organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[Bis(4-fluoro­phen­yl)meth­yl]piperazine

aDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, bDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, and cR. L. Fine Chem., Bengaluru 560 064, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 24 August 2012; accepted 27 August 2012; online 31 August 2012)

In the title mol­ecule, C17H18F2N2, the dihedral angle between the benzene rings is 73.40 (3)°. The piperazine ring is close to an ideal chair conformation and the N—H hydrogen is in an equatorial position. In the crystal, molecules are linked via weak C—H⋯F hydrogen bonds.

Related literature

For medical applications of piperazines, see: Bogatcheva et al. (2006[Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045-3048.]); Brockunier et al. (2004[Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763-4766.]). For related structures, see: Betz et al. (2011a[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2587-o2588.],b[Betz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2783-o2784.]); Hu et al. (2003[Hu, X.-R., Gu, J.-M. & Lu, G.-L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 497.]); Naveen et al. (2006[Naveen, S., Nanjunda Swamy, S., Basappa, Prabhu Swamy, B., Anandalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2006). Anal. Sci. X-Ray Struct. Anal. Online, 22, x41-x42.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18F2N2

  • Mr = 288.33

  • Monoclinic, P 21 /c

  • a = 12.1574 (5) Å

  • b = 8.8559 (2) Å

  • c = 13.8604 (4) Å

  • β = 93.355 (3)°

  • V = 1489.72 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 130 K

  • 0.15 × 0.08 × 0.06 mm

Data collection
  • Atlas SuperNova (Single source at offset) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.828, Tmax = 1.000

  • 8816 measured reflections

  • 3006 independent reflections

  • 2847 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.04

  • 3006 reflections

  • 262 parameters

  • All H-atom parameters refined

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯F24i 0.962 (14) 2.424 (14) 3.2720 (13) 146.8 (10)
C25—H25⋯F34ii 0.962 (14) 2.533 (14) 3.1998 (13) 126.5 (10)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperazine is currently the most important building block used in drug discovery with a high number of positive hits encountered in biological screens of this heterocycle and its congeners. They are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (Brockunier et al., 2004; Bogatcheva et al., 2006). 1-[bis(4-fluorophenyl)methyl]piperazine is an intermediate for the preparation of flunarizine which is a calcium channel blocker. Here we report the crystal structure of the title compound (I).

Only two structures of neutral 1-benzhydrylpiperazine derivatives have been reported so far: 1-benzhydrylpiperazine itself (Naveen et al., 2006) and (R)-1-((4-chlorophenyl)phenylmethyl)piperazine (Hu et al., 2003) as well as two structures of salts of I, the trinitrophenolate (Betz et al., 2011a) and the 2-(2-phenylethyl)benzoate (Betz et al., 2011b).

The dihedral angle between the mean planes of the p-fluorophenyl rings is 73.40 (3)°. The piperazine ring is in a chair conformation and the asymmetry parameters (Duax & Norton, 1975) are quite small with the largest value for the mirror plane being 3.7° and for the twofold axis 3.0°. The N—H hydrogen atom is in an equatorial position (the C—C—N—H torsion angles are 177° and -176°). In the crystal there are only very weak C—H···F contacts and, interestingly, the shortest contacts to both F atoms are created by the same carbon atom (C25). Therefore it seems that the three-dimensional structure is mainly governed by van der Waals forces.

Related literature top

For medical applications of piperazines, see: Bogatcheva et al. (2006); Brockunier et al. (2004). For related structures, see: Betz et al. (2011a,b); Hu et al. (2003); Naveen et al. (2006). For asymmetry parameters, see: Duax & Norton (1975).

Experimental top

The title compound obtained as a gift sample from R. L. Fine Chem., Bengaluru, India. X-ray quality crystals were grown from a 1:1 (v:v) toluene/hexane solution by slow evaporation (m.p: 360–362 K).

Refinement top

The hydrogen atoms were freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Figure 1. Perspective view of I together with the atom labelling scheme. The ellipsoids are drawn at the 50% probability level and H-atoms are depicted as spheres with arbitrary radii.
1-[Bis(4-fluorophenyl)methyl]piperazine top
Crystal data top
C17H18F2N2F(000) = 608
Mr = 288.33Dx = 1.286 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 110 reflections
a = 12.1574 (5) Åθ = 2.9–27.8°
b = 8.8559 (2) ŵ = 0.77 mm1
c = 13.8604 (4) ÅT = 130 K
β = 93.355 (3)°Block, colourless
V = 1489.72 (8) Å30.15 × 0.08 × 0.06 mm
Z = 4
Data collection top
Atlas SuperNova (Single source at offset)
diffractometer
3006 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2847 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.010
Detector resolution: 10.5357 pixels mm-1θmax = 75.3°, θmin = 3.6°
ω scanh = 1515
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 910
Tmin = 0.828, Tmax = 1.000l = 1417
8816 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.096All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.3446P]
where P = (Fo2 + 2Fc2)/3
3006 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H18F2N2V = 1489.72 (8) Å3
Mr = 288.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 12.1574 (5) ŵ = 0.77 mm1
b = 8.8559 (2) ÅT = 130 K
c = 13.8604 (4) Å0.15 × 0.08 × 0.06 mm
β = 93.355 (3)°
Data collection top
Atlas SuperNova (Single source at offset)
diffractometer
3006 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2847 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 1.000Rint = 0.010
8816 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.04Δρmax = 0.18 e Å3
3006 reflectionsΔρmin = 0.23 e Å3
262 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71855 (8)0.26307 (12)0.64093 (7)0.0297 (2)
H10.6808 (10)0.1909 (14)0.5950 (9)0.031 (3)*
N110.82339 (7)0.19519 (10)0.67957 (6)0.0296 (2)
C120.89231 (9)0.15265 (14)0.59996 (9)0.0377 (3)
H12B0.9123 (11)0.2450 (16)0.5634 (10)0.040 (3)*
H12A0.8512 (12)0.0821 (16)0.5550 (10)0.044 (4)*
C130.99715 (9)0.07353 (14)0.63834 (9)0.0388 (3)
H13B1.0416 (12)0.0469 (16)0.5818 (11)0.048 (4)*
H13A1.0429 (11)0.1472 (16)0.6811 (10)0.041 (3)*
N140.96894 (8)0.06217 (11)0.69096 (8)0.0400 (2)
H141.0301 (12)0.1145 (17)0.7121 (10)0.047 (4)*
C150.90455 (10)0.01932 (14)0.77224 (10)0.0428 (3)
H15B0.9468 (12)0.0538 (18)0.8199 (10)0.050 (4)*
H15A0.8848 (12)0.1141 (18)0.8085 (11)0.054 (4)*
C160.79931 (9)0.05778 (13)0.73443 (10)0.0388 (3)
H16B0.7563 (12)0.0116 (17)0.6926 (10)0.046 (4)*
H16A0.7553 (11)0.0865 (16)0.7897 (10)0.043 (4)*
C210.64243 (8)0.29345 (11)0.72207 (7)0.0282 (2)
C220.53738 (9)0.23052 (12)0.71842 (9)0.0343 (2)
H220.5114 (11)0.1663 (16)0.6633 (10)0.040 (3)*
C230.46608 (9)0.25595 (13)0.79170 (9)0.0379 (3)
H230.3926 (13)0.2108 (17)0.7896 (11)0.051 (4)*
C240.50228 (9)0.34553 (12)0.86750 (8)0.0344 (2)
F240.43371 (6)0.37247 (9)0.93966 (5)0.0496 (2)
C250.60588 (9)0.41045 (12)0.87452 (8)0.0324 (2)
H250.6270 (11)0.4725 (16)0.9295 (10)0.038 (3)*
C260.67547 (8)0.38383 (12)0.80075 (8)0.0299 (2)
H260.7491 (12)0.4266 (15)0.8047 (10)0.042 (3)*
C310.73448 (8)0.40781 (12)0.58434 (7)0.0301 (2)
C320.81328 (9)0.51586 (13)0.61203 (8)0.0369 (3)
H320.8644 (12)0.4954 (16)0.6675 (10)0.045 (4)*
C330.82205 (10)0.65060 (14)0.56149 (9)0.0418 (3)
H330.8754 (13)0.7275 (19)0.5793 (11)0.056 (4)*
C340.75027 (10)0.67407 (13)0.48296 (9)0.0401 (3)
F340.75839 (7)0.80528 (9)0.43211 (6)0.0570 (2)
C350.66997 (10)0.57242 (15)0.45345 (8)0.0426 (3)
H350.6225 (13)0.5946 (19)0.3972 (12)0.057 (4)*
C360.66273 (9)0.43910 (14)0.50508 (8)0.0370 (3)
H360.6086 (12)0.3684 (17)0.4860 (10)0.045 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (5)0.0272 (5)0.0352 (5)0.0020 (4)0.0011 (4)0.0051 (4)
N110.0259 (4)0.0261 (4)0.0369 (5)0.0014 (3)0.0034 (3)0.0010 (3)
C120.0340 (5)0.0403 (6)0.0393 (6)0.0027 (5)0.0062 (4)0.0066 (5)
C130.0296 (5)0.0384 (6)0.0490 (7)0.0004 (4)0.0071 (5)0.0099 (5)
N140.0278 (5)0.0288 (5)0.0634 (6)0.0031 (4)0.0023 (4)0.0078 (4)
C150.0353 (6)0.0338 (6)0.0600 (7)0.0080 (5)0.0096 (5)0.0089 (5)
C160.0298 (5)0.0283 (5)0.0591 (7)0.0025 (4)0.0092 (5)0.0061 (5)
C210.0259 (5)0.0220 (5)0.0363 (5)0.0016 (4)0.0006 (4)0.0011 (4)
C220.0284 (5)0.0273 (5)0.0470 (6)0.0023 (4)0.0004 (4)0.0037 (4)
C230.0270 (5)0.0311 (6)0.0559 (7)0.0020 (4)0.0051 (5)0.0017 (5)
C240.0328 (5)0.0287 (5)0.0426 (6)0.0060 (4)0.0104 (4)0.0056 (4)
F240.0458 (4)0.0492 (4)0.0562 (4)0.0006 (3)0.0237 (3)0.0013 (3)
C250.0343 (5)0.0272 (5)0.0357 (5)0.0030 (4)0.0007 (4)0.0009 (4)
C260.0258 (5)0.0267 (5)0.0370 (5)0.0006 (4)0.0008 (4)0.0010 (4)
C310.0291 (5)0.0300 (5)0.0312 (5)0.0015 (4)0.0028 (4)0.0034 (4)
C320.0333 (5)0.0375 (6)0.0393 (6)0.0047 (4)0.0035 (4)0.0048 (5)
C330.0365 (6)0.0373 (6)0.0518 (7)0.0054 (5)0.0045 (5)0.0058 (5)
C340.0426 (6)0.0368 (6)0.0423 (6)0.0095 (5)0.0138 (5)0.0110 (5)
F340.0578 (5)0.0500 (5)0.0649 (5)0.0125 (4)0.0191 (4)0.0278 (4)
C350.0457 (6)0.0478 (7)0.0339 (6)0.0133 (5)0.0014 (5)0.0017 (5)
C360.0370 (6)0.0373 (6)0.0359 (5)0.0028 (5)0.0041 (4)0.0074 (5)
Geometric parameters (Å, º) top
C1—N111.4808 (13)C22—C231.3917 (16)
C1—C311.5211 (15)C22—H220.989 (14)
C1—C211.5216 (14)C23—C241.3684 (17)
C1—H10.996 (12)C23—H230.978 (16)
N11—C121.4729 (14)C24—F241.3601 (12)
N11—C161.4734 (14)C24—C251.3828 (16)
C12—C131.5229 (16)C25—C261.3849 (15)
C12—H12B0.999 (14)C25—H250.962 (14)
C12—H12A0.996 (15)C26—H260.970 (14)
C13—N141.4571 (16)C31—C361.3901 (15)
C13—H13B1.006 (15)C31—C321.3920 (15)
C13—H13A1.023 (14)C32—C331.3909 (16)
N14—C151.4592 (16)C32—H320.976 (14)
N14—H140.909 (15)C33—C341.3706 (17)
C15—C161.5164 (16)C33—H330.962 (17)
C15—H15B1.039 (15)C34—F341.3656 (13)
C15—H15A1.015 (16)C34—C351.3725 (19)
C16—H16B0.976 (15)C35—C361.3861 (18)
C16—H16A0.993 (14)C35—H350.963 (16)
C21—C221.3917 (14)C36—H360.935 (15)
C21—C261.3928 (15)
N11—C1—C31113.31 (8)C22—C21—C26118.72 (10)
N11—C1—C21110.63 (8)C22—C21—C1119.93 (9)
C31—C1—C21109.48 (8)C26—C21—C1121.35 (9)
N11—C1—H1109.0 (7)C21—C22—C23121.21 (10)
C31—C1—H1106.2 (7)C21—C22—H22120.6 (8)
C21—C1—H1108.0 (7)C23—C22—H22118.2 (8)
C12—N11—C16108.32 (9)C24—C23—C22117.91 (10)
C12—N11—C1110.38 (8)C24—C23—H23120.8 (9)
C16—N11—C1109.22 (8)C22—C23—H23121.3 (9)
N11—C12—C13110.93 (9)F24—C24—C23118.87 (10)
N11—C12—H12B109.7 (8)F24—C24—C25118.05 (10)
C13—C12—H12B109.3 (8)C23—C24—C25123.08 (10)
N11—C12—H12A110.1 (8)C24—C25—C26118.07 (10)
C13—C12—H12A108.0 (8)C24—C25—H25119.6 (8)
H12B—C12—H12A108.9 (11)C26—C25—H25122.4 (8)
N14—C13—C12109.73 (9)C25—C26—C21121.01 (9)
N14—C13—H13B110.5 (8)C25—C26—H26119.6 (8)
C12—C13—H13B108.2 (8)C21—C26—H26119.4 (8)
N14—C13—H13A111.8 (8)C36—C31—C32118.08 (10)
C12—C13—H13A108.9 (8)C36—C31—C1118.86 (9)
H13B—C13—H13A107.6 (11)C32—C31—C1122.92 (9)
C13—N14—C15108.94 (9)C33—C32—C31121.51 (10)
C13—N14—H14111.7 (9)C33—C32—H32119.5 (9)
C15—N14—H14110.4 (9)C31—C32—H32119.0 (9)
N14—C15—C16109.28 (11)C34—C33—C32117.78 (11)
N14—C15—H15B112.6 (8)C34—C33—H33119.0 (9)
C16—C15—H15B108.4 (8)C32—C33—H33123.2 (9)
N14—C15—H15A108.7 (9)F34—C34—C33118.49 (11)
C16—C15—H15A108.9 (9)F34—C34—C35118.42 (11)
H15B—C15—H15A108.8 (12)C33—C34—C35123.09 (11)
N11—C16—C15111.17 (9)C34—C35—C36118.06 (11)
N11—C16—H16B109.2 (9)C34—C35—H35119.3 (10)
C15—C16—H16B109.5 (9)C36—C35—H35122.6 (10)
N11—C16—H16A108.6 (8)C35—C36—C31121.46 (11)
C15—C16—H16A109.3 (8)C35—C36—H36119.3 (9)
H16B—C16—H16A109.0 (11)C31—C36—H36119.3 (9)
C31—C1—N11—C1262.03 (11)C22—C23—C24—C250.37 (17)
C21—C1—N11—C12174.59 (8)F24—C24—C25—C26179.60 (9)
C31—C1—N11—C16178.99 (9)C23—C24—C25—C260.45 (16)
C21—C1—N11—C1655.61 (11)C24—C25—C26—C210.44 (15)
C16—N11—C12—C1356.84 (12)C22—C21—C26—C250.36 (15)
C1—N11—C12—C13176.37 (9)C1—C21—C26—C25179.73 (9)
N11—C12—C13—N1459.56 (12)N11—C1—C31—C36145.48 (10)
C12—C13—N14—C1560.72 (12)C21—C1—C31—C3690.50 (11)
C13—N14—C15—C1660.98 (12)N11—C1—C31—C3238.94 (14)
C12—N11—C16—C1557.53 (13)C21—C1—C31—C3285.07 (12)
C1—N11—C16—C15177.79 (10)C36—C31—C32—C331.06 (17)
N14—C15—C16—N1160.40 (13)C1—C31—C32—C33176.67 (10)
N11—C1—C21—C22123.14 (10)C31—C32—C33—C340.02 (18)
C31—C1—C21—C22111.29 (10)C32—C33—C34—F34179.48 (10)
N11—C1—C21—C2656.95 (12)C32—C33—C34—C351.07 (19)
C31—C1—C21—C2668.62 (12)F34—C34—C35—C36179.60 (10)
C26—C21—C22—C230.28 (16)C33—C34—C35—C360.95 (18)
C1—C21—C22—C23179.81 (10)C34—C35—C36—C310.22 (17)
C21—C22—C23—C240.28 (17)C32—C31—C36—C351.19 (17)
C22—C23—C24—F24179.68 (10)C1—C31—C36—C35176.98 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···F24i0.962 (14)2.424 (14)3.2720 (13)146.8 (10)
C25—H25···F34ii0.962 (14)2.533 (14)3.1998 (13)126.5 (10)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18F2N2
Mr288.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)12.1574 (5), 8.8559 (2), 13.8604 (4)
β (°) 93.355 (3)
V3)1489.72 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.15 × 0.08 × 0.06
Data collection
DiffractometerAtlas SuperNova (Single source at offset)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.828, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8816, 3006, 2847
Rint0.010
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.04
No. of reflections3006
No. of parameters262
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···F24i0.962 (14)2.424 (14)3.2720 (13)146.8 (10)
C25—H25···F34ii0.962 (14)2.533 (14)3.1998 (13)126.5 (10)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

ASD thanks the University of Mysore for research facilities and HSY thanks R. L. Fine Chem., Bengaluru, for the gift sample.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011b). Acta Cryst. E67, o2783–o2784.  CrossRef IUCr Journals Google Scholar
First citationBetz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2587–o2588.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). Bioorg. Med. Chem. Lett. 14, 4763–4766.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). In Atlas of Steroid Structures. New York: Plenum.  Google Scholar
First citationHu, X.-R., Gu, J.-M. & Lu, G.-L. (2003). Z. Kristallogr. New Cryst. Struct. 218, 497.  Google Scholar
First citationNaveen, S., Nanjunda Swamy, S., Basappa, Prabhu Swamy, B., Anandalwar, S. M., Prasad, J. S. & Rangappa, K. S. (2006). Anal. Sci. X-Ray Struct. Anal. Online, 22, x41–x42.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds