metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(1,3-di­methyl­imidazolin-2-one-κN)(1,10-phenanthroline-κ2N,N′)copper(II)]-μ-furan-2,5-di­carboxyl­ato-κ2O2:O5]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 2 July 2012; accepted 8 July 2012; online 1 August 2012)

The polymeric title compound, [Cu(C6H2O5)(C12H8N2)(C5H10N2O)]n, is composed of an infinite chain formed along [100] by linking the (1,3-dimethyl­imidazolin-2-one)(1,10-phenanthroline)copper(II) units with two O atoms of two carboxyl­ate groups of the furan-2,5-dicarboxyl­ate ligand. The CuII atom, which lies on a twofold rotation axis, displays a square-pyramidal coordination. The dihedral angles of the 1,10-phenanthroline ligand with respect to the furan rings of the carboxyl­ate anions that are connected to the metal atom are 62.18 (11) and 88.27 (12)°.

Related literature

For related structures, see: Li, et al. (2012a[Li, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.],b[Li, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C6H2O5)(C12H8N2)(C5H10N2O)]

  • Mr = 511.98

  • Orthorhombic, P b c a

  • a = 15.620 (3) Å

  • b = 14.598 (3) Å

  • c = 18.616 (4) Å

  • V = 4244.8 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.900, Tmax = 0.900

  • 30193 measured reflections

  • 3727 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.110

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.109

  • S = 1.04

  • 3727 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, we utilized furan-2,5-dicarboxylate anion as the ligand to synthesize MOFs (Li et al., 2012a,b). In this work, we report a chainlike compound, [Cu(C5H10N2O)(C12H8N2)(C6H2O5)]n (Scheme I), is structurally determined.

The asymmetric unit of (I) is consists of one Cu(II) cation, one furan-2,5-dicarboxylate anion, one 1,3-dimethyl-2-imidazolinone molecule and one 1,10-phenanthroline molecule (Fig.1). The Cu atom is coordinated by two carboxylate O atoms, two N atoms of one C12H8N2 and one nitrogen of from C5H10N2O. The geometry is a square pyramid. The furan-2,5-dicarboxylate shows a µ2:η1;η1 coordinated mode. The dihedral angles of C12H8N2 with respect to the furan rings of the carboxylates that are coordinated to the same Cu atom are 62.18 (11)° and 88.27 (12)° (Fig. 1).

The Cu atom is linked by two furan-2,5-dicarboxylates to give rise to an infinite chain (Fig.2).

Related literature top

For related structures, see: Li, et al. (2012a,b).

Experimental top

Furan-2,5-dicarboxylic acid (0.0156 g, 0.10 mmol), Cu(NO3)2.6H2O (0.0298 g, 0.10 mmol), and C12H8N2 (0.0198, 0.11 mmol) were dissolved in DMI (5 ml, 48 mmol) under stirring. The mixture with molar ratio of 1 furan-2,5-dicarboxylic acid: 1 Cu(NO3)2.6H2O: 1.1 C12H8N2: 480 DMI was heated at 393 K for 2 days. Blue block were collected as a single phase.

Refinement top

The carbon H-atoms were placed in calculated positions (C—H (furan ring and phen ring) = 0.93 Å, C—H (CH2) = 0.97 Å, C—H (CH3) = 0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 0.5 + x, y, 0.5 - z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the infinite chain formed by linking the Cu with two oxygen atoms of two carboxyls of furan-2,5-dicarboxylate.
catena-Poly[[(1,3-dimethylimidazolin-2-one-κN)(1,10- phenanthroline-κ2N,N')copper(II)]-µ-furan-2,5-dicarboxylato- κ2O2:O5] top
Crystal data top
[Cu(C6H2O5)(C12H8N2)(C5H10N2O)]F(000) = 2104
Mr = 511.98Dx = 1.602 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2000 reflections
a = 15.620 (3) Åθ = 3.0–25.0°
b = 14.598 (3) ŵ = 1.08 mm1
c = 18.616 (4) ÅT = 293 K
V = 4244.8 (15) Å3Block, blue
Z = 80.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3727 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1818
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.900, Tmax = 0.900l = 2220
30193 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.2947P]
where P = (Fo2 + 2Fc2)/3
3727 reflections(Δ/σ)max < 0.001
309 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C6H2O5)(C12H8N2)(C5H10N2O)]V = 4244.8 (15) Å3
Mr = 511.98Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.620 (3) ŵ = 1.08 mm1
b = 14.598 (3) ÅT = 293 K
c = 18.616 (4) Å0.10 × 0.10 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3727 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2376 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.900Rint = 0.110
30193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
3727 reflectionsΔρmin = 0.37 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24404 (3)0.39844 (3)0.43722 (2)0.03211 (16)
O10.14532 (17)0.4367 (2)0.38161 (13)0.0416 (7)
O20.12024 (19)0.2971 (2)0.33748 (15)0.0486 (8)
O30.00981 (17)0.36718 (18)0.25302 (14)0.0359 (6)
O40.17851 (18)0.4375 (2)0.13743 (13)0.0427 (7)
O50.12344 (19)0.2972 (2)0.15283 (14)0.0457 (8)
O60.36449 (19)0.5888 (2)0.54050 (16)0.0542 (8)
N10.3387 (2)0.3743 (2)0.50900 (16)0.0323 (8)
N20.1712 (2)0.3470 (2)0.51765 (16)0.0331 (8)
N30.2429 (2)0.5747 (3)0.60884 (18)0.0493 (9)
N40.2290 (2)0.5799 (2)0.48911 (17)0.0411 (9)
C10.1065 (2)0.3789 (3)0.34036 (19)0.0331 (9)
C20.0400 (2)0.4234 (3)0.29553 (19)0.0355 (10)
C30.0156 (3)0.5122 (3)0.2869 (2)0.0438 (11)
H30.03920.56320.30940.053*
C40.0534 (3)0.5117 (3)0.2366 (2)0.0434 (11)
H40.08330.56260.22000.052*
C50.0672 (3)0.4228 (3)0.21737 (19)0.0355 (10)
C60.1268 (2)0.3795 (3)0.16585 (19)0.0337 (10)
C70.4221 (3)0.3874 (3)0.5029 (2)0.0430 (10)
H70.44320.41250.46050.052*
C80.4805 (3)0.3649 (3)0.5581 (2)0.0500 (12)
H80.53910.37190.55110.060*
C90.4493 (3)0.3325 (3)0.6221 (2)0.0471 (12)
H90.48680.31780.65910.057*
C100.3614 (3)0.3216 (3)0.6314 (2)0.0386 (10)
C110.3216 (3)0.2927 (3)0.6978 (2)0.0478 (11)
H110.35580.28090.73770.057*
C120.2360 (3)0.2825 (3)0.7033 (2)0.0481 (12)
H120.21230.26520.74700.058*
C130.1811 (3)0.2980 (3)0.6430 (2)0.0394 (10)
C140.0921 (3)0.2848 (3)0.6432 (2)0.0459 (11)
H140.06480.26530.68480.055*
C150.0454 (3)0.3007 (3)0.5821 (2)0.0486 (12)
H150.01340.29070.58160.058*
C160.0877 (3)0.3324 (3)0.5202 (2)0.0417 (11)
H160.05540.34360.47920.050*
C170.2179 (3)0.3287 (2)0.5782 (2)0.0324 (9)
C180.3083 (3)0.3418 (3)0.57286 (19)0.0323 (9)
C190.2874 (3)0.5825 (3)0.5464 (2)0.0400 (10)
C200.1433 (3)0.5936 (3)0.5180 (2)0.0526 (12)
H20A0.10180.55560.49320.063*
H20B0.12600.65720.51420.063*
C210.1525 (3)0.5647 (3)0.5963 (3)0.0528 (12)
H21A0.11960.60440.62770.063*
H21B0.13430.50190.60330.063*
C220.2507 (3)0.6290 (3)0.4228 (2)0.0554 (12)
H22A0.24150.69340.42960.066*
H22B0.21520.60730.38430.066*
H22C0.30980.61830.41120.066*
C230.2837 (3)0.5516 (3)0.6760 (2)0.0618 (15)
H23A0.27340.48830.68690.074*
H23B0.26070.58920.71360.074*
H23C0.34420.56210.67210.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0273 (3)0.0421 (3)0.0270 (2)0.0001 (2)0.0005 (2)0.0016 (2)
O10.0385 (17)0.0466 (17)0.0397 (15)0.0005 (14)0.0093 (13)0.0014 (14)
O20.048 (2)0.049 (2)0.0492 (19)0.0075 (16)0.0027 (14)0.0014 (15)
O30.0321 (16)0.0415 (15)0.0342 (14)0.0000 (13)0.0061 (12)0.0016 (14)
O40.0398 (17)0.0527 (19)0.0358 (15)0.0101 (14)0.0112 (13)0.0074 (14)
O50.054 (2)0.0447 (19)0.0387 (16)0.0043 (15)0.0034 (14)0.0004 (14)
O60.0372 (19)0.064 (2)0.062 (2)0.0037 (16)0.0009 (15)0.0073 (16)
N10.0288 (19)0.0338 (19)0.0345 (18)0.0003 (14)0.0025 (14)0.0018 (15)
N20.031 (2)0.037 (2)0.0317 (18)0.0033 (15)0.0017 (15)0.0043 (15)
N30.047 (2)0.057 (2)0.0432 (19)0.004 (2)0.0001 (19)0.0054 (17)
N40.039 (2)0.047 (2)0.0373 (18)0.0009 (16)0.0022 (15)0.0010 (17)
C10.030 (2)0.043 (3)0.027 (2)0.0016 (19)0.0059 (16)0.0017 (19)
C20.027 (2)0.052 (3)0.028 (2)0.0020 (19)0.0009 (16)0.0091 (19)
C30.041 (3)0.047 (3)0.043 (2)0.001 (2)0.006 (2)0.004 (2)
C40.050 (3)0.040 (3)0.040 (2)0.006 (2)0.008 (2)0.002 (2)
C50.030 (2)0.048 (3)0.028 (2)0.0077 (19)0.0003 (17)0.0025 (19)
C60.027 (2)0.050 (3)0.024 (2)0.001 (2)0.0043 (16)0.0016 (19)
C70.033 (2)0.055 (3)0.041 (2)0.002 (2)0.0002 (18)0.004 (2)
C80.031 (2)0.064 (3)0.055 (3)0.004 (2)0.003 (2)0.007 (3)
C90.048 (3)0.049 (3)0.045 (3)0.009 (2)0.014 (2)0.004 (2)
C100.046 (3)0.034 (2)0.035 (2)0.008 (2)0.005 (2)0.0051 (19)
C110.070 (3)0.038 (3)0.035 (2)0.006 (2)0.006 (2)0.002 (2)
C120.067 (4)0.044 (3)0.033 (2)0.002 (2)0.009 (2)0.004 (2)
C130.056 (3)0.029 (2)0.033 (2)0.006 (2)0.010 (2)0.0004 (18)
C140.053 (3)0.036 (2)0.049 (3)0.008 (2)0.024 (2)0.002 (2)
C150.038 (3)0.049 (3)0.059 (3)0.009 (2)0.015 (2)0.010 (2)
C160.034 (3)0.050 (3)0.041 (2)0.004 (2)0.0025 (19)0.003 (2)
C170.038 (2)0.023 (2)0.036 (2)0.0011 (16)0.0038 (17)0.0009 (17)
C180.036 (2)0.031 (2)0.030 (2)0.0029 (17)0.0019 (18)0.0036 (18)
C190.043 (3)0.028 (2)0.048 (3)0.0004 (18)0.003 (2)0.0043 (19)
C200.039 (3)0.052 (3)0.067 (3)0.009 (2)0.002 (2)0.016 (2)
C210.049 (3)0.045 (3)0.064 (3)0.004 (2)0.013 (2)0.009 (2)
C220.065 (3)0.048 (3)0.053 (3)0.004 (3)0.000 (3)0.003 (2)
C230.088 (4)0.051 (3)0.046 (3)0.004 (3)0.007 (3)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O4i1.929 (3)C7—H70.9300
Cu1—O11.939 (3)C8—C91.371 (6)
Cu1—N12.024 (3)C8—H80.9300
Cu1—N22.025 (3)C9—C101.394 (6)
Cu1—N42.829 (3)C9—H90.9300
O1—C11.292 (5)C10—C181.400 (5)
O2—C11.214 (5)C10—C111.448 (6)
O3—C51.380 (4)C11—C121.349 (6)
O3—C21.380 (5)C11—H110.9300
O4—C61.284 (5)C12—C131.431 (6)
O4—Cu1ii1.929 (3)C12—H120.9300
O5—C61.228 (5)C13—C141.402 (6)
O6—C191.213 (5)C13—C171.410 (5)
N1—C71.321 (5)C14—C151.371 (6)
N1—C181.366 (5)C14—H140.9300
N2—C161.323 (5)C15—C161.405 (6)
N2—C171.369 (5)C15—H150.9300
N3—C191.360 (5)C16—H160.9300
N3—C211.438 (5)C17—C181.428 (6)
N3—C231.443 (5)C20—C211.524 (6)
N4—C191.403 (5)C20—H20A0.9700
N4—C201.457 (5)C20—H20B0.9700
N4—C221.467 (5)C21—H21A0.9700
C1—C21.483 (5)C21—H21B0.9700
C2—C31.360 (6)C22—H22A0.9600
C3—C41.428 (5)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
C4—C51.363 (6)C23—H23A0.9600
C4—H40.9300C23—H23B0.9600
C5—C61.479 (5)C23—H23C0.9600
C7—C81.412 (6)
O4i—Cu1—O191.66 (12)C9—C10—C18117.6 (4)
O4i—Cu1—N193.94 (12)C9—C10—C11124.2 (4)
O1—Cu1—N1169.56 (12)C18—C10—C11118.1 (4)
O4i—Cu1—N2174.20 (13)C12—C11—C10121.5 (4)
O1—Cu1—N293.14 (12)C12—C11—H11119.3
N1—Cu1—N281.83 (13)C10—C11—H11119.3
O4i—Cu1—N491.21 (11)C11—C12—C13121.2 (4)
O1—Cu1—N481.19 (11)C11—C12—H12119.4
N1—Cu1—N489.88 (11)C13—C12—H12119.4
N2—Cu1—N492.75 (11)C14—C13—C17116.7 (4)
C1—O1—Cu1120.1 (3)C14—C13—C12124.8 (4)
C5—O3—C2107.0 (3)C17—C13—C12118.5 (4)
C6—O4—Cu1ii119.8 (3)C15—C14—C13120.1 (4)
C7—N1—C18117.9 (3)C15—C14—H14119.9
C7—N1—Cu1129.6 (3)C13—C14—H14119.9
C18—N1—Cu1112.4 (3)C14—C15—C16119.1 (4)
C16—N2—C17117.7 (4)C14—C15—H15120.5
C16—N2—Cu1129.9 (3)C16—C15—H15120.5
C17—N2—Cu1112.4 (3)N2—C16—C15123.1 (4)
C19—N3—C21111.8 (4)N2—C16—H16118.5
C19—N3—C23122.3 (4)C15—C16—H16118.5
C21—N3—C23123.4 (4)N2—C17—C13123.3 (4)
C19—N4—C20108.2 (3)N2—C17—C18116.4 (4)
C19—N4—C22118.4 (4)C13—C17—C18120.4 (4)
C20—N4—C22117.1 (4)N1—C18—C10123.0 (4)
C19—N4—Cu1103.4 (2)N1—C18—C17116.8 (3)
C20—N4—Cu1109.3 (3)C10—C18—C17120.2 (4)
C22—N4—Cu198.7 (2)O6—C19—N3126.3 (4)
O2—C1—O1125.9 (4)O6—C19—N4125.4 (4)
O2—C1—C2122.0 (4)N3—C19—N4108.4 (4)
O1—C1—C2112.1 (4)N4—C20—C21103.2 (4)
C3—C2—O3109.9 (4)N4—C20—H20A111.1
C3—C2—C1132.9 (4)C21—C20—H20A111.1
O3—C2—C1117.2 (4)N4—C20—H20B111.1
C2—C3—C4106.5 (4)C21—C20—H20B111.1
C2—C3—H3126.7H20A—C20—H20B109.1
C4—C3—H3126.7N3—C21—C20102.7 (4)
C5—C4—C3107.2 (4)N3—C21—H21A111.2
C5—C4—H4126.4C20—C21—H21A111.2
C3—C4—H4126.4N3—C21—H21B111.2
C4—C5—O3109.3 (3)C20—C21—H21B111.2
C4—C5—C6132.6 (4)H21A—C21—H21B109.1
O3—C5—C6118.0 (4)N4—C22—H22A109.5
O5—C6—O4126.3 (4)N4—C22—H22B109.5
O5—C6—C5121.3 (4)H22A—C22—H22B109.5
O4—C6—C5112.4 (4)N4—C22—H22C109.5
N1—C7—C8122.7 (4)H22A—C22—H22C109.5
N1—C7—H7118.7H22B—C22—H22C109.5
C8—C7—H7118.7N3—C23—H23A109.5
C9—C8—C7118.9 (4)N3—C23—H23B109.5
C9—C8—H8120.5H23A—C23—H23B109.5
C7—C8—H8120.5N3—C23—H23C109.5
C8—C9—C10119.8 (4)H23A—C23—H23C109.5
C8—C9—H9120.1H23B—C23—H23C109.5
C10—C9—H9120.1
O4i—Cu1—O1—C193.0 (3)Cu1—N1—C7—C8178.5 (3)
N1—Cu1—O1—C1144.6 (6)N1—C7—C8—C93.5 (7)
N2—Cu1—O1—C183.8 (3)C7—C8—C9—C100.6 (7)
N4—Cu1—O1—C1176.1 (3)C8—C9—C10—C182.2 (6)
O4i—Cu1—N1—C72.9 (4)C8—C9—C10—C11176.6 (4)
O1—Cu1—N1—C7119.4 (7)C9—C10—C11—C12179.3 (4)
N2—Cu1—N1—C7178.9 (4)C18—C10—C11—C122.0 (6)
N4—Cu1—N1—C788.3 (4)C10—C11—C12—C131.4 (7)
O4i—Cu1—N1—C18178.8 (3)C11—C12—C13—C14176.9 (4)
O1—Cu1—N1—C1858.9 (8)C11—C12—C13—C173.1 (6)
N2—Cu1—N1—C182.8 (3)C17—C13—C14—C150.7 (6)
N4—Cu1—N1—C1890.0 (3)C12—C13—C14—C15179.3 (4)
O1—Cu1—N2—C1610.7 (4)C13—C14—C15—C161.6 (6)
N1—Cu1—N2—C16178.5 (4)C17—N2—C16—C151.1 (6)
N4—Cu1—N2—C1692.0 (4)Cu1—N2—C16—C15176.3 (3)
O1—Cu1—N2—C17166.8 (3)C14—C15—C16—N20.7 (7)
N1—Cu1—N2—C174.0 (3)C16—N2—C17—C132.0 (6)
N4—Cu1—N2—C1785.5 (3)Cu1—N2—C17—C13175.8 (3)
O4i—Cu1—N4—C1997.5 (3)C16—N2—C17—C18177.6 (4)
O1—Cu1—N4—C19171.0 (3)Cu1—N2—C17—C184.5 (4)
N1—Cu1—N4—C193.6 (3)C14—C13—C17—N21.1 (6)
N2—Cu1—N4—C1978.3 (3)C12—C13—C17—N2178.9 (3)
O4i—Cu1—N4—C20147.4 (3)C14—C13—C17—C18178.5 (4)
O1—Cu1—N4—C2055.9 (3)C12—C13—C17—C181.5 (6)
N1—Cu1—N4—C20118.6 (3)C7—N1—C18—C100.2 (6)
N2—Cu1—N4—C2036.8 (3)Cu1—N1—C18—C10178.8 (3)
O4i—Cu1—N4—C2224.6 (3)C7—N1—C18—C17179.7 (4)
O1—Cu1—N4—C2266.9 (3)Cu1—N1—C18—C171.2 (4)
N1—Cu1—N4—C22118.5 (3)C9—C10—C18—N12.4 (6)
N2—Cu1—N4—C22159.7 (3)C11—C10—C18—N1176.4 (4)
Cu1—O1—C1—O28.0 (5)C9—C10—C18—C17177.6 (4)
Cu1—O1—C1—C2172.7 (2)C11—C10—C18—C173.6 (6)
C5—O3—C2—C30.4 (4)N2—C17—C18—N12.3 (5)
C5—O3—C2—C1179.2 (3)C13—C17—C18—N1178.1 (3)
O2—C1—C2—C3176.7 (4)N2—C17—C18—C10177.8 (3)
O1—C1—C2—C34.0 (6)C13—C17—C18—C101.9 (6)
O2—C1—C2—O33.8 (5)C21—N3—C19—O6177.5 (4)
O1—C1—C2—O3175.5 (3)C23—N3—C19—O614.8 (7)
O3—C2—C3—C40.2 (5)C21—N3—C19—N41.1 (5)
C1—C2—C3—C4179.3 (4)C23—N3—C19—N4163.8 (4)
C2—C3—C4—C50.0 (5)C20—N4—C19—O6166.9 (4)
C3—C4—C5—O30.3 (5)C22—N4—C19—O630.6 (6)
C3—C4—C5—C6177.4 (4)Cu1—N4—C19—O677.2 (4)
C2—O3—C5—C40.4 (4)C20—N4—C19—N314.4 (4)
C2—O3—C5—C6178.0 (3)C22—N4—C19—N3150.8 (4)
Cu1ii—O4—C6—O53.8 (5)Cu1—N4—C19—N3101.4 (3)
Cu1ii—O4—C6—C5175.0 (2)C19—N4—C20—C2122.9 (4)
C4—C5—C6—O5174.0 (4)C22—N4—C20—C21159.9 (4)
O3—C5—C6—O52.8 (5)Cu1—N4—C20—C2189.0 (3)
C4—C5—C6—O44.8 (6)C19—N3—C21—C2015.0 (5)
O3—C5—C6—O4178.3 (3)C23—N3—C21—C20177.5 (4)
C18—N1—C7—C83.2 (6)N4—C20—C21—N322.3 (4)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C6H2O5)(C12H8N2)(C5H10N2O)]
Mr511.98
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.620 (3), 14.598 (3), 18.616 (4)
V3)4244.8 (15)
Z8
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.900, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
30193, 3727, 2376
Rint0.110
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.109, 1.04
No. of reflections3727
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.37

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X. & Gao, W.-Y. (2012a). Acta Cryst. E68, m445.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, Y.-F., Gao, Y., Xu, Y., Qin, X.-L. & Gao, W.-Y. (2012b). Acta Cryst. E68, m500.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds