organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Meth­­oxy-N-[(5-nitro­thio­phen-2-yl)methyl­­idene]aniline

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey
*Correspondence e-mail: takbal@omu.edu.tr

(Received 12 June 2012; accepted 21 July 2012; online 11 August 2012)

In the title compound, C12H10N2O3S, the dihedral angle between the benzene and thio­phene rings is 43.17 (4)°. The crystal structure is devoid of any hydrogen-bonding inter­actions. However, ππ inter­actions between the benzene and thio­phene rings [distance between ring centroids = 3.6850 (11) Å] stack the mol­ecules along the a axis. The absolute structure could not be determined as the crystal studied was a racemic twin with a BASF parameter of 0.31 (6).

Related literature

For biological and industrial properties of Schiff bases, see: Barton & Ollis (1979[Barton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.]); Taggi et al. (2002[Taggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626-6635.]). For a related structure, see: Ceylan et al. (2011[Ceylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O3S

  • Mr = 262.29

  • Orthorhombic, P 21 21 21

  • a = 7.4612 (3) Å

  • b = 10.8737 (5) Å

  • c = 14.8465 (9) Å

  • V = 1204.51 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.69 × 0.51 × 0.28 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.873, Tmax = 0.938

  • 5538 measured reflections

  • 2375 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.02

  • 2375 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 986 Friedel pairs

  • Flack parameter: 0.31 (6)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are used as starting materials in the synthesis of important drugs, such as antibiotics and antiallergic, antiphlogistic, and antitumor substances (Barton & Ollis, 1979). In addition, they have a wide range of industrial applications, such as dyes and pigments (Taggi et al., 2002). Herein we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the dihedral angle between the nitro-thiophene (C7—C10/S1) and the benzene ring (Cl—C6) is 47.14 (4) °. The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Ceylan et al. 2011). The structure is devoid of any hydrogen bonding interactions. However, ππ interactions between the centroids of the benzene and thiophene rings (distance between ring centroids = 3.6850 (11) Å) are observed in the crystal structure.

Related literature top

For biological and industrial properties of Schiff bases, see: Barton & Ollis (1979); Taggi et al. (2002). For a related structure, see: Ceylan et al. (2011).

Experimental top

The compound title compound was prepared by refluxing a mixture of a solution of 5-nitro-2-thiophene-carboxaldehyde (0.018 g, 0.120 mmol) in ethanol (20 ml) and a solution of 3-methoxyaniline (0.0142 g, 0.120 mmol) in ethanol (20 ml). The reaction mixture was stirred for 1 h under reflux. The crystals of the title compound suitable for X-ray analysis were obtained from ethanol by slow evaporation (yield %61; m.p 385–386 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.96 Å, for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C aryl). The compound crystallized as a racemic twin as indicated by SHELXL97 (Sheldrick, 2008). A twin refinement using the commands TWIN and BASF gave a twin fraction of 0.31 (6)/0.69 (6); 986 Friedel pairs of reflections were not merged.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A view of the crystal packing of the title compound. Hydrogen atoms have been excluded for clarity.
(Z)-3-Methoxy-N-[(5-nitrothiophen-2-yl)methylidene]aniline top
Crystal data top
C12H10N2O3SF(000) = 544
Mr = 262.29Dx = 1.446 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5538 reflections
a = 7.4612 (3) Åθ = 2.3–26°
b = 10.8737 (5) ŵ = 0.27 mm1
c = 14.8465 (9) ÅT = 296 K
V = 1204.51 (10) Å3Prism, yellow
Z = 40.69 × 0.51 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
2375 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
w–scan rotationθmax = 26.0°, θmin = 2.3°
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
h = 89
Tmin = 0.873, Tmax = 0.938k = 1313
5538 measured reflectionsl = 1518
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0517P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.076(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.17 e Å3
2375 reflectionsΔρmin = 0.18 e Å3
165 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0097 (18)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983),986 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.31 (6)
Crystal data top
C12H10N2O3SV = 1204.51 (10) Å3
Mr = 262.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4612 (3) ŵ = 0.27 mm1
b = 10.8737 (5) ÅT = 296 K
c = 14.8465 (9) Å0.69 × 0.51 × 0.28 mm
Data collection top
Stoe IPDS 2
diffractometer
2375 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2200 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.938Rint = 0.034
5538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.076Δρmax = 0.17 e Å3
S = 1.02Δρmin = 0.18 e Å3
2375 reflectionsAbsolute structure: Flack (1983),986 Friedel pairs
165 parametersAbsolute structure parameter: 0.31 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17537 (6)0.72680 (4)0.17461 (3)0.04740 (13)
O30.2561 (2)0.78260 (13)0.33068 (9)0.0645 (3)
N10.1374 (2)0.81303 (13)0.01636 (9)0.0475 (3)
N20.1792 (2)0.60779 (17)0.33474 (11)0.0665 (4)
O10.2270 (3)0.70702 (19)0.36455 (10)0.0961 (6)
C10.1284 (2)0.86180 (14)0.10418 (11)0.0440 (4)
C30.1854 (2)0.85202 (15)0.26249 (11)0.0479 (4)
C70.1414 (2)0.60021 (16)0.24090 (12)0.0490 (4)
C100.1066 (2)0.64354 (15)0.08297 (11)0.0449 (4)
C40.1172 (3)0.96946 (18)0.27339 (13)0.0585 (5)
H40.11311.00560.33010.070*
C60.0617 (3)0.98144 (16)0.11459 (13)0.0539 (4)
H60.02241.02580.06480.065*
O20.1619 (3)0.51571 (17)0.38055 (10)0.0973 (6)
C80.0809 (3)0.50020 (17)0.19685 (13)0.0560 (5)
H80.05550.42500.22380.067*
C50.0552 (3)1.03209 (18)0.19860 (14)0.0619 (5)
H50.00791.11060.20570.074*
C20.1906 (2)0.79816 (13)0.17871 (11)0.0442 (3)
H20.23600.71900.17210.053*
C110.0970 (2)0.70084 (16)0.00462 (11)0.0471 (4)
H110.06020.65420.05380.057*
C90.0616 (3)0.52531 (17)0.10520 (13)0.0546 (4)
H90.02220.46760.06340.065*
C120.2302 (4)0.8228 (3)0.42063 (14)0.0905 (8)
H12A0.28640.76590.46120.136*
H12B0.28240.90280.42810.136*
H12C0.10420.82680.43340.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0552 (2)0.0474 (2)0.03953 (19)0.00386 (17)0.00184 (18)0.00330 (17)
O30.0855 (9)0.0682 (8)0.0397 (6)0.0033 (7)0.0063 (6)0.0038 (6)
N10.0494 (7)0.0529 (7)0.0401 (7)0.0007 (6)0.0015 (6)0.0038 (6)
N20.0752 (11)0.0795 (10)0.0447 (8)0.0042 (9)0.0000 (9)0.0045 (8)
O10.1360 (17)0.1054 (13)0.0468 (8)0.0233 (12)0.0092 (9)0.0107 (9)
C10.0418 (8)0.0459 (8)0.0444 (9)0.0028 (7)0.0040 (7)0.0006 (7)
C30.0481 (9)0.0512 (8)0.0443 (8)0.0065 (8)0.0015 (8)0.0033 (7)
C70.0494 (9)0.0555 (9)0.0421 (8)0.0057 (8)0.0031 (7)0.0042 (7)
C100.0449 (9)0.0496 (8)0.0403 (8)0.0003 (7)0.0005 (7)0.0045 (7)
C40.0659 (11)0.0538 (9)0.0558 (10)0.0045 (9)0.0125 (9)0.0135 (9)
C60.0565 (10)0.0463 (9)0.0590 (11)0.0008 (8)0.0086 (9)0.0075 (8)
O20.1395 (16)0.0977 (11)0.0546 (9)0.0113 (13)0.0039 (10)0.0283 (9)
C80.0616 (11)0.0467 (9)0.0598 (11)0.0012 (7)0.0033 (9)0.0068 (8)
C50.0670 (11)0.0445 (9)0.0742 (13)0.0061 (8)0.0134 (10)0.0034 (9)
C20.0451 (8)0.0418 (7)0.0456 (8)0.0014 (6)0.0029 (7)0.0026 (7)
C110.0485 (9)0.0546 (9)0.0382 (8)0.0010 (7)0.0002 (7)0.0056 (7)
C90.0621 (10)0.0482 (9)0.0534 (10)0.0002 (8)0.0032 (9)0.0078 (8)
C120.118 (2)0.1166 (19)0.0373 (10)0.0071 (17)0.0024 (12)0.0116 (12)
Geometric parameters (Å, º) top
S1—C71.7110 (18)C10—C111.444 (2)
S1—C101.7128 (17)C4—C51.382 (3)
O3—C31.369 (2)C4—H40.9300
O3—C121.418 (3)C6—C51.364 (3)
N1—C111.269 (2)C6—H60.9300
N1—C11.409 (2)C8—C91.395 (3)
N2—O21.217 (2)C8—H80.9300
N2—O11.220 (2)C5—H50.9300
N2—C71.424 (2)C2—H20.9300
C1—C21.385 (2)C11—H110.9300
C1—C61.401 (2)C9—H90.9300
C3—C21.375 (2)C12—H12A0.9600
C3—C41.384 (3)C12—H12B0.9600
C7—C81.347 (3)C12—H12C0.9600
C10—C91.369 (3)
C7—S1—C1089.27 (8)C1—C6—H6120.4
C3—O3—C12118.30 (17)C7—C8—C9110.49 (17)
C11—N1—C1118.54 (14)C7—C8—H8124.8
O2—N2—O1123.77 (18)C9—C8—H8124.8
O2—N2—C7118.57 (18)C6—C5—C4121.58 (17)
O1—N2—C7117.66 (17)C6—C5—H5119.2
C2—C1—C6119.65 (16)C4—C5—H5119.2
C2—C1—N1122.36 (14)C3—C2—C1120.01 (14)
C6—C1—N1117.92 (15)C3—C2—H2120.0
O3—C3—C2115.04 (15)C1—C2—H2120.0
O3—C3—C4124.34 (16)N1—C11—C10121.81 (15)
C2—C3—C4120.60 (16)N1—C11—H11119.1
C8—C7—N2126.02 (17)C10—C11—H11119.1
C8—C7—S1114.83 (13)C10—C9—C8113.18 (17)
N2—C7—S1119.15 (14)C10—C9—H9123.4
C9—C10—C11127.61 (16)C8—C9—H9123.4
C9—C10—S1112.23 (14)O3—C12—H12A109.5
C11—C10—S1120.14 (12)O3—C12—H12B109.5
C5—C4—C3118.92 (17)H12A—C12—H12B109.5
C5—C4—H4120.5O3—C12—H12C109.5
C3—C4—H4120.5H12A—C12—H12C109.5
C5—C6—C1119.22 (18)H12B—C12—H12C109.5
C5—C6—H6120.4
C11—N1—C1—C242.6 (2)N1—C1—C6—C5178.55 (16)
C11—N1—C1—C6140.62 (16)N2—C7—C8—C9179.03 (19)
C12—O3—C3—C2170.13 (19)S1—C7—C8—C90.5 (2)
C12—O3—C3—C411.7 (3)C1—C6—C5—C41.7 (3)
O2—N2—C7—C82.6 (3)C3—C4—C5—C60.8 (3)
O1—N2—C7—C8177.3 (2)O3—C3—C2—C1177.79 (15)
O2—N2—C7—S1176.88 (17)C4—C3—C2—C10.4 (3)
O1—N2—C7—S13.2 (3)C6—C1—C2—C30.6 (2)
C10—S1—C7—C80.21 (15)N1—C1—C2—C3177.34 (15)
C10—S1—C7—N2179.32 (16)C1—N1—C11—C10178.65 (15)
C7—S1—C10—C90.11 (15)C9—C10—C11—N1177.72 (17)
C7—S1—C10—C11178.33 (15)S1—C10—C11—N10.5 (2)
O3—C3—C4—C5177.69 (18)C11—C10—C9—C8177.90 (17)
C2—C3—C4—C50.3 (3)S1—C10—C9—C80.4 (2)
C2—C1—C6—C51.6 (3)C7—C8—C9—C100.5 (2)

Experimental details

Crystal data
Chemical formulaC12H10N2O3S
Mr262.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.4612 (3), 10.8737 (5), 14.8465 (9)
V3)1204.51 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.69 × 0.51 × 0.28
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.873, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
5538, 2375, 2200
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.02
No. of reflections2375
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18
Absolute structureFlack (1983),986 Friedel pairs
Absolute structure parameter0.31 (6)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Ondokuz Mayis University Research Fund for financial support of this project.

References

First citationBarton, D. & Ollis, W. D. (1979). Comprehensive Organic Chemistry, Vol 2. Oxford: Pergamon.  Google Scholar
First citationCeylan, Ü., Tanak, H., Gümüş, S. & Ağar, E. (2011). Acta Cryst. E67, o2004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaggi, A. E., Hafez, A. M., Wack, H., Young, B., Ferraris, D. & Lectka, T. (2002). J. Am. Chem. Soc. 124, 6626–6635.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds