organic compounds
2,5-Dibromoindan-1-ol
aDepartment of Physics, Faculty of Sciences, Cumhuriyet University, 58140 Sivas, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 39039 Kayseri, Turkey, cDuzce University, Faculty of Art and Science, Department of Chemistry, TR-81620 Duzce, Turkey, dSakarya University, Faculty of Art and Science, Department of Chemistry, TR-54187 Adapazarı, Turkey, eGaziosmanpasa University, Faculty of Art and Science, Department of Chemistry, TR-60240 Tokat, Turkey, and fDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: icelik@cumhuriyet.edu.tr
In the title compound, C9H8Br2O, the cyclopentene ring adopts an with the brominated C atom as the flap. In the crystal, molecules are linked by strong O—H⋯O hydrogen bonds into zigzag C(4) chains along [010]. In addition, a C—H⋯π interaction involving the benzene ring and the H atom attached to the hydroxylated C atom is observed.
Related literature
For bromination of hydrocarbons, see: Cakmak et al. (2006); Erenler & Cakmak (2004); Erenler et al. (2006). For the pharmacological and medicinal proparties of indanes, see: Mitrochkine et al. (1995); Catto et al. (2010); Wu (2006); McClure et al. (2011) and for their use in natural product chemistry, see: Snyder & Brill (2011). For a similar structure, see: Çelik et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812035829/pk2441sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812035829/pk2441Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812035829/pk2441Isup3.cml
To a stirred solution of tribromide (1.0 g, 2.8 mmol) in THF (10 ml) was added a solution of AgClO4.H2O (0.82 g, 3.64 mmol) in aqueous THF (5 ml THF / 2 ml H2O). The resulting mixture was stirred at room temperature for 6 h. The precipitated AgBr was removed by filtration and then the solution was dried over calcium chloride. After removal of the solvent, the residue was purified by silica gel
Elution with hexane/ethyl acetate (4:1) afforded the 2,5-dibromo-1-hdyroxylindane (0.59 g, 72%).H-atoms were positioned geometrically and refined using a riding model with O—H = 0.82 Å, C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,O).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1997) and PLATON (Spek, 2009).An ORTEP plot of (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. View of the packing and hydrogen bonding of (I), along the a axis. H atoms not involved in hydrogen bonding are omitted for the sake of clarity. |
C9H8Br2O | F(000) = 560 |
Mr = 291.95 | Dx = 2.060 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ybc | Cell parameters from 378 reflections |
a = 9.5137 (10) Å | θ = 4.4–70.4° |
b = 4.8991 (7) Å | µ = 10.50 mm−1 |
c = 20.249 (3) Å | T = 299 K |
β = 94.165 (10)° | Prism, colourless |
V = 941.3 (2) Å3 | 0.17 × 0.01 × 0.01 mm |
Z = 4 |
Agilent Xcalibur Ruby Gemini diffractometer | 1777 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 733 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.0000 |
Detector resolution: 10.2673 pixels mm-1 | θmax = 70.6°, θmin = 4.4° |
ω scans | h = −11→11 |
Absorption correction: part of the (XABS2; Parkin et al., 1995) | model (ΔF) k = 0→5 |
Tmin = 0.882, Tmax = 0.900 | l = 0→24 |
1777 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.082 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.228 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0341P)2] where P = (Fo2 + 2Fc2)/3 |
1777 reflections | (Δ/σ)max < 0.001 |
79 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.78 e Å−3 |
C9H8Br2O | V = 941.3 (2) Å3 |
Mr = 291.95 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 9.5137 (10) Å | µ = 10.50 mm−1 |
b = 4.8991 (7) Å | T = 299 K |
c = 20.249 (3) Å | 0.17 × 0.01 × 0.01 mm |
β = 94.165 (10)° |
Agilent Xcalibur Ruby Gemini diffractometer | 1777 independent reflections |
Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995) | 733 reflections with I > 2σ(I) |
Tmin = 0.882, Tmax = 0.900 | Rint = 0.0000 |
1777 measured reflections |
R[F2 > 2σ(F2)] = 0.082 | 0 restraints |
wR(F2) = 0.228 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.68 e Å−3 |
1777 reflections | Δρmin = −0.78 e Å−3 |
79 parameters |
Experimental. Absorption correction: XABS2 (Parkin et al., 1995); Quadratic fit to sin(theta)/lambda - 18 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.4208 (2) | 0.8732 (4) | 0.60524 (11) | 0.0799 (7) | |
Br2 | 1.11644 (19) | 0.3412 (4) | 0.60918 (10) | 0.0766 (7) | |
O1 | 0.9808 (12) | 0.057 (2) | 0.7220 (5) | 0.069 (4) | |
C1 | 0.7790 (16) | 0.247 (3) | 0.6578 (8) | 0.062 (2) | |
C2 | 0.7029 (16) | 0.359 (3) | 0.7090 (8) | 0.062 (2) | |
C3 | 0.5983 (16) | 0.544 (3) | 0.6919 (8) | 0.062 (2) | |
C4 | 0.5687 (16) | 0.618 (3) | 0.6270 (7) | 0.062 (2) | |
C5 | 0.6461 (16) | 0.517 (3) | 0.5754 (8) | 0.062 (2) | |
C6 | 0.7444 (16) | 0.331 (3) | 0.5936 (8) | 0.062 (2) | |
C7 | 0.8485 (19) | 0.172 (3) | 0.5499 (7) | 0.067 (6) | |
C8 | 0.9613 (18) | 0.074 (3) | 0.5978 (7) | 0.063 (6) | |
C9 | 0.8931 (16) | 0.040 (3) | 0.6617 (7) | 0.057 (5) | |
H1 | 1.00390 | −0.09700 | 0.73430 | 0.1030* | |
H2 | 0.72330 | 0.30880 | 0.75290 | 0.0740* | |
H3 | 0.54710 | 0.62080 | 0.72470 | 0.0740* | |
H5 | 0.62990 | 0.57520 | 0.53190 | 0.0740* | |
H7A | 0.80100 | 0.02070 | 0.52700 | 0.0810* | |
H7B | 0.88630 | 0.29260 | 0.51750 | 0.0810* | |
H8 | 0.99730 | −0.10210 | 0.58330 | 0.0750* | |
H9 | 0.84820 | −0.14010 | 0.66060 | 0.0680* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0591 (11) | 0.0778 (13) | 0.1011 (14) | 0.0087 (10) | −0.0058 (10) | 0.0030 (11) |
Br2 | 0.0611 (11) | 0.0755 (12) | 0.0942 (13) | 0.0033 (9) | 0.0123 (9) | 0.0108 (10) |
O1 | 0.081 (8) | 0.052 (6) | 0.072 (7) | 0.005 (6) | −0.002 (6) | 0.004 (5) |
C1 | 0.052 (4) | 0.069 (4) | 0.064 (4) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C2 | 0.052 (4) | 0.069 (4) | 0.064 (4) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C3 | 0.052 (4) | 0.069 (4) | 0.064 (4) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C4 | 0.052 (4) | 0.069 (4) | 0.064 (4) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C5 | 0.052 (4) | 0.069 (4) | 0.064 (4) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C6 | 0.052 (4) | 0.069 (4) | 0.064 (4) | −0.007 (3) | 0.001 (3) | −0.001 (3) |
C7 | 0.089 (12) | 0.058 (9) | 0.056 (8) | 0.007 (9) | 0.013 (8) | −0.005 (8) |
C8 | 0.083 (12) | 0.046 (8) | 0.058 (9) | 0.008 (8) | −0.005 (8) | 0.004 (7) |
C9 | 0.059 (9) | 0.048 (8) | 0.061 (9) | −0.003 (7) | −0.008 (8) | 0.010 (7) |
Br1—C4 | 1.910 (15) | C6—C7 | 1.58 (2) |
Br2—C8 | 1.974 (16) | C7—C8 | 1.47 (2) |
O1—C9 | 1.430 (18) | C8—C9 | 1.50 (2) |
O1—H1 | 0.8200 | C2—H2 | 0.9300 |
C1—C6 | 1.38 (2) | C3—H3 | 0.9300 |
C1—C9 | 1.48 (2) | C5—H5 | 0.9300 |
C1—C2 | 1.42 (2) | C7—H7A | 0.9700 |
C2—C3 | 1.37 (2) | C7—H7B | 0.9700 |
C3—C4 | 1.37 (2) | C8—H8 | 0.9800 |
C4—C5 | 1.41 (2) | C9—H9 | 0.9800 |
C5—C6 | 1.34 (2) | ||
C9—O1—H1 | 109.00 | O1—C9—C1 | 112.6 (12) |
C2—C1—C6 | 118.3 (14) | C1—C2—H2 | 121.00 |
C6—C1—C9 | 112.2 (13) | C3—C2—H2 | 121.00 |
C2—C1—C9 | 129.5 (14) | C2—C3—H3 | 120.00 |
C1—C2—C3 | 118.1 (15) | C4—C3—H3 | 120.00 |
C2—C3—C4 | 120.7 (15) | C4—C5—H5 | 122.00 |
Br1—C4—C5 | 118.3 (11) | C6—C5—H5 | 122.00 |
C3—C4—C5 | 122.3 (14) | C6—C7—H7A | 111.00 |
Br1—C4—C3 | 119.4 (11) | C6—C7—H7B | 111.00 |
C4—C5—C6 | 115.3 (15) | C8—C7—H7A | 111.00 |
C1—C6—C7 | 105.3 (12) | C8—C7—H7B | 111.00 |
C5—C6—C7 | 129.4 (14) | H7A—C7—H7B | 109.00 |
C1—C6—C5 | 125.2 (15) | Br2—C8—H8 | 110.00 |
C6—C7—C8 | 104.4 (12) | C7—C8—H8 | 110.00 |
Br2—C8—C9 | 109.9 (10) | C9—C8—H8 | 110.00 |
C7—C8—C9 | 105.3 (13) | O1—C9—H9 | 107.00 |
Br2—C8—C7 | 111.3 (10) | C1—C9—H9 | 107.00 |
O1—C9—C8 | 117.9 (13) | C8—C9—H9 | 107.00 |
C1—C9—C8 | 103.8 (12) | ||
C6—C1—C2—C3 | 0 (2) | Br1—C4—C5—C6 | −177.5 (11) |
C9—C1—C2—C3 | −178.1 (15) | C3—C4—C5—C6 | 4 (2) |
C2—C1—C6—C5 | 2 (2) | C4—C5—C6—C1 | −4 (2) |
C2—C1—C6—C7 | 179.4 (13) | C4—C5—C6—C7 | 179.1 (14) |
C9—C1—C6—C5 | −179.5 (15) | C1—C6—C7—C8 | −16.7 (16) |
C9—C1—C6—C7 | −1.9 (17) | C5—C6—C7—C8 | 160.8 (16) |
C2—C1—C9—O1 | −33 (2) | C6—C7—C8—Br2 | −90.7 (12) |
C2—C1—C9—C8 | −162.1 (15) | C6—C7—C8—C9 | 28.3 (15) |
C6—C1—C9—O1 | 148.1 (13) | Br2—C8—C9—O1 | −34.8 (16) |
C6—C1—C9—C8 | 19.4 (17) | Br2—C8—C9—C1 | 90.6 (12) |
C1—C2—C3—C4 | 0 (2) | C7—C8—C9—O1 | −154.8 (12) |
C2—C3—C4—Br1 | 179.3 (12) | C7—C8—C9—C1 | −29.4 (15) |
C2—C3—C4—C5 | −2 (2) |
Cg2 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 | 1.91 | 2.713 (14) | 165 |
C9—H9···Cg2ii | 0.98 | 2.67 | 3.629 (16) | 166 |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C9H8Br2O |
Mr | 291.95 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 299 |
a, b, c (Å) | 9.5137 (10), 4.8991 (7), 20.249 (3) |
β (°) | 94.165 (10) |
V (Å3) | 941.3 (2) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 10.50 |
Crystal size (mm) | 0.17 × 0.01 × 0.01 |
Data collection | |
Diffractometer | Agilent Xcalibur Ruby Gemini diffractometer |
Absorption correction | Part of the refinement model (ΔF) (XABS2; Parkin et al., 1995) |
Tmin, Tmax | 0.882, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1777, 1777, 733 |
Rint | 0.0000 |
(sin θ/λ)max (Å−1) | 0.612 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.082, 0.228, 1.00 |
No. of reflections | 1777 |
No. of parameters | 79 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.78 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999), WinGX (Farrugia, 1997) and PLATON (Spek, 2009).
Cg2 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 | 1.91 | 2.713 (14) | 165 |
C9—H9···Cg2ii | 0.98 | 2.67 | 3.629 (16) | 166 |
Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, y−1, z. |
References
Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England. Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Cakmak, O., Erenler, R., Tutar, A. & Celik, N. (2006). J. Org. Chem. 71, 1795–1801. Web of Science CrossRef PubMed CAS Google Scholar
Catto, M., Aliano, R., Carotti, A., Cellamare, S., Palluotto, F., Purgatorio, R., Stradis, A. D. & Campagna, F. (2010). Eur. J. Med. Chem. 45, 1359–1366. Web of Science CrossRef CAS PubMed Google Scholar
Çelik, Í., Akkurt, M., Yılmaz, M., Tutar, A., Erenler, R. & García-Granda, S. (2012). Acta Cryst. E68, o833. CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Erenler, R. & Cakmak, O. (2004). J. Chem. Res. pp. 566–569. CrossRef Google Scholar
Erenler, R., Demirtas, I., Buyukkidan, B. & Cakmak, O. (2006). J. Chem. Res. pp. 753–757. CrossRef Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
McClure, K. J., Maher, M., Wu, N., Chaplan, S. R., Erkert, W. A., Lee, D. H., Wickenden, A. D., Hermann, M., Allison, B., Hawryluk, N., Breitenbucher, G. J. & Grice, C. A. (2011). Bioorg. Med. Chem. Lett. 21, 5197–5201. Web of Science CrossRef CAS PubMed Google Scholar
Mitrochkine, A., Eydoux, F., Martres, M., Gil, G., Heumann, A. & Reglier, M. (1995). Tetrahedron Asymmetry, 6, 59–62. CrossRef CAS Web of Science Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Snyder, S. A. & Brill, Z. G. (2011). Org. Lett. 13, 5524–5527. Web of Science CSD CrossRef CAS PubMed Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, Y. J. (2006). Tetrahedron Lett. 47, 8459–8461. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bromination of hydrocarbons are important processes in synthetic chemistry (Cakmak et al., 2006; Erenler et al., 2006; Erenler & Cakmak, 2004). Indanes are an important class of molecules due to their pharmacological and medicinal proparties (Mitrochkine et al., 1995; Catto et al., 2010; Wu, 2006; McClure et al., 2011) as well as in natural product chemistry (Snyder & Brill, 2011).
In the title compound (I), (Fig. 1), the five-membered C1/C6–C9 cyclopentene ring exhibits an envelope conformation with C8 at the tip of the envelope [the puckering parameters (Cremer & Pople, 1975) are Q(2) = 0.289 (17) Å and ϕ(2) = 290 (3) °]. All bond lengths and bond angles in (I) are in the normal range and are in good agreement with those reported in a similar structure (Çelik et al., 2012).
In the crystal, pairs of strong O—H···O hydrogen bonds connect the molecules, forming zigzag C(4) chains propagating along the b axis (Bernstein et al., 1995; Table 1, Fig. 2). In addition, a C—H···π interaction with the benzene ring is also found (Table 1).