organic compounds
2,6-Diacetylpyridine–resorcinol (1/1)
aInstitut für Organische Chemie und Chemische Biologie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany, and bInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de
The title 9H9NO2·C6H6O2, is composed of one 2,6-diacetylpyridine molecule and one resorcinol molecule as the In the 2,6-diacetylpyridine molecule, the two carbonyl groups are antiperiplanar to the pyridine N atom. In the crystal, the 2,6-diacetylpyridine and resorcinol molecules are connected by two O—H⋯O hydrogen bonds, forming planar chains of alternating components running along [120].
CRelated literature
For background to 2,6-diacetylpyridine and resorcinol, see: Bacon & Lisher (1980); MacGillivray et al. (2000); Boldog et al. (2004); Matsumoto et al. (2006); Anwar et al. (2007); Friščić & MacGillivray (2009).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812035131/ng5287sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035131/ng5287Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812035131/ng5287Isup3.cml
The starting compounds 2,6-diacetylpyridine and resorcinol were purchased from Aldrich and Alfa Aesar which were used for co-crystallization experiments without purification. The starting compounds were dissolved in a 1:1 molecular ratio in ether and setlaid aside at room temperature. After several weeks adequate single crystals were obtained.
All H atoms were refined using a riding model with fixed individual displacements parameters [Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(Cmethyl, O)] with Caromatic—H = 0.95 Å, Cmethyl = 0.98 Å, and O—H = 0.84 Å. The methyl and hydroxyl groups were allowed to rotate but not to tip.
Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C9H9NO2·C6H6O2 | Z = 2 |
Mr = 273.28 | F(000) = 288 |
Triclinic, P1 | Dx = 1.315 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.346 (2) Å | Cell parameters from 9113 reflections |
b = 7.866 (2) Å | θ = 3.8–25.6° |
c = 12.342 (3) Å | µ = 0.10 mm−1 |
α = 101.61 (3)° | T = 173 K |
β = 90.51 (3)° | Block, colourless |
γ = 98.72 (3)° | 0.30 × 0.30 × 0.23 mm |
V = 689.9 (3) Å3 |
Stoe IPDS II two-circle diffractometer | 1605 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.094 |
Graphite monochromator | θmax = 25.4°, θmin = 3.2° |
ω scans | h = −8→8 |
9113 measured reflections | k = −9→9 |
2515 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 0.93 | w = 1/[σ2(Fo2) + (0.0671P)2] where P = (Fo2 + 2Fc2)/3 |
2515 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C9H9NO2·C6H6O2 | γ = 98.72 (3)° |
Mr = 273.28 | V = 689.9 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.346 (2) Å | Mo Kα radiation |
b = 7.866 (2) Å | µ = 0.10 mm−1 |
c = 12.342 (3) Å | T = 173 K |
α = 101.61 (3)° | 0.30 × 0.30 × 0.23 mm |
β = 90.51 (3)° |
Stoe IPDS II two-circle diffractometer | 1605 reflections with I > 2σ(I) |
9113 measured reflections | Rint = 0.094 |
2515 independent reflections |
R[F2 > 2σ(F2)] = 0.050 | 0 restraints |
wR(F2) = 0.130 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.19 e Å−3 |
2515 reflections | Δρmin = −0.27 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2051 (2) | 0.1792 (2) | 0.23716 (14) | 0.0241 (4) | |
O1 | 0.0057 (2) | −0.2404 (2) | 0.27810 (15) | 0.0442 (5) | |
O2 | 0.4266 (2) | 0.6213 (2) | 0.27795 (14) | 0.0421 (5) | |
C1 | 0.2841 (2) | 0.3381 (3) | 0.29483 (18) | 0.0244 (5) | |
C2 | 0.3093 (3) | 0.3761 (3) | 0.40993 (19) | 0.0290 (5) | |
H2 | 0.3624 | 0.4906 | 0.4478 | 0.035* | |
C3 | 0.2559 (3) | 0.2451 (3) | 0.46820 (19) | 0.0323 (5) | |
H3 | 0.2723 | 0.2674 | 0.5465 | 0.039* | |
C4 | 0.1779 (3) | 0.0805 (3) | 0.40953 (19) | 0.0304 (5) | |
H4 | 0.1426 | −0.0131 | 0.4469 | 0.036* | |
C5 | 0.1518 (2) | 0.0537 (3) | 0.29475 (18) | 0.0243 (5) | |
C6 | 0.0608 (3) | −0.1218 (3) | 0.22941 (19) | 0.0283 (5) | |
C7 | 0.0371 (3) | −0.1447 (3) | 0.1066 (2) | 0.0385 (6) | |
H7A | 0.0046 | −0.2700 | 0.0734 | 0.058* | |
H7B | 0.1526 | −0.0971 | 0.0767 | 0.058* | |
H7C | −0.0614 | −0.0821 | 0.0892 | 0.058* | |
C8 | 0.3460 (3) | 0.4780 (3) | 0.22922 (19) | 0.0277 (5) | |
C9 | 0.3053 (3) | 0.4348 (3) | 0.1071 (2) | 0.0371 (6) | |
H9A | 0.3542 | 0.5361 | 0.0752 | 0.056* | |
H9B | 0.1717 | 0.4063 | 0.0924 | 0.056* | |
H9C | 0.3634 | 0.3336 | 0.0735 | 0.056* | |
O3 | 0.5190 (2) | 0.8749 (2) | 0.15119 (15) | 0.0440 (5) | |
HO3 | 0.4909 | 0.8049 | 0.1937 | 0.066* | |
O4 | 0.8147 (2) | 1.4495 (2) | 0.14755 (14) | 0.0437 (5) | |
HO4 | 0.8697 | 1.5413 | 0.1891 | 0.066* | |
C11 | 0.6121 (3) | 1.0305 (3) | 0.2107 (2) | 0.0292 (5) | |
C12 | 0.6507 (3) | 1.0573 (3) | 0.3241 (2) | 0.0335 (6) | |
H12 | 0.6119 | 0.9671 | 0.3635 | 0.040* | |
C13 | 0.7473 (3) | 1.2191 (3) | 0.3788 (2) | 0.0345 (6) | |
H13 | 0.7743 | 1.2385 | 0.4561 | 0.041* | |
C14 | 0.8046 (3) | 1.3522 (3) | 0.3220 (2) | 0.0331 (6) | |
H14 | 0.8705 | 1.4616 | 0.3600 | 0.040* | |
C15 | 0.7642 (3) | 1.3232 (3) | 0.2090 (2) | 0.0301 (5) | |
C16 | 0.6671 (3) | 1.1633 (3) | 0.1528 (2) | 0.0331 (5) | |
H16 | 0.6386 | 1.1448 | 0.0757 | 0.040* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0187 (8) | 0.0236 (10) | 0.0286 (10) | −0.0016 (7) | 0.0019 (7) | 0.0060 (8) |
O1 | 0.0515 (10) | 0.0298 (9) | 0.0484 (11) | −0.0118 (8) | 0.0009 (8) | 0.0150 (8) |
O2 | 0.0482 (9) | 0.0262 (9) | 0.0464 (11) | −0.0139 (7) | −0.0057 (8) | 0.0094 (8) |
C1 | 0.0179 (9) | 0.0252 (11) | 0.0290 (13) | −0.0012 (8) | 0.0001 (8) | 0.0063 (9) |
C2 | 0.0250 (10) | 0.0265 (12) | 0.0322 (13) | −0.0015 (9) | −0.0039 (9) | 0.0028 (10) |
C3 | 0.0317 (11) | 0.0377 (13) | 0.0260 (13) | 0.0021 (10) | −0.0004 (9) | 0.0057 (10) |
C4 | 0.0265 (11) | 0.0329 (12) | 0.0337 (14) | 0.0004 (9) | 0.0051 (9) | 0.0144 (11) |
C5 | 0.0196 (10) | 0.0227 (11) | 0.0308 (13) | 0.0002 (8) | 0.0039 (9) | 0.0084 (9) |
C6 | 0.0219 (10) | 0.0249 (12) | 0.0379 (14) | −0.0007 (8) | 0.0021 (9) | 0.0092 (10) |
C7 | 0.0447 (13) | 0.0281 (12) | 0.0378 (15) | −0.0061 (10) | −0.0035 (11) | 0.0041 (11) |
C8 | 0.0224 (10) | 0.0230 (11) | 0.0372 (14) | −0.0009 (8) | 0.0005 (9) | 0.0083 (10) |
C9 | 0.0431 (13) | 0.0334 (13) | 0.0348 (14) | −0.0040 (10) | 0.0023 (11) | 0.0147 (11) |
O3 | 0.0492 (10) | 0.0281 (9) | 0.0507 (11) | −0.0123 (7) | −0.0084 (8) | 0.0123 (8) |
O4 | 0.0503 (10) | 0.0290 (9) | 0.0481 (11) | −0.0114 (8) | 0.0098 (8) | 0.0121 (8) |
C11 | 0.0219 (10) | 0.0217 (11) | 0.0431 (15) | −0.0028 (8) | 0.0019 (9) | 0.0085 (10) |
C12 | 0.0302 (11) | 0.0306 (13) | 0.0442 (16) | 0.0046 (9) | 0.0037 (10) | 0.0180 (11) |
C13 | 0.0319 (12) | 0.0353 (13) | 0.0367 (14) | 0.0066 (10) | −0.0023 (10) | 0.0077 (11) |
C14 | 0.0267 (11) | 0.0250 (12) | 0.0454 (16) | 0.0010 (9) | −0.0005 (10) | 0.0043 (11) |
C15 | 0.0230 (10) | 0.0234 (11) | 0.0446 (15) | −0.0008 (8) | 0.0091 (10) | 0.0114 (10) |
C16 | 0.0303 (11) | 0.0321 (13) | 0.0367 (14) | 0.0011 (9) | 0.0052 (10) | 0.0095 (11) |
N1—C5 | 1.343 (2) | C9—H9A | 0.9800 |
N1—C1 | 1.349 (3) | C9—H9B | 0.9800 |
O1—C6 | 1.229 (2) | C9—H9C | 0.9800 |
O2—C8 | 1.226 (3) | O3—C11 | 1.371 (3) |
C1—C2 | 1.396 (3) | O3—HO3 | 0.8400 |
C1—C8 | 1.512 (3) | O4—C15 | 1.377 (2) |
C2—C3 | 1.383 (3) | O4—HO4 | 0.8400 |
C2—H2 | 0.9500 | C11—C12 | 1.392 (3) |
C3—C4 | 1.385 (3) | C11—C16 | 1.393 (3) |
C3—H3 | 0.9500 | C12—C13 | 1.397 (3) |
C4—C5 | 1.397 (3) | C12—H12 | 0.9500 |
C4—H4 | 0.9500 | C13—C14 | 1.390 (3) |
C5—C6 | 1.505 (3) | C13—H13 | 0.9500 |
C6—C7 | 1.496 (3) | C14—C15 | 1.389 (3) |
C7—H7A | 0.9800 | C14—H14 | 0.9500 |
C7—H7B | 0.9800 | C15—C16 | 1.393 (3) |
C7—H7C | 0.9800 | C16—H16 | 0.9500 |
C8—C9 | 1.494 (3) | ||
C5—N1—C1 | 117.35 (18) | C9—C8—C1 | 118.19 (19) |
N1—C1—C2 | 122.87 (19) | C8—C9—H9A | 109.5 |
N1—C1—C8 | 117.01 (19) | C8—C9—H9B | 109.5 |
C2—C1—C8 | 120.12 (19) | H9A—C9—H9B | 109.5 |
C3—C2—C1 | 119.2 (2) | C8—C9—H9C | 109.5 |
C3—C2—H2 | 120.4 | H9A—C9—H9C | 109.5 |
C1—C2—H2 | 120.4 | H9B—C9—H9C | 109.5 |
C2—C3—C4 | 118.4 (2) | C11—O3—HO3 | 109.5 |
C2—C3—H3 | 120.8 | C15—O4—HO4 | 109.5 |
C4—C3—H3 | 120.8 | O3—C11—C12 | 122.26 (19) |
C3—C4—C5 | 119.18 (19) | O3—C11—C16 | 117.1 (2) |
C3—C4—H4 | 120.4 | C12—C11—C16 | 120.7 (2) |
C5—C4—H4 | 120.4 | C11—C12—C13 | 118.9 (2) |
N1—C5—C4 | 122.97 (19) | C11—C12—H12 | 120.6 |
N1—C5—C6 | 116.70 (19) | C13—C12—H12 | 120.6 |
C4—C5—C6 | 120.33 (18) | C14—C13—C12 | 121.1 (2) |
O1—C6—C7 | 122.1 (2) | C14—C13—H13 | 119.4 |
O1—C6—C5 | 119.5 (2) | C12—C13—H13 | 119.4 |
C7—C6—C5 | 118.45 (18) | C15—C14—C13 | 119.2 (2) |
C6—C7—H7A | 109.5 | C15—C14—H14 | 120.4 |
C6—C7—H7B | 109.5 | C13—C14—H14 | 120.4 |
H7A—C7—H7B | 109.5 | O4—C15—C14 | 122.4 (2) |
C6—C7—H7C | 109.5 | O4—C15—C16 | 116.9 (2) |
H7A—C7—H7C | 109.5 | C14—C15—C16 | 120.7 (2) |
H7B—C7—H7C | 109.5 | C15—C16—C11 | 119.4 (2) |
O2—C8—C9 | 122.80 (19) | C15—C16—H16 | 120.3 |
O2—C8—C1 | 119.0 (2) | C11—C16—H16 | 120.3 |
C5—N1—C1—C2 | −0.9 (3) | N1—C1—C8—O2 | −176.44 (19) |
C5—N1—C1—C8 | 179.22 (17) | C2—C1—C8—O2 | 3.7 (3) |
N1—C1—C2—C3 | 1.7 (3) | N1—C1—C8—C9 | 3.7 (3) |
C8—C1—C2—C3 | −178.40 (19) | C2—C1—C8—C9 | −176.1 (2) |
C1—C2—C3—C4 | −0.4 (3) | O3—C11—C12—C13 | 179.6 (2) |
C2—C3—C4—C5 | −1.6 (3) | C16—C11—C12—C13 | −0.7 (3) |
C1—N1—C5—C4 | −1.2 (3) | C11—C12—C13—C14 | 0.1 (3) |
C1—N1—C5—C6 | 178.93 (17) | C12—C13—C14—C15 | 0.2 (3) |
C3—C4—C5—N1 | 2.5 (3) | C13—C14—C15—O4 | 179.3 (2) |
C3—C4—C5—C6 | −177.67 (19) | C13—C14—C15—C16 | 0.2 (3) |
N1—C5—C6—O1 | −178.45 (19) | O4—C15—C16—C11 | −179.94 (19) |
C4—C5—C6—O1 | 1.7 (3) | C14—C15—C16—C11 | −0.8 (3) |
N1—C5—C6—C7 | 0.3 (3) | O3—C11—C16—C15 | −179.2 (2) |
C4—C5—C6—C7 | −179.55 (19) | C12—C11—C16—C15 | 1.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—HO3···O2 | 0.84 | 1.95 | 2.784 (2) | 174 |
O4—HO4···O1i | 0.84 | 1.96 | 2.802 (3) | 177 |
Symmetry code: (i) x+1, y+2, z. |
Experimental details
Crystal data | |
Chemical formula | C9H9NO2·C6H6O2 |
Mr | 273.28 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 7.346 (2), 7.866 (2), 12.342 (3) |
α, β, γ (°) | 101.61 (3), 90.51 (3), 98.72 (3) |
V (Å3) | 689.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.30 × 0.23 |
Data collection | |
Diffractometer | Stoe IPDS II two-circle diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9113, 2515, 1605 |
Rint | 0.094 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.130, 0.93 |
No. of reflections | 2515 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.27 |
Computer programs: X-AREA (Stoe & Cie, 2001), X-RED32 (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—HO3···O2 | 0.84 | 1.95 | 2.784 (2) | 173.6 |
O4—HO4···O1i | 0.84 | 1.96 | 2.802 (3) | 176.5 |
Symmetry code: (i) x+1, y+2, z. |
Acknowledgements
We thank Dr Guido Wagner for quantum-mechanical calculations of the relative stability of the 2,6-diacetylpyridine conformations and Professor Dr E. Egert for helpful discussions.
References
Anwar, J., Chatchawalsaisin, J. & Kendrick, J. (2007). Angew. Chem. Int. Ed. Engl. 46, 5537–5540. Web of Science CrossRef PubMed CAS Google Scholar
Bacon, G. E. & Lisher, E. J. (1980). Acta Cryst. B36, 1908–1916. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Boldog, I., Rusanov, E. B., Sieler, J. & Domasevitch, K. V. (2004). New J. Chem. 28, 756–759. Web of Science CSD CrossRef CAS Google Scholar
Friščić, T. & MacGillivray, L. R. (2009). Chem. Commun. pp. 773–775. Google Scholar
MacGillivray, L. R., Reid, J. L. & Ripmeester, J. A. (2000). J. Am. Chem. Soc. 122, 7817–7818. Web of Science CSD CrossRef CAS Google Scholar
Matsumoto, K., Harada, Y., Yamada, N., Kurata, H., Kawese, T. & Oda, M. (2006). Cryst. Growth Des. 6, 1083–1085. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2001). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The co-crystallization process between two components which possess either donor or acceptor hydrogen bond properties in order to obtain the AAA-DDD (A=Acceptor, D= Donor) hydrogen bond pattern containing two strong O—H···O hydrogen bonds and one weak C—H···O hydrogen bond (see Fig. 1, III) was the initial motivation of this research. Therefore, 2,6-diacetylpyridine, I, (CSD REFCODE: BARKAH) and resorcinol, II, (CSD REFCODE: RESORA03) have been chosen for this purpose. Compounds I and II can exist in three possible conformations (Anwar et al., 2007). Considering all possible hydrogen bonds between the two components, forming the complex as mentioned above is the most unfavourable constellation. The calculations of the three molecular conformations of 2,6-diacetylpyridine using quantum-mechanical calculations (Gaussian 03) predict that conformer Ia is the most stable, followed by Ib, and then Ic. The determination of the relative stability of resorcinol using quantum–mechanical density functional theory (DFT) said that conformer IIa is the most stable, followed by IIb, and then IIc. Two out of three conformers of resorcinol have been observed in neutron powder experiments (Bacon & Lisher, 1980). Beyond that all three conformations have been found in diverse multi-component-complexes (Boldog et al. 2004; MacGillivray et al. 2000; Friščić & MacGillivray, 2009; Matsumoto et al., 2006) where resorcinol showed these conformations. Another possibility of building a finite hydrogen bond network between the two components is highlighted as an example (V in Fig. 1), where different conformers are involved. The energy for the conversion of the relative stable conformers Ia and IIb to the least energetically favoured conformational states Ic and IIc is estimated to be approximately 60 kJ/mol. The co-crystal of the title compound (Fig. 2) in the constellation of Ia and IIb adopts a chain motif (IV in Fig. 1) (Fig. 3). The desired complex (III in Fig. 1) was not formed.