0495 (18)0.073 (2)0.0202 (17)0.0352 (19)0.0175 (16)
C150.0498 (17)0.0398 (14)0.0431 (15)0.0169 (13)0.0195 (13)0.0116 (12)
C160.0504 (17)0.0414 (15)0.0420 (15)0.0216 (13)0.0179 (13)0.0119 (12)
C170.057 (2)0.0505 (17)0.0542 (18)0.0269 (16)0.0208 (16)0.0061 (14)
C180.070 (2)0.075 (2)0.062 (2)0.045 (2)0.0319 (19)0.0127 (18)
C190.069 (2)0.085 (3)0.076 (2)0.045 (2)0.046 (2)0.027 (2)
C200.057 (2)0.0581 (19)0.075 (2)0.0238 (16)0.0384 (18)0.0188 (17)
C210.063 (2)0.0371 (15)0.0520 (18)0.0202 (15)0.0238 (17)0.0058 (13)
C220.0530 (18)0.0341 (14)0.0463 (15)0.0157 (13)0.0227 (14)0.0072 (12)
C230.053 (2)0.0530 (18)0.065 (2)0.0177 (16)0.0259 (17)0.0215 (16)
C240.057 (2)0.071 (2)0.071 (2)0.0272 (19)0.0223 (19)0.0286 (19)
C250.073 (2)0.0572 (19)0.0578 (19)0.0283 (18)0.0309 (18)0.0243 (16)
C260.059 (2)0.0432 (16)0.0530 (17)0.0185 (14)0.0315 (16)0.0100 (13)
C270.0513 (18)0.0420 (15)0.0513 (17)0.0184 (14)0.0232 (15)0.0091 (13)
C280.073 (2)0.069 (2)0.083 (3)0.027 (2)0.048 (2)0.031 (2)
O30.090 (2)0.085 (2)0.167 (3)0.0562 (18)0.066 (2)0.026 (2)
O40.0534 (15)0.0782 (18)0.093 (2)0.0271 (14)0.0242 (14)0.0129 (15)
C290.067 (2)0.056 (2)0.105 (3)0.0312 (19)0.052 (2)0.032 (2)
C300.062 (2)0.0472 (17)0.070 (2)0.0239 (16)0.0406 (18)0.0185 (15)
C310.094 (3)0.054 (2)0.082 (3)0.031 (2)0.057 (2)0.0113 (18)
C320.083 (3)0.070 (2)0.059 (2)0.019 (2)0.028 (2)0.0019 (18)
C330.066 (2)0.072 (2)0.060 (2)0.023 (2)0.0261 (19)0.0182 (18)
C340.059 (2)0.0522 (17)0.0575 (18)0.0235 (16)0.0329 (17)0.0241 (15)
C350.061 (2)0.0431 (15)0.0523 (17)0.0208 (15)0.0327 (16)0.0149 (13)
C360.077 (3)0.076 (2)0.099 (3)0.047 (2)0.049 (2)0.036 (2)
O50.0525 (17)0.078 (2)0.153 (3)0.0089 (16)0.0260 (19)0.041 (2)
O60.097 (2)0.139 (3)0.166 (4)0.066 (2)0.096 (3)0.086 (3)
C370.047 (2)0.091 (3)0.120 (4)0.035 (2)0.035 (3)0.058 (3)
C380.0471 (18)0.0550 (18)0.0617 (19)0.0245 (15)0.0203 (16)0.0236 (16)
C390.065 (2)0.061 (2)0.062 (2)0.0334 (18)0.0318 (18)0.0166 (16)
C400.063 (2)0.0486 (18)0.073 (2)0.0169 (17)0.0267 (19)0.0072 (17)
C410.068 (2)0.067 (2)0.084 (3)0.026 (2)0.043 (2)0.033 (2)
C420.078 (3)0.067 (2)0.062 (2)0.040 (2)0.0350 (19)0.0239 (17)
C430.061 (2)0.0448 (17)0.0561 (19)0.0219 (16)0.0110 (17)0.0085 (15)
C440.143 (5)0.122 (4)0.089 (3)0.075 (4)0.074 (3)0.034 (3)
O70.205 (4)0.092 (2)0.115 (3)0.074 (3)0.075 (3)0.043 (2)
O80.168 (3)0.098 (2)0.156 (3)0.074 (2)0.131 (3)0.057 (2)
Geometric parameters (Å, º) top
Zn1—N22.114 (3)C22—C271.389 (4)
Zn1—O12.118 (3)C23—C241.379 (5)
Zn1—N42.118 (2)C23—H23A0.9300
Zn1—N12.129 (3)C24—C251.377 (5)
Zn1—N32.138 (3)C24—H24A0.9300
Zn1—O22.308 (2)C25—C261.377 (5)
Zn1—C212.537 (3)C25—H25A0.9300
O1—C211.267 (4)C26—C271.394 (4)
O2—C211.248 (4)C26—C281.504 (5)
N1—C11.332 (5)C27—H27A0.9300
N1—C51.350 (4)C28—H28A0.9600
N2—C101.335 (5)C28—H28B0.9600
N2—C61.347 (4)C28—H28C0.9600
N3—C111.342 (4)O3—C291.207 (4)
N3—C151.343 (4)O4—C291.306 (5)
N4—C201.339 (4)O4—H4B0.8593
N4—C161.345 (4)C29—C301.489 (5)
C1—C21.368 (6)C30—C351.380 (4)
C1—H1A0.9300C30—C311.399 (5)
C2—C31.367 (7)C31—C321.363 (6)
C2—H2A0.9300C31—H31A0.9300
C3—C41.365 (7)C32—C331.360 (6)
C3—H3A0.9300C32—H32A0.9300
C4—C51.377 (5)C33—C341.383 (5)
C4—H4A0.9300C33—H33A0.9300
C5—C61.479 (5)C34—C351.376 (5)
C6—C71.393 (5)C34—C361.496 (5)
C7—C81.370 (6)C35—H35A0.9300
C7—H7A0.9300C36—H36A0.9600
C8—C91.370 (6)C36—H36B0.9600
C8—H8A0.9300C36—H36C0.9600
C9—C101.377 (5)O5—C371.278 (6)
C9—H9A0.9300O6—C371.236 (6)
C10—H10A0.9300C37—C381.505 (5)
C11—C121.364 (5)C38—C391.381 (5)
C11—H11A0.9300C38—C431.382 (5)
C12—C131.370 (6)C39—C401.371 (5)
C12—H12A0.9300C39—H39A0.9300
C13—C141.378 (5)C40—C411.372 (5)
C13—H13A0.9300C40—H40A0.9300
C14—C151.385 (4)C41—C421.373 (5)
C14—H14A0.9300C41—H41A0.9300
C15—C161.480 (4)C42—C431.380 (5)
C16—C171.385 (4)C42—C441.505 (5)
C17—C181.377 (5)C43—H43A0.9300
C17—H17A0.9300C44—H44A0.9600
C18—C191.363 (5)C44—H44B0.9600
C18—H18A0.9300C44—H44C0.9600
C19—C201.369 (5)O7—H7B0.8596
C19—H19A0.9300O7—H7C0.8764
C20—H20A0.9300O8—H8B0.8787
C21—C221.499 (4)O8—H8C0.8502
C22—C231.374 (5)
N2—Zn1—O1147.48 (10)C20—C19—H19A120.5
N2—Zn1—N499.00 (11)N4—C20—C19122.5 (3)
O1—Zn1—N495.44 (10)N4—C20—H20A118.7
N2—Zn1—N177.29 (11)C19—C20—H20A118.7
O1—Zn1—N191.68 (10)O2—C21—O1121.5 (3)
N4—Zn1—N1171.37 (10)O2—C21—C22119.7 (3)
N2—Zn1—N3108.16 (11)O1—C21—C22118.8 (3)
O1—Zn1—N3103.36 (10)O2—C21—Zn165.07 (18)
N4—Zn1—N377.35 (10)O1—C21—Zn156.42 (17)
N1—Zn1—N396.28 (11)C22—C21—Zn1175.2 (3)
N2—Zn1—O291.52 (10)C23—C22—C27119.3 (3)
O1—Zn1—O259.28 (9)C23—C22—C21120.3 (3)
N4—Zn1—O290.36 (9)C27—C22—C21120.4 (3)
N1—Zn1—O297.48 (10)C22—C23—C24120.3 (3)
N3—Zn1—O2158.07 (9)C22—C23—H23A119.8
N2—Zn1—C21119.80 (11)C24—C23—H23A119.8
O1—Zn1—C2129.91 (10)C25—C24—C23119.6 (3)
N4—Zn1—C2193.20 (10)C25—C24—H24A120.2
N1—Zn1—C2195.40 (10)C23—C24—H24A120.2
N3—Zn1—C21132.02 (11)C26—C25—C24121.8 (3)
O2—Zn1—C2129.38 (9)C26—C25—H25A119.1
C21—O1—Zn193.7 (2)C24—C25—H25A119.1
C21—O2—Zn185.5 (2)C25—C26—C27117.7 (3)
C1—N1—C5118.8 (3)C25—C26—C28121.2 (3)
C1—N1—Zn1125.4 (3)C27—C26—C28121.1 (3)
C5—N1—Zn1115.8 (2)C22—C27—C26121.2 (3)
C10—N2—C6118.9 (3)C22—C27—H27A119.4
C10—N2—Zn1125.7 (2)C26—C27—H27A119.4
C6—N2—Zn1115.4 (2)C26—C28—H28A109.5
C11—N3—C15118.3 (3)C26—C28—H28B109.5
C11—N3—Zn1126.8 (2)H28A—C28—H28B109.5
C15—N3—Zn1114.8 (2)C26—C28—H28C109.5
C20—N4—C16118.7 (3)H28A—C28—H28C109.5
C20—N4—Zn1125.3 (2)H28B—C28—H28C109.5
C16—N4—Zn1115.5 (2)C29—O4—H4B113.6
N1—C1—C2122.9 (5)O3—C29—O4123.7 (4)
N1—C1—H1A118.6O3—C29—C30122.9 (4)
C2—C1—H1A118.6O4—C29—C30113.3 (3)
C3—C2—C1118.3 (5)C35—C30—C31118.3 (3)
C3—C2—H2A120.8C35—C30—C29121.4 (3)
C1—C2—H2A120.8C31—C30—C29120.4 (3)
C4—C3—C2119.7 (4)C32—C31—C30119.5 (3)
C4—C3—H3A120.2C32—C31—H31A120.2
C2—C3—H3A120.2C30—C31—H31A120.2
C3—C4—C5119.8 (4)C33—C32—C31121.1 (3)
C3—C4—H4A120.1C33—C32—H32A119.5
C5—C4—H4A120.1C31—C32—H32A119.5
N1—C5—C4120.6 (4)C32—C33—C34121.1 (4)
N1—C5—C6114.8 (3)C32—C33—H33A119.4
C4—C5—C6124.7 (4)C34—C33—H33A119.4
N2—C6—C7120.8 (4)C35—C34—C33117.6 (3)
N2—C6—C5116.7 (3)C35—C34—C36121.1 (3)
C7—C6—C5122.6 (3)C33—C34—C36121.2 (3)
C8—C7—C6119.1 (4)C34—C35—C30122.3 (3)
C8—C7—H7A120.5C34—C35—H35A118.8
C6—C7—H7A120.5C30—C35—H35A118.8
C9—C8—C7120.3 (4)C34—C36—H36A109.5
C9—C8—H8A119.9C34—C36—H36B109.5
C7—C8—H8A119.9H36A—C36—H36B109.5
C8—C9—C10117.9 (4)C34—C36—H36C109.5
C8—C9—H9A121.1H36A—C36—H36C109.5
C10—C9—H9A121.1H36B—C36—H36C109.5
N2—C10—C9123.1 (4)O6—C37—O5125.6 (4)
N2—C10—H10A118.4O6—C37—C38118.8 (4)
C9—C10—H10A118.4O5—C37—C38115.6 (5)
N3—C11—C12123.3 (3)C39—C38—C43118.8 (3)
N3—C11—H11A118.4C39—C38—C37121.4 (4)
C12—C11—H11A118.4C43—C38—C37119.8 (4)
C11—C12—C13118.3 (4)C40—C39—C38119.6 (3)
C11—C12—H12A120.8C40—C39—H39A120.2
C13—C12—H12A120.8C38—C39—H39A120.2
C12—C13—C14119.8 (4)C39—C40—C41120.3 (3)
C12—C13—H13A120.1C39—C40—H40A119.9
C14—C13—H13A120.1C41—C40—H40A119.9
C13—C14—C15118.8 (3)C40—C41—C42121.8 (4)
C13—C14—H14A120.6C40—C41—H41A119.1
C15—C14—H14A120.6C42—C41—H41A119.1
N3—C15—C14121.4 (3)C41—C42—C43117.0 (3)
N3—C15—C16116.2 (3)C41—C42—C44122.0 (4)
C14—C15—C16122.4 (3)C43—C42—C44121.0 (4)
N4—C16—C17121.2 (3)C42—C43—C38122.4 (3)
N4—C16—C15115.8 (2)C42—C43—H43A118.8
C17—C16—C15123.0 (3)C38—C43—H43A118.8
C18—C17—C16119.0 (3)C42—C44—H44A109.5
C18—C17—H17A120.5C42—C44—H44B109.5
C16—C17—H17A120.5H44A—C44—H44B109.5
C19—C18—C17119.5 (3)C42—C44—H44C109.5
C19—C18—H18A120.3H44A—C44—H44C109.5
C17—C18—H18A120.3H44B—C44—H44C109.5
C18—C19—C20119.0 (3)H7B—O7—H7C109.1
C18—C19—H19A120.5H8B—O8—H8C103.7
N2—Zn1—N1—C1179.7 (3)C11—N3—C15—C141.4 (5)
O1—Zn1—N1—C131.2 (3)Zn1—N3—C15—C14177.7 (3)
N3—Zn1—N1—C172.5 (3)C11—N3—C15—C16178.4 (3)
O2—Zn1—N1—C190.4 (3)Zn1—N3—C15—C162.4 (3)
N2—Zn1—N1—C51.4 (2)C13—C14—C15—N30.8 (5)
O1—Zn1—N1—C5147.7 (2)C13—C14—C15—C16179.1 (3)
N3—Zn1—N1—C5108.7 (2)C20—N4—C16—C171.3 (5)
O2—Zn1—N1—C588.4 (2)Zn1—N4—C16—C17171.1 (2)
N4—Zn1—N2—C109.3 (3)C20—N4—C16—C15179.4 (3)
O1—Zn1—N2—C10105.9 (3)Zn1—N4—C16—C157.0 (3)
N1—Zn1—N2—C10178.6 (3)N3—C15—C16—N46.3 (4)
N3—Zn1—N2—C1088.9 (3)C14—C15—C16—N4173.8 (3)
O2—Zn1—N2—C1081.3 (3)N3—C15—C16—C17171.8 (3)
N4—Zn1—N2—C6173.7 (2)C14—C15—C16—C178.1 (5)
O1—Zn1—N2—C671.0 (3)N4—C16—C17—C180.9 (5)
N1—Zn1—N2—C61.7 (2)C15—C16—C17—C18178.9 (3)
N3—Zn1—N2—C694.2 (2)C16—C17—C18—C190.1 (5)
O2—Zn1—N2—C695.7 (2)C17—C18—C19—C200.2 (6)
N2—Zn1—N3—C1182.7 (3)C16—N4—C20—C191.0 (5)
N4—Zn1—N3—C11178.1 (3)Zn1—N4—C20—C19170.6 (3)
O1—Zn1—N3—C1189.2 (3)C18—C19—C20—N40.3 (6)
N1—Zn1—N3—C114.0 (3)Zn1—O2—C21—O10.4 (3)
O2—Zn1—N3—C11124.5 (3)Zn1—O2—C21—C22179.8 (2)
N2—Zn1—N3—C1596.4 (2)Zn1—O1—C21—O20.4 (3)
N4—Zn1—N3—C150.9 (2)Zn1—O1—C21—C22179.8 (2)
O1—Zn1—N3—C1591.8 (2)O2—C21—C22—C23170.3 (3)
N1—Zn1—N3—C15175.0 (2)O1—C21—C22—C239.6 (4)
O2—Zn1—N3—C1556.4 (4)O2—C21—C22—C2710.0 (4)
N2—Zn1—N4—C2077.0 (3)O1—C21—C22—C27170.2 (3)
O1—Zn1—N4—C2073.7 (3)C27—C22—C23—C241.1 (5)
N3—Zn1—N4—C20176.2 (3)C21—C22—C23—C24179.1 (3)
O2—Zn1—N4—C2014.6 (3)C22—C23—C24—C251.0 (5)
N2—Zn1—N4—C16111.1 (2)C23—C24—C25—C260.1 (6)
O1—Zn1—N4—C1698.1 (2)C24—C25—C26—C271.0 (5)
N3—Zn1—N4—C164.4 (2)C24—C25—C26—C28179.8 (3)
O2—Zn1—N4—C16157.3 (2)C23—C22—C27—C260.2 (4)
C5—N1—C1—C20.0 (6)C21—C22—C27—C26180.0 (3)
Zn1—N1—C1—C2178.9 (3)C25—C26—C27—C220.8 (4)
N1—C1—C2—C30.7 (7)C28—C26—C27—C22179.9 (3)
C1—C2—C3—C40.1 (7)O3—C29—C30—C35177.8 (4)
C2—C3—C4—C51.4 (7)O4—C29—C30—C352.7 (5)
C1—N1—C5—C41.3 (5)O3—C29—C30—C313.8 (6)
Zn1—N1—C5—C4177.6 (2)O4—C29—C30—C31175.7 (3)
C1—N1—C5—C6179.9 (3)C35—C30—C31—C321.8 (5)
Zn1—N1—C5—C61.0 (3)C29—C30—C31—C32176.6 (4)
C3—C4—C5—N12.1 (5)C30—C31—C32—C330.9 (6)
C3—C4—C5—C6179.5 (4)C31—C32—C33—C340.2 (6)
C10—N2—C6—C70.6 (5)C32—C33—C34—C350.4 (5)
Zn1—N2—C6—C7177.8 (2)C32—C33—C34—C36179.9 (4)
C10—N2—C6—C5178.8 (3)C33—C34—C35—C301.4 (5)
Zn1—N2—C6—C51.7 (3)C36—C34—C35—C30178.9 (3)
N1—C5—C6—N20.5 (4)C31—C30—C35—C342.1 (5)
C4—C5—C6—N2179.0 (3)C29—C30—C35—C34176.3 (3)
N1—C5—C6—C7179.0 (3)O6—C37—C38—C397.0 (6)
C4—C5—C6—C70.5 (5)O5—C37—C38—C39173.4 (3)
N2—C6—C7—C80.3 (5)O6—C37—C38—C43172.4 (4)
C5—C6—C7—C8179.8 (3)O5—C37—C38—C437.2 (5)
C6—C7—C8—C90.6 (6)C43—C38—C39—C400.8 (5)
C7—C8—C9—C100.1 (6)C37—C38—C39—C40178.7 (3)
C6—N2—C10—C91.4 (5)C38—C39—C40—C410.9 (6)
Zn1—N2—C10—C9178.2 (3)C39—C40—C41—C421.1 (6)
C8—C9—C10—N21.1 (6)C40—C41—C42—C430.3 (6)
C15—N3—C11—C120.7 (5)C40—C41—C42—C44180.0 (4)
Zn1—N3—C11—C12178.3 (3)C41—C42—C43—C381.9 (5)
N3—C11—C12—C130.6 (6)C44—C42—C43—C38178.3 (4)
C11—C12—C13—C141.3 (7)C39—C38—C43—C422.2 (5)
C12—C13—C14—C150.6 (6)C37—C38—C43—C42177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O5i0.861.632.492 (5)175
O7—H7B···O5ii0.862.453.028 (6)125
O7—H7C···O80.882.142.938 (6)151
O8—H8B···O60.882.102.973 (5)178
O8—H8C···O6ii0.852.052.871 (6)163
C7—H7A···O2iii0.932.453.234 (5)142
C17—H17A···O1iv0.932.443.297 (5)152
C18—H18A···O80.932.473.280 (7)146
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C8H7O2)(C10H8N2)2](C8H7O2)·C8H8O2·2H2O
Mr820.21
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)12.690 (3), 13.632 (3), 14.493 (3)
α, β, γ (°)96.87 (3), 115.47 (3), 110.96 (3)
V3)1999.4 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.39 × 0.34 × 0.32
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.769, 0.806
No. of measured, independent and
observed [I > 2σ(I)] reflections
19803, 9165, 5744
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.147, 1.14
No. of reflections9077
No. of parameters514
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.86

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O5i0.8601.6342.492 (5)175
O7—H7B···O5ii0.8592.4503.028 (6)125
O7—H7C···O80.8772.1402.938 (6)151
O8—H8B···O60.8792.0952.973 (5)178
O8—H8C···O6ii0.8502.0452.871 (6)163
C7—H7A···O2iii0.9302.4503.234 (5)142
C17—H17A···O1iv0.9302.4403.297 (5)152
C18—H18A···O80.9302.4703.280 (7)146
Symmetry codes: (i) x1, y, z1; (ii) x+2, y+1, z+1; (iii) x+2, y+2, z+2; (iv) x+1, y+1, z+1.
 

Acknowledgements

Sincere thanks are extended to the K. C. Wong Magna Fund in Ningbo University.

References

First citationBettencourt-Dias, A. D. & Viswanathan, S. (2006). Dalton Trans. pp. 4093–1403.  Google Scholar
First citationChen, P. K., Qi, Y., Che, Y. X. & Zheng, J. M. (2010). CrystEngComm, 12, 720–724.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, F. Q., Wang, Q. X., Jiao, K., Jian, F. F., Guang, Y. L. & Li, R. X. (2006). Inorg. Chim. Acta, 359, 1524–1530.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, W., Liu, W., Yao, F. Y. & Zheng, Y. Q. (2011). Inorg. Chim. Acta, 365, 297–301.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, J., Su, W. P. & Hong, M. C. (2010). Cryst. Growth Des. 11, 337–346.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 9| September 2012| Pages m1156-m1157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds