metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua-μ-bromido-(μ2-5-methyl­pyrazine-2-carboxyl­ato-κ4N1,O2:O2,O2′)lead(II)]

aTianjin Key Laboratory of Structure and Performance of Functional Molecules, Tianjin Normal University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: qsdingbin@yahoo.com.cn

(Received 22 July 2012; accepted 27 July 2012; online 1 August 2012)

In the title coordination polymer, [PbBr(C6H5N2O2)(H2O)]n, the PbII atom is coordinated by one pyrazine N atom, two bridging Br atoms, a water mol­ecule and three carboxyl­ate O atoms. Bridging by the two anions generates a layer structure parallel to (001); the layers are linked by O—H⋯N and O—H⋯Br hydrogen bonds, forming a three-dimensional network. The lone pair is stereochemically active, resulting in a Ψ-dodeca­hedral coordination environment for PbII.

Related literature

For background, see: Ding et al. (2009[Ding, B., Liu, Y. Y., Zhao, X. J., Yang, E. C. & Wang, X. G. (2009). Cryst. Growth Des. 9, 4176-4180.]).

[Scheme 1]

Experimental

Crystal data
  • [PbBr(C6H5N2O2)(H2O)]

  • Mr = 442.24

  • Monoclinic, P 21 /c

  • a = 7.5493 (10) Å

  • b = 6.6775 (9) Å

  • c = 19.335 (3) Å

  • β = 92.884 (2)°

  • V = 973.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 21.41 mm−1

  • T = 296 K

  • 0.15 × 0.14 × 0.13 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.142, Tmax = 0.167

  • 5123 measured reflections

  • 1904 independent reflections

  • 1747 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.05

  • 1904 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 2.26 e Å−3

  • Δρmin = −2.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2i 0.85 1.97 2.816 (9) 173
O3—H3B⋯Br1ii 0.85 2.56 3.378 (6) 161
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010)[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.].

Supporting information


Related literature top

For background, see: Ding et al. (2009).

Experimental top

Lead(II) bromide (73.4 mg, 0.2 mmol), 5-pyrazine-2-carboxylic acid (27.6 mg, 0.2 mmol) and water (15 ml) were sealed in a 25 ml Teflon-lined steel vessel. The mixture was heated heated to 393 K for 5 days . The autoclave was cooled to room temperature at a rate of 10 K h-1. Yellow block-shaped crystals were obtained in 60% yield based on Pb.

Refinement top

H atoms were placed in calculated positions as riding atoms attached to non-riding atoms with O—H es of 0.85 Å and C–H 0.93 to 0.96 Å, and with Uiso(H) = 1.2 to 1.5Ueq(O,C). The final difference Fourier map had a peak in the vicinity of Pb and a hole in the vicinty of the same atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP plot of a portion of the polymeric structure drawn at 30% probability displacement ellipsoids. Symmetry codes: i: -x + 1, y - 1/2, -z + 3/2; ii: -x, y - 1/2, -z + 3/2.
[Figure 2] Fig. 2. Layer structures.
[Figure 3] Fig. 3. Three-dimensional supramolecular structure. Dashed lines represent O—H···N and weak O—H···Br hydrogen bonds.
[Figure 4] Fig. 4. Ψ-Dodecahedral geometry of lead(II).
Poly[aqua-µ-bromido-(µ2-5-methylpyrazine-2-carboxylato- κ4N1,O2:O2,O2')lead(II)] top
Crystal data top
[PbBr(C6H5N2O2)(H2O)]F(000) = 792
Mr = 442.24Dx = 3.018 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3510 reflections
a = 7.5493 (10) Åθ = 3.3–28.2°
b = 6.6775 (9) ŵ = 21.41 mm1
c = 19.335 (3) ÅT = 296 K
β = 92.884 (2)°Block, colourless
V = 973.5 (2) Å30.15 × 0.14 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1904 independent reflections
Radiation source: fine-focus sealed tube1747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 95
Tmin = 0.142, Tmax = 0.167k = 88
5123 measured reflectionsl = 2322
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.032
S = 1.05Δρmax = 2.26 e Å3
1904 reflectionsΔρmin = 2.20 e Å3
120 parameters
Crystal data top
[PbBr(C6H5N2O2)(H2O)]V = 973.5 (2) Å3
Mr = 442.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5493 (10) ŵ = 21.41 mm1
b = 6.6775 (9) ÅT = 296 K
c = 19.335 (3) Å0.15 × 0.14 × 0.13 mm
β = 92.884 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1747 reflections with I > 2σ(I)
Tmin = 0.142, Tmax = 0.167Rint = 0.039
5123 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 2.26 e Å3
1904 reflectionsΔρmin = 2.20 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.29327 (3)0.20899 (3)0.782606 (12)0.02328 (17)
Br10.00888 (10)0.08548 (11)0.80760 (4)0.0386 (2)
O10.5113 (7)0.0867 (8)0.7933 (3)0.0351 (12)
O20.4664 (8)0.0254 (8)0.8984 (3)0.0427 (13)
O30.2211 (10)0.5006 (9)0.8682 (3)0.067 (2)
H3A0.24810.49630.91140.100*
H3B0.18280.61890.86080.100*
N10.6818 (7)0.4165 (8)0.8455 (3)0.0274 (12)
N20.7181 (8)0.4728 (9)0.9872 (3)0.0322 (13)
C10.6189 (9)0.2822 (9)0.8890 (4)0.0245 (15)
C20.6373 (10)0.3105 (10)0.9598 (4)0.0302 (16)
H20.59250.21460.98910.036*
C30.7783 (9)0.6113 (9)0.9431 (4)0.0298 (15)
C40.7588 (9)0.5805 (9)0.8721 (4)0.0285 (15)
H40.80060.67710.84230.034*
C50.5250 (9)0.0994 (10)0.8587 (4)0.0280 (15)
C60.8627 (14)0.7958 (11)0.9749 (6)0.049 (2)
H6A0.78590.85171.00790.073*
H6B0.88180.89240.93920.073*
H6C0.97430.76090.99770.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.0230 (2)0.0234 (2)0.0233 (2)0.00092 (7)0.00028 (12)0.00041 (8)
Br10.0362 (4)0.0338 (4)0.0451 (5)0.0095 (3)0.0054 (3)0.0001 (3)
O10.036 (3)0.042 (3)0.027 (3)0.017 (2)0.005 (2)0.004 (2)
O20.056 (4)0.038 (3)0.034 (3)0.015 (2)0.002 (2)0.009 (2)
O30.119 (7)0.049 (4)0.031 (3)0.039 (4)0.019 (3)0.008 (3)
N10.028 (3)0.026 (3)0.028 (3)0.001 (2)0.001 (2)0.002 (2)
N20.040 (4)0.030 (3)0.026 (3)0.004 (2)0.001 (2)0.005 (2)
C10.021 (3)0.026 (4)0.027 (4)0.000 (2)0.002 (3)0.000 (3)
C20.031 (4)0.031 (4)0.029 (4)0.001 (3)0.003 (3)0.001 (3)
C30.030 (4)0.024 (3)0.035 (4)0.000 (3)0.003 (3)0.003 (3)
C40.031 (4)0.023 (3)0.031 (4)0.002 (3)0.001 (3)0.001 (3)
C50.025 (3)0.030 (3)0.029 (4)0.006 (3)0.003 (3)0.003 (3)
C60.059 (6)0.033 (5)0.055 (6)0.011 (3)0.004 (5)0.008 (4)
Geometric parameters (Å, º) top
Pb1—O1i2.531 (5)N1—C11.334 (8)
Pb1—O12.572 (5)N1—Pb1iv2.631 (5)
Pb1—N1i2.631 (6)N2—C21.340 (9)
Pb1—O32.631 (6)N2—C31.353 (9)
Pb1—Br12.9688 (8)C1—C21.381 (11)
Pb1—Br1ii3.1190 (9)C1—C51.514 (9)
Br1—Pb1iii3.1190 (9)C2—H20.9300
O1—C51.268 (8)C3—C41.388 (10)
O1—Pb1iv2.531 (5)C3—C61.504 (10)
O2—C51.230 (8)C4—H40.9300
O3—H3A0.8501C6—H6A0.9600
O3—H3B0.8510C6—H6B0.9600
N1—C41.331 (9)C6—H6C0.9600
O1i—Pb1—O194.06 (8)C1—N1—Pb1iv115.1 (4)
O1i—Pb1—N1i63.56 (16)C2—N2—C3117.6 (6)
O1—Pb1—N1i75.81 (17)N1—C1—C2120.8 (6)
O1i—Pb1—O396.4 (2)N1—C1—C5118.2 (6)
O1—Pb1—O3132.06 (18)C2—C1—C5121.0 (6)
N1i—Pb1—O3148.79 (18)N2—C2—C1121.6 (6)
O1i—Pb1—Br1153.98 (12)N2—C2—H2119.2
O1—Pb1—Br186.76 (12)C1—C2—H2119.2
N1i—Pb1—Br191.65 (12)N2—C3—C4120.0 (6)
O3—Pb1—Br1102.33 (18)N2—C3—C6116.8 (7)
O1i—Pb1—Br1ii82.54 (13)C4—C3—C6123.2 (7)
O1—Pb1—Br1ii146.05 (12)N1—C4—C3121.8 (6)
N1i—Pb1—Br1ii72.46 (13)N1—C4—H4119.1
O3—Pb1—Br1ii81.80 (15)C3—C4—H4119.1
Br1—Pb1—Br1ii82.410 (17)O2—C5—O1124.3 (6)
Pb1—Br1—Pb1iii135.64 (3)O2—C5—C1118.7 (6)
C5—O1—Pb1iv121.4 (4)O1—C5—C1117.0 (5)
C5—O1—Pb198.7 (4)C3—C6—H6A109.5
Pb1iv—O1—Pb1139.2 (2)C3—C6—H6B109.5
Pb1—O3—H3A123.1H6A—C6—H6B109.5
Pb1—O3—H3B131.3C3—C6—H6C109.5
H3A—O3—H3B105.1H6A—C6—H6C109.5
C4—N1—C1118.2 (6)H6B—C6—H6C109.5
C4—N1—Pb1iv125.1 (4)
O1i—Pb1—Br1—Pb1iii13.5 (3)Pb1iv—N1—C1—C515.9 (7)
O1—Pb1—Br1—Pb1iii106.16 (12)C3—N2—C2—C11.4 (10)
N1i—Pb1—Br1—Pb1iii30.47 (13)N1—C1—C2—N20.1 (11)
O3—Pb1—Br1—Pb1iii121.43 (15)C5—C1—C2—N2179.1 (6)
Br1ii—Pb1—Br1—Pb1iii41.59 (4)C2—N2—C3—C41.4 (10)
O1i—Pb1—O1—C5126.3 (4)C2—N2—C3—C6177.8 (7)
N1i—Pb1—O1—C5172.3 (4)C1—N1—C4—C31.6 (10)
O3—Pb1—O1—C523.9 (5)Pb1iv—N1—C4—C3163.3 (5)
Br1—Pb1—O1—C579.8 (4)N2—C3—C4—N10.1 (10)
Br1ii—Pb1—O1—C5151.1 (3)C6—C3—C4—N1179.3 (7)
O1i—Pb1—O1—Pb1iv43.5 (3)Pb1iv—O1—C5—O2162.2 (6)
N1i—Pb1—O1—Pb1iv17.9 (3)Pb1—O1—C5—O210.0 (8)
O3—Pb1—O1—Pb1iv145.9 (4)Pb1iv—O1—C5—C118.3 (8)
Br1—Pb1—O1—Pb1iv110.4 (3)Pb1—O1—C5—C1169.5 (5)
Br1ii—Pb1—O1—Pb1iv39.1 (5)N1—C1—C5—O2179.9 (6)
C4—N1—C1—C21.5 (9)C2—C1—C5—O20.7 (10)
Pb1iv—N1—C1—C2164.8 (5)N1—C1—C5—O10.4 (9)
C4—N1—C1—C5177.7 (6)C2—C1—C5—O1178.8 (6)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y1/2, z+3/2; (iii) x, y+1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2v0.851.972.816 (9)173
O3—H3B···Br1vi0.852.563.378 (6)161
Symmetry codes: (v) x+1, y, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[PbBr(C6H5N2O2)(H2O)]
Mr442.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.5493 (10), 6.6775 (9), 19.335 (3)
β (°) 92.884 (2)
V3)973.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)21.41
Crystal size (mm)0.15 × 0.14 × 0.13
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.142, 0.167
No. of measured, independent and
observed [I > 2σ(I)] reflections
5123, 1904, 1747
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.05
No. of reflections1904
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.26, 2.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N2i0.851.972.816 (9)173.1
O3—H3B···Br1ii0.852.563.378 (6)161.3
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z.
 

Acknowledgements

This present work was supported by the Tianjin Educational Committee (20090504) and Tianjin Normal University (1E0402B).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, B., Liu, Y. Y., Zhao, X. J., Yang, E. C. & Wang, X. G. (2009). Cryst. Growth Des. 9, 4176–4180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds