organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,4-Dimeth­­oxy­benzyl­­idene)-4-meth­­oxy­benzohydrazide

aAtta-ur-Rahman Research Institute for Natural Products Discovery (RiND), Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, bFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, and cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 27 July 2012; accepted 1 August 2012; online 25 August 2012)

In the title compound, C17H18N2O4, the azomethine double bond adopts an E conformation with an N—N—C—C torsion angle of −178.3 (3)°. The benzene rings are almost coplaner, with a dihedral angle of 2.98 (14)° between their mean planes. In the crystal, the molecules are linked by N—H⋯O hydrogen bonds, resulting in chains of mol­ecules lying parallel to the b axis. The structure is further consolidated by rather weak C—H⋯O hydrogen-bonding inter­actions, resulting in six-membered rings about inversion centers linked into chains arranged parallel to the b axis.

Related literature

For the biological activity of benzohydrazides, see: Bayrak et al. (2009[Bayrak, H., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362-4366.]). For the crystal structures of related benzohydrazides, see: Fun et al. (2011[Fun, H.-K., Promdet, P., Chantrapromma, S., Horkaew, J. & Karalai, C. (2011). Acta Cryst. E67, o3370-o3371.]); Lu et al. (2009[Lu, J.-F., Min, S.-T., Ge, H.-G. & Ji, X.-H. (2009). Acta Cryst. E65, o2301.].

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O4

  • Mr = 314.33

  • Monoclinic, P 21 /c

  • a = 14.191 (2) Å

  • b = 5.0109 (8) Å

  • c = 22.535 (4) Å

  • β = 99.010 (4)°

  • V = 1582.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.23 × 0.20 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.996

  • 8638 measured reflections

  • 2891 independent reflections

  • 1400 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.115

  • S = 0.96

  • 2891 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.92 (3) 1.99 (3) 2.890 (4) 166 (2)
C15—H15A⋯O4ii 0.96 2.54 3.357 (4) 143
C17—H17A⋯O2iii 0.96 2.55 3.505 (4) 172
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+2; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzohydrazones play an imperative part in research due to their diverse structural features and wide range of biological activities such as antibacterial, antifungal, cytotoxic, anticonvulsant, antiplatelets, anticancer, antinflammatory, and analgesic (Bayrak et al., 2009). The title compound was prepared as a part of our ongoing research on benzohydrazones in order to study their structural features responsible for varoius biological activities.

In the title molecule (Fig. 1), the azomethine double bond (C7N1, 1.277 (4) Å) adopts an E configuration with a torsion angle N2–N1–C6–C7 -178.3 (3)°. The benzene rings (C1–C6 and C9–C14) are almost coplanner with dihedral angle 2.98 (14)° between their mean planes. The bond lengths and angles in the title compound are similar to those reported in structurally realted compounds (Fun et al., 2011; Lu et al., 2009). The crystal structure is stabilized by N2—H2A···O3 intermolecular hydrogen bonds resulting in chains of molecules lying parallel to the b–axis (Tab. 1 & Fig. 2). The structure is further consolidated by rather weak intermolecular hydrogen bonding interactions C15—H15A···O4 and C17—H17A···O2, the former resulting in six membered rings about inversion centers and the later forming chains arranged parallel to the b-axis.

Related literature top

For the biological activity of benzohydrazides, see: Bayrak et al. (2009). For the crystal structures of related benzohydrazides, see: Fun et al. (2011); Lu et al. (2009.

Experimental top

The title compound was synthesized by refluxing a mixture of 4-methoxybenzohydrazide (0.332 g, 2.0 mmol) and 3,4-dimethoxybenzaldehyde (0.332 g, 2.0 mmol) and a catalytical amount of acetic acid for 3 h in methanol (20 ml). The progress of the reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated by vacuum to afford the title compound (0.496 g, 79% yield). The compound was recrystalize by slow evaporation of a methanol solution to afforded light yellow crystals suitable for single-crystal X-ray diffraction studies. All chemicals were purchased from Sigma-Aldrich Germany.

Refinement top

All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 and 0.98 Å, for aryl and methyl H-atoms, respectively; a rotating group model was applied to the methyl groups. The Uiso(H) were allowed at 1.5Ueq(C methyl) or 1.2Ueq(C non-methyl). The H atom on the nitrogen was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. A view of the hydrogen bonding interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity.
(E)-N'-(3,4-Dimethoxybenzylidene)-4-methoxybenzohydrazide top
Crystal data top
C17H18N2O4F(000) = 664
Mr = 314.33Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 506 reflections
a = 14.191 (2) Åθ = 2.9–18.7°
b = 5.0109 (8) ŵ = 0.10 mm1
c = 22.535 (4) ÅT = 273 K
β = 99.010 (4)°Plate, colorles
V = 1582.7 (5) Å30.23 × 0.20 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2891 independent reflections
Radiation source: fine-focus sealed tube1400 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
ω scanθmax = 25.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1716
Tmin = 0.979, Tmax = 0.996k = 55
8638 measured reflectionsl = 2726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2891 reflectionsΔρmax = 0.18 e Å3
216 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0013 (5)
Crystal data top
C17H18N2O4V = 1582.7 (5) Å3
Mr = 314.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.191 (2) ŵ = 0.10 mm1
b = 5.0109 (8) ÅT = 273 K
c = 22.535 (4) Å0.23 × 0.20 × 0.04 mm
β = 99.010 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1400 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.996Rint = 0.080
8638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.18 e Å3
2891 reflectionsΔρmin = 0.16 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08439 (16)0.0973 (5)0.30744 (8)0.0533 (7)
O20.02249 (17)0.2411 (5)0.37757 (9)0.0517 (7)
O30.27009 (17)0.4724 (4)0.67207 (9)0.0559 (7)
O40.47170 (17)0.0216 (5)0.92189 (8)0.0597 (7)
N10.23561 (18)0.0850 (5)0.58675 (10)0.0423 (8)
N20.2763 (2)0.0366 (6)0.64635 (11)0.0429 (8)
C10.1311 (2)0.0799 (6)0.46462 (12)0.0383 (8)
H1B0.10980.20500.49000.046*
C20.0930 (2)0.0774 (6)0.40460 (13)0.0376 (8)
C30.1267 (2)0.1102 (7)0.36613 (12)0.0390 (9)
C40.1959 (2)0.2892 (6)0.38871 (13)0.0426 (9)
H4A0.21850.41200.36340.051*
C50.2323 (2)0.2866 (6)0.44979 (13)0.0447 (9)
H5A0.27840.41100.46510.054*
C60.2013 (2)0.1033 (7)0.48788 (12)0.0392 (9)
C70.2418 (2)0.1119 (7)0.55156 (13)0.0435 (9)
H7A0.27320.26580.56700.052*
C80.2912 (2)0.2397 (7)0.68566 (13)0.0380 (8)
C90.3389 (2)0.1642 (6)0.74719 (12)0.0330 (8)
C100.4038 (2)0.0405 (6)0.75824 (12)0.0399 (9)
H10A0.41640.14600.72650.048*
C110.4510 (2)0.0934 (6)0.81608 (12)0.0401 (9)
H11A0.49570.23010.82260.048*
C120.4308 (2)0.0582 (7)0.86330 (13)0.0395 (8)
C130.3653 (2)0.2629 (7)0.85314 (13)0.0468 (9)
H13A0.35100.36400.88520.056*
C140.3212 (2)0.3176 (6)0.79592 (13)0.0444 (9)
H14A0.27870.45970.78940.053*
C150.5404 (3)0.1858 (7)0.93508 (14)0.0697 (12)
H15A0.56260.19060.97760.105*
H15B0.51160.35400.92240.105*
H15C0.59320.15270.91420.105*
C160.0236 (2)0.4110 (7)0.41506 (13)0.0567 (10)
H16A0.07430.50660.39090.085*
H16B0.04940.30500.44420.085*
H16C0.02180.53560.43530.085*
C170.1047 (3)0.3085 (7)0.26842 (13)0.0626 (12)
H17A0.06440.29070.23020.094*
H17B0.17030.29870.26300.094*
H17C0.09290.47740.28600.094*
H2A0.2850 (18)0.139 (5)0.6573 (11)0.030 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0620 (18)0.0641 (18)0.0305 (13)0.0093 (14)0.0034 (11)0.0056 (12)
O20.0634 (18)0.0525 (16)0.0359 (13)0.0183 (14)0.0021 (12)0.0002 (12)
O30.089 (2)0.0261 (15)0.0470 (14)0.0012 (13)0.0073 (12)0.0045 (12)
O40.0687 (19)0.0761 (19)0.0306 (13)0.0173 (15)0.0034 (11)0.0017 (12)
N10.057 (2)0.0356 (19)0.0302 (15)0.0044 (15)0.0065 (13)0.0070 (13)
N20.071 (2)0.0230 (18)0.0297 (15)0.0009 (16)0.0083 (13)0.0061 (14)
C10.049 (2)0.031 (2)0.0339 (18)0.0020 (18)0.0027 (15)0.0015 (15)
C20.044 (2)0.034 (2)0.0320 (18)0.0010 (18)0.0022 (15)0.0040 (16)
C30.042 (2)0.045 (2)0.0280 (18)0.0055 (19)0.0007 (15)0.0007 (17)
C40.045 (2)0.045 (2)0.0366 (19)0.0044 (18)0.0030 (16)0.0067 (16)
C50.049 (2)0.040 (2)0.042 (2)0.0053 (18)0.0050 (17)0.0007 (17)
C60.046 (2)0.037 (2)0.0331 (18)0.0037 (18)0.0003 (16)0.0000 (16)
C70.054 (3)0.035 (2)0.038 (2)0.0009 (19)0.0042 (17)0.0055 (17)
C80.050 (2)0.027 (2)0.0359 (19)0.0054 (18)0.0037 (16)0.0010 (17)
C90.041 (2)0.024 (2)0.0337 (18)0.0031 (16)0.0054 (15)0.0005 (15)
C100.050 (2)0.040 (2)0.0301 (18)0.0014 (19)0.0058 (15)0.0014 (16)
C110.044 (2)0.040 (2)0.0349 (19)0.0064 (18)0.0021 (15)0.0005 (16)
C120.039 (2)0.049 (2)0.0289 (18)0.0020 (19)0.0016 (15)0.0004 (17)
C130.055 (3)0.052 (2)0.0323 (19)0.005 (2)0.0052 (17)0.0064 (17)
C140.055 (3)0.033 (2)0.045 (2)0.0077 (17)0.0053 (17)0.0008 (17)
C150.077 (3)0.081 (3)0.043 (2)0.015 (3)0.015 (2)0.004 (2)
C160.051 (3)0.065 (3)0.054 (2)0.013 (2)0.0067 (18)0.005 (2)
C170.073 (3)0.069 (3)0.045 (2)0.008 (2)0.003 (2)0.018 (2)
Geometric parameters (Å, º) top
O1—C31.366 (3)C7—H7A0.9300
O1—C171.434 (3)C8—C91.493 (4)
O2—C21.362 (3)C9—C101.374 (4)
O2—C161.428 (3)C9—C141.395 (4)
O3—C81.231 (3)C10—C111.394 (4)
O4—C121.369 (3)C10—H10A0.9300
O4—C151.424 (4)C11—C121.373 (4)
N1—C71.277 (4)C11—H11A0.9300
N1—N21.398 (3)C12—C131.379 (4)
N2—C81.344 (4)C13—C141.370 (4)
N2—H2A0.92 (3)C13—H13A0.9300
C1—C21.376 (4)C14—H14A0.9300
C1—C61.395 (4)C15—H15A0.9600
C1—H1B0.9300C15—H15B0.9600
C2—C31.412 (4)C15—H15C0.9600
C3—C41.367 (4)C16—H16A0.9600
C4—C51.393 (4)C16—H16B0.9600
C4—H4A0.9300C16—H16C0.9600
C5—C61.375 (4)C17—H17A0.9600
C5—H5A0.9300C17—H17B0.9600
C6—C71.460 (4)C17—H17C0.9600
C3—O1—C17117.3 (3)C9—C10—C11121.4 (3)
C2—O2—C16117.9 (2)C9—C10—H10A119.3
C12—O4—C15118.2 (3)C11—C10—H10A119.3
C7—N1—N2113.9 (3)C12—C11—C10119.4 (3)
C8—N2—N1120.0 (3)C12—C11—H11A120.3
C8—N2—H2A123.2 (16)C10—C11—H11A120.3
N1—N2—H2A116.4 (16)O4—C12—C11124.4 (3)
C2—C1—C6120.7 (3)O4—C12—C13115.6 (3)
C2—C1—H1B119.6C11—C12—C13120.0 (3)
C6—C1—H1B119.6C14—C13—C12120.1 (3)
O2—C2—C1125.6 (3)C14—C13—H13A119.9
O2—C2—C3115.0 (3)C12—C13—H13A119.9
C1—C2—C3119.4 (3)C13—C14—C9121.2 (3)
O1—C3—C4124.9 (3)C13—C14—H14A119.4
O1—C3—C2115.0 (3)C9—C14—H14A119.4
C4—C3—C2120.1 (3)O4—C15—H15A109.5
C3—C4—C5119.7 (3)O4—C15—H15B109.5
C3—C4—H4A120.2H15A—C15—H15B109.5
C5—C4—H4A120.2O4—C15—H15C109.5
C6—C5—C4121.2 (3)H15A—C15—H15C109.5
C6—C5—H5A119.4H15B—C15—H15C109.5
C4—C5—H5A119.4O2—C16—H16A109.5
C5—C6—C1118.9 (3)O2—C16—H16B109.5
C5—C6—C7118.6 (3)H16A—C16—H16B109.5
C1—C6—C7122.4 (3)O2—C16—H16C109.5
N1—C7—C6122.2 (3)H16A—C16—H16C109.5
N1—C7—H7A118.9H16B—C16—H16C109.5
C6—C7—H7A118.9O1—C17—H17A109.5
O3—C8—N2123.1 (3)O1—C17—H17B109.5
O3—C8—C9121.9 (3)H17A—C17—H17B109.5
N2—C8—C9114.9 (3)O1—C17—H17C109.5
C10—C9—C14117.8 (3)H17A—C17—H17C109.5
C10—C9—C8123.4 (3)H17B—C17—H17C109.5
C14—C9—C8118.7 (3)
C7—N1—N2—C8167.3 (3)C1—C6—C7—N119.1 (5)
C16—O2—C2—C17.2 (5)N1—N2—C8—O30.4 (5)
C16—O2—C2—C3171.8 (3)N1—N2—C8—C9177.5 (3)
C6—C1—C2—O2178.0 (3)O3—C8—C9—C10146.6 (3)
C6—C1—C2—C31.1 (5)N2—C8—C9—C1031.3 (5)
C17—O1—C3—C48.7 (5)O3—C8—C9—C1429.8 (5)
C17—O1—C3—C2170.4 (3)N2—C8—C9—C14152.3 (3)
O2—C2—C3—O10.7 (4)C14—C9—C10—C110.4 (5)
C1—C2—C3—O1179.9 (3)C8—C9—C10—C11176.0 (3)
O2—C2—C3—C4178.4 (3)C9—C10—C11—C121.5 (5)
C1—C2—C3—C40.7 (5)C15—O4—C12—C110.6 (5)
O1—C3—C4—C5178.6 (3)C15—O4—C12—C13179.6 (3)
C2—C3—C4—C50.4 (5)C10—C11—C12—O4179.0 (3)
C3—C4—C5—C61.3 (5)C10—C11—C12—C130.8 (5)
C4—C5—C6—C11.0 (5)O4—C12—C13—C14179.3 (3)
C4—C5—C6—C7179.6 (3)C11—C12—C13—C140.9 (5)
C2—C1—C6—C50.2 (5)C12—C13—C14—C92.0 (5)
C2—C1—C6—C7178.4 (3)C10—C9—C14—C131.4 (5)
N2—N1—C7—C6178.3 (3)C8—C9—C14—C13177.9 (3)
C5—C6—C7—N1162.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.92 (3)1.99 (3)2.890 (4)166 (2)
C15—H15A···O4ii0.962.543.357 (4)143
C17—H17A···O2iii0.962.553.505 (4)172
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O4
Mr314.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.191 (2), 5.0109 (8), 22.535 (4)
β (°) 99.010 (4)
V3)1582.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.979, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
8638, 2891, 1400
Rint0.080
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.115, 0.96
No. of reflections2891
No. of parameters216
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.92 (3)1.99 (3)2.890 (4)166 (2)
C15—H15A···O4ii0.96002.54003.357 (4)143.00
C17—H17A···O2iii0.96002.55003.505 (4)172.00
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+2; (iii) x, y+1/2, z+1/2.
 

References

First citationBayrak, H., Demirbas, N. & Karaoglu, S. A. (2009). Eur. J. Med. Chem. 44, 4362–4366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Promdet, P., Chantrapromma, S., Horkaew, J. & Karalai, C. (2011). Acta Cryst. E67, o3370–o3371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, J.-F., Min, S.-T., Ge, H.-G. & Ji, X.-H. (2009). Acta Cryst. E65, o2301.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds