metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)nickel(II)]-μ-oxido-[dioxidotungstate(VI)]-μ-oxido] tetra­hydrate]

aDepartment of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou Hunan 425100, People's Republic of China
*Correspondence e-mail: ouguangchuan@yahoo.com.cn

(Received 27 July 2012; accepted 3 August 2012; online 11 August 2012)

In the title compound, {[NiWO4(C16H36N4)]·4H2O}n, the NiII ion lies on an inversion center and is octahedrally coordinated by four N atoms of the tetradentate macrocyclic 5,5,7,12,12,14-hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane (L) ligand in the equatorial plane and two O atoms of [WO4]2− anions in axial positions. Each [WO4]2− anion bridges two adjacent [NiL]2+ cations, forming a chain along [001]. The chains are further connected via N—H⋯O, O—H⋯O and C—H⋯O hydrogen-bonding inter­actions, generating a three-dimensional structure.

Related literature

For a related structure, see: Ou et al. (2011[Ou, G. C., Zou, L. S. & Yuan, Z. H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 543-544.]).

[Scheme 1]

Experimental

Crystal data
  • [NiWO4(C16H36N4)]·4H2O

  • Mr = 663.11

  • Triclinic, [P \overline 1]

  • a = 8.8402 (14) Å

  • b = 11.7653 (18) Å

  • c = 13.931 (2) Å

  • α = 107.163 (2)°

  • β = 102.529 (3)°

  • γ = 104.984 (3)°

  • V = 1268.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.32 mm−1

  • T = 173 K

  • 0.31 × 0.11 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.289, Tmax = 0.901

  • 7631 measured reflections

  • 5397 independent reflections

  • 4330 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.096

  • S = 1.02

  • 5397 reflections

  • 304 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.33 e Å−3

  • Δρmin = −1.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2i 0.93 2.32 3.253 (7) 180
N2—H2C⋯O4Wi 0.93 2.21 3.040 (8) 149
O4W—H4WB⋯O3W 0.85 (2) 2.12 (5) 2.720 (8) 128 (6)
O4W—H4WA⋯O3 0.86 (2) 2.05 (3) 2.900 (7) 168 (6)
O2W—H2WA⋯O1Wii 0.85 (2) 1.94 (2) 2.790 (8) 175 (7)
O3W—H3WA⋯O2iii 0.87 (2) 2.01 (5) 2.784 (7) 148 (8)
O1W—H1WA⋯O2 0.86 (2) 1.95 (2) 2.801 (7) 172 (8)
O2W—H2WB⋯O3 0.86 (2) 1.99 (3) 2.811 (7) 160 (8)
O3W—H3WB⋯O2W 0.86 (2) 2.08 (4) 2.834 (8) 145 (6)
O1W—H1WB⋯O2W 0.85 (2) 2.10 (4) 2.895 (9) 157 (7)
C16—H16A⋯O1iv 0.98 2.40 3.241 (9) 144
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Continuing our research (Ou et al., 2011), we now report the crystal structure of the title complex. The asymmetric unit of the title complex contains one cation [NiL]2+, one anion [WO4]2-, and four water molecules of hydration. Each NiII ion displays a distorted octahedral coordination geometry by coordination with four nitrogen atoms of L in in the equatorial plane, and two oxygen atoms of [WO4]2- anions in the axial positions. Each [WO4]2- anion bridges two adjacent [NiL]2+ cations to form a one-dimensional chain. The one-dimensional chains are further connected through O···O (2.720 (8)–2.900 (8) Å) and N···O (3.040 (8) and 3.253 (7) Å) hydrogen bonding interactions between the oxygen atoms of [WO4]2- anions, free water molecules and the secondary amine of [NiL]2+, forming a three-dimensional supramolecular structure (Tab. 2, Figs. 2, 3).

Related literature top

For a related structure, see: Ou et al. (2011).

Experimental top

A glass tube was charged with an aqueous solution of K2WO4 (0.033 g, 0.1 mmol) in water (20 ml), and a mixture of methanol and H2O (1/1, 20 ml) was gently added as an upper layer. A solution of NiL (ClO4)2 (0.054 g, 0.1 mmol) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane) in methanol (20 ml) was added carefully as a third layer, and then the tube was sealed. After several weeks, yellow prism-shaped crystals were obtained.

Refinement top

The H atoms bound to N and C atoms were positioned geometrically and refined using the riding model with N—H = 0.93 Å and C—H = 0.98 to 1.00 Å. The hydrogen atoms of the water molecules were located from a difference Fourier map and were constrained at distances O—H = 0.86 (2) Å. Uiso(H) were set to 1.5 × Ueq(methyl C) and 1.2 × Ueq(the rest of the parent atoms).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry codes for the generated atoms: A: 2 - x, 2 - y, 1 - z; B: 2 - x, 2 - y, 2 - z.
[Figure 2] Fig. 2. A view of the hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
[Figure 3] Fig. 3. Hydrogen bonding (dashed lines) in the title compound. Symmetry codes for the generated atoms: A: 1 - x, 1 - y, 1 - z; B: -1 + x, y, z; C: - x, 1 - y, 1 - z.
catena-Poly[[[(5,5,7,12,12,14-hexamethyl-1,4,8,11- tetraazacyclotetradecane-κ4N)nickel(II)]-µ-oxido- [dioxidotungstate(VI)]-µ-oxido] tetrahydrate] top
Crystal data top
[NiWO4(C16H36N4)]·4H2OZ = 2
Mr = 663.11F(000) = 668
Triclinic, P1Dx = 1.737 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8402 (14) ÅCell parameters from 3766 reflections
b = 11.7653 (18) Åθ = 1.9–27.1°
c = 13.931 (2) ŵ = 5.32 mm1
α = 107.163 (2)°T = 173 K
β = 102.529 (3)°Prism, yellow
γ = 104.984 (3)°0.31 × 0.11 × 0.02 mm
V = 1268.1 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5397 independent reflections
Radiation source: fine-focus sealed tube4330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 114
Tmin = 0.289, Tmax = 0.901k = 1415
7631 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
5397 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 2.33 e Å3
13 restraintsΔρmin = 1.48 e Å3
Crystal data top
[NiWO4(C16H36N4)]·4H2Oγ = 104.984 (3)°
Mr = 663.11V = 1268.1 (3) Å3
Triclinic, P1Z = 2
a = 8.8402 (14) ÅMo Kα radiation
b = 11.7653 (18) ŵ = 5.32 mm1
c = 13.931 (2) ÅT = 173 K
α = 107.163 (2)°0.31 × 0.11 × 0.02 mm
β = 102.529 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5397 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4330 reflections with I > 2σ(I)
Tmin = 0.289, Tmax = 0.901Rint = 0.030
7631 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03813 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 2.33 e Å3
5397 reflectionsΔρmin = 1.48 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.86432 (3)0.90496 (2)0.70182 (2)0.01423 (9)
O40.9085 (5)0.9844 (4)0.8399 (3)0.0187 (9)
O10.9900 (5)0.9988 (4)0.6505 (3)0.0201 (10)
O30.6535 (5)0.8719 (4)0.6342 (4)0.0231 (10)
O20.9049 (6)0.7611 (4)0.6806 (4)0.0258 (11)
Ni11.00001.00001.00000.0130 (2)
Ni21.00001.00000.50000.0139 (2)
N10.9427 (7)1.1622 (5)1.0653 (4)0.0170 (11)
H1C0.98601.18421.13800.020*
N21.2351 (6)1.1000 (5)1.0097 (4)0.0158 (11)
H2C1.30281.12271.07850.019*
N40.7426 (6)0.9212 (5)0.4386 (4)0.0183 (11)
H4D0.70430.90480.49200.022*
N31.0343 (7)0.8257 (5)0.4733 (4)0.0195 (12)
H3A1.02580.80880.53340.023*
C61.0127 (9)1.2828 (6)1.0490 (5)0.0219 (15)
C110.6783 (9)0.7997 (7)0.3458 (6)0.0298 (17)
H110.72260.81480.28870.036*
C51.1979 (9)1.3084 (6)1.0670 (6)0.0264 (16)
H5A1.24661.30841.13800.032*
H5B1.24771.39531.06940.032*
C91.2125 (8)0.8541 (7)0.4833 (6)0.0271 (16)
H9A1.23210.86520.41880.033*
H9B1.24740.78330.49220.033*
C100.6896 (9)1.0242 (7)0.4200 (6)0.0295 (17)
H10A0.56981.00360.40950.035*
H10B0.71091.03490.35580.035*
C140.9159 (9)0.7086 (6)0.3836 (6)0.0266 (16)
C160.9464 (10)0.7001 (7)0.2778 (6)0.0359 (19)
H16A0.94460.77730.26490.054*
H16B0.85970.62630.22040.054*
H16C1.05430.69120.28050.054*
C130.7386 (9)0.7023 (6)0.3763 (6)0.0313 (18)
H13A0.66400.61750.32450.038*
H13B0.72520.70780.44610.038*
C150.9397 (11)0.5905 (7)0.4055 (7)0.041 (2)
H15A0.86270.51290.34690.061*
H15B0.91800.59110.47170.061*
H15C1.05330.59340.41170.061*
C120.4873 (10)0.7496 (8)0.3017 (7)0.045 (2)
H12A0.44160.73440.35680.068*
H12B0.44950.67010.24030.068*
H12C0.44990.81250.28030.068*
C31.2531 (9)1.2195 (6)0.9881 (6)0.0256 (16)
H31.17851.19690.91500.031*
C80.9959 (10)1.3946 (6)1.1322 (6)0.0283 (16)
H8A0.87871.38131.12270.042*
H8B1.04771.47361.12330.042*
H8C1.05061.40001.20340.042*
C70.9231 (9)1.2735 (7)0.9384 (6)0.0298 (17)
H7A0.91791.19500.88540.045*
H7B0.98321.34640.92460.045*
H7C0.81091.27310.93430.045*
C41.4286 (10)1.2865 (8)0.9937 (8)0.051 (3)
H4A1.50071.32201.06740.077*
H4B1.43041.35500.96710.077*
H4C1.46771.22570.95040.077*
C10.7623 (8)1.1146 (6)1.0442 (5)0.0213 (14)
H1A0.70471.10090.97020.026*
H1B0.73011.17801.09190.026*
C21.2872 (8)1.0076 (6)0.9384 (5)0.0188 (14)
H2A1.40841.04070.95390.023*
H2B1.23360.99360.86360.023*
O2W0.3988 (7)0.6388 (5)0.5720 (5)0.0422 (14)
H2WA0.389 (10)0.589 (5)0.510 (3)0.051*
H2WB0.458 (9)0.714 (3)0.582 (5)0.051*
O4W0.5200 (7)0.9166 (6)0.8089 (4)0.0441 (15)
H4WB0.461 (7)0.842 (3)0.797 (4)0.053*
H4WA0.564 (9)0.915 (6)0.759 (5)0.053*
O1W0.6501 (8)0.5326 (5)0.6291 (5)0.0447 (15)
H1WA0.729 (5)0.599 (5)0.639 (7)0.054*
H1WB0.560 (4)0.547 (7)0.617 (7)0.054*
O3W0.2150 (7)0.7401 (6)0.6956 (5)0.0504 (17)
H3WA0.109 (3)0.714 (8)0.681 (5)0.061*
H3WB0.234 (7)0.706 (8)0.638 (3)0.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01641 (14)0.01438 (14)0.01496 (14)0.00471 (10)0.00913 (10)0.00725 (10)
O40.021 (2)0.019 (2)0.017 (2)0.0070 (19)0.0074 (19)0.0073 (19)
O10.014 (2)0.023 (2)0.021 (3)0.0006 (19)0.0067 (19)0.010 (2)
O30.015 (2)0.028 (3)0.022 (3)0.003 (2)0.007 (2)0.004 (2)
O20.029 (3)0.018 (2)0.034 (3)0.012 (2)0.010 (2)0.011 (2)
Ni10.0154 (6)0.0136 (5)0.0142 (6)0.0060 (4)0.0092 (5)0.0070 (4)
Ni20.0161 (6)0.0127 (5)0.0161 (6)0.0038 (4)0.0092 (5)0.0077 (4)
N10.027 (3)0.016 (3)0.019 (3)0.011 (2)0.016 (2)0.012 (2)
N20.020 (3)0.016 (3)0.017 (3)0.008 (2)0.009 (2)0.011 (2)
N40.019 (3)0.021 (3)0.018 (3)0.006 (2)0.008 (2)0.010 (2)
N30.023 (3)0.021 (3)0.021 (3)0.010 (2)0.010 (2)0.012 (2)
C60.039 (4)0.015 (3)0.021 (4)0.016 (3)0.017 (3)0.010 (3)
C110.020 (4)0.031 (4)0.029 (4)0.001 (3)0.007 (3)0.008 (3)
C50.036 (4)0.016 (3)0.032 (4)0.008 (3)0.022 (3)0.010 (3)
C90.024 (4)0.038 (4)0.030 (4)0.020 (3)0.013 (3)0.017 (3)
C100.026 (4)0.032 (4)0.045 (5)0.015 (3)0.019 (4)0.023 (4)
C140.042 (5)0.015 (3)0.024 (4)0.007 (3)0.020 (3)0.007 (3)
C160.047 (5)0.029 (4)0.028 (4)0.010 (4)0.018 (4)0.005 (3)
C130.042 (5)0.013 (3)0.029 (4)0.004 (3)0.012 (4)0.004 (3)
C150.059 (6)0.018 (4)0.046 (5)0.013 (4)0.024 (4)0.010 (4)
C120.038 (5)0.032 (5)0.045 (5)0.002 (4)0.001 (4)0.004 (4)
C30.028 (4)0.017 (3)0.041 (5)0.009 (3)0.024 (3)0.015 (3)
C80.044 (5)0.019 (4)0.032 (4)0.017 (3)0.021 (4)0.011 (3)
C70.044 (5)0.032 (4)0.027 (4)0.021 (4)0.016 (4)0.020 (3)
C40.039 (5)0.029 (5)0.098 (8)0.008 (4)0.041 (5)0.032 (5)
C10.024 (4)0.021 (3)0.025 (4)0.012 (3)0.013 (3)0.010 (3)
C20.016 (3)0.019 (3)0.025 (4)0.007 (3)0.015 (3)0.006 (3)
O2W0.031 (3)0.029 (3)0.055 (4)0.001 (3)0.020 (3)0.003 (3)
O4W0.027 (3)0.071 (4)0.029 (3)0.012 (3)0.015 (3)0.012 (3)
O1W0.041 (3)0.027 (3)0.048 (4)0.003 (3)0.000 (3)0.011 (3)
O3W0.032 (3)0.044 (4)0.060 (4)0.007 (3)0.025 (3)0.005 (3)
Geometric parameters (Å, º) top
W1—O11.772 (4)C10—H10A0.9900
W1—O21.773 (4)C10—H10B0.9900
W1—O41.775 (4)C14—C131.529 (10)
W1—O31.778 (4)C14—C161.534 (9)
O4—Ni12.135 (4)C14—C151.563 (9)
O1—Ni22.121 (4)C16—H16A0.9800
Ni1—N22.059 (5)C16—H16B0.9800
Ni1—N2i2.059 (5)C16—H16C0.9800
Ni1—N1i2.098 (5)C13—H13A0.9900
Ni1—N12.098 (5)C13—H13B0.9900
Ni1—O4i2.135 (4)C15—H15A0.9800
Ni2—N3ii2.087 (5)C15—H15B0.9800
Ni2—N32.087 (5)C15—H15C0.9800
Ni2—N4ii2.089 (5)C12—H12A0.9800
Ni2—N42.089 (5)C12—H12B0.9800
Ni2—O1ii2.121 (4)C12—H12C0.9800
N1—C11.477 (8)C3—C41.521 (10)
N1—C61.498 (8)C3—H31.0000
N1—H1C0.9300C8—H8A0.9800
N2—C21.484 (7)C8—H8B0.9800
N2—C31.499 (8)C8—H8C0.9800
N2—H2C0.9300C7—H7A0.9800
N4—C101.478 (8)C7—H7B0.9800
N4—C111.486 (8)C7—H7C0.9800
N4—H4D0.9300C4—H4A0.9800
N3—C91.490 (8)C4—H4B0.9800
N3—C141.492 (8)C4—H4C0.9800
N3—H3A0.9300C1—C2i1.498 (8)
C6—C71.530 (9)C1—H1A0.9900
C6—C51.535 (10)C1—H1B0.9900
C6—C81.539 (9)C2—C1i1.498 (8)
C11—C131.511 (10)C2—H2A0.9900
C11—C121.548 (10)C2—H2B0.9900
C11—H111.0000O2W—H2WA0.85 (2)
C5—C31.536 (9)O2W—H2WB0.86 (2)
C5—H5A0.9900O4W—H4WB0.845 (19)
C5—H5B0.9900O4W—H4WA0.86 (2)
C9—C10ii1.526 (10)O1W—H1WA0.86 (2)
C9—H9A0.9900O1W—H1WB0.85 (2)
C9—H9B0.9900O3W—H3WA0.87 (2)
C10—C9ii1.526 (10)O3W—H3WB0.863 (19)
O1—W1—O2108.7 (2)N3—C9—H9A110.2
O1—W1—O4110.9 (2)C10ii—C9—H9A110.2
O2—W1—O4108.7 (2)N3—C9—H9B110.2
O1—W1—O3108.9 (2)C10ii—C9—H9B110.2
O2—W1—O3109.7 (2)H9A—C9—H9B108.5
O4—W1—O3109.9 (2)N4—C10—C9ii108.0 (6)
W1—O4—Ni1151.1 (2)N4—C10—H10A110.1
W1—O1—Ni2137.9 (2)C9ii—C10—H10A110.1
N2—Ni1—N2i180.000 (1)N4—C10—H10B110.1
N2—Ni1—N1i85.46 (19)C9ii—C10—H10B110.1
N2i—Ni1—N1i94.5 (2)H10A—C10—H10B108.4
N2—Ni1—N194.5 (2)N3—C14—C13109.8 (5)
N2i—Ni1—N185.46 (19)N3—C14—C16112.3 (6)
N1i—Ni1—N1180.000 (3)C13—C14—C16110.8 (6)
N2—Ni1—O490.57 (18)N3—C14—C15108.7 (6)
N2i—Ni1—O489.43 (18)C13—C14—C15108.1 (6)
N1i—Ni1—O485.20 (18)C16—C14—C15106.9 (6)
N1—Ni1—O494.80 (18)C14—C16—H16A109.5
N2—Ni1—O4i89.43 (18)C14—C16—H16B109.5
N2i—Ni1—O4i90.57 (18)H16A—C16—H16B109.5
N1i—Ni1—O4i94.80 (18)C14—C16—H16C109.5
N1—Ni1—O4i85.20 (18)H16A—C16—H16C109.5
O4—Ni1—O4i180.000 (2)H16B—C16—H16C109.5
N3ii—Ni2—N3180.000 (2)C11—C13—C14118.9 (6)
N3ii—Ni2—N4ii94.6 (2)C11—C13—H13A107.6
N3—Ni2—N4ii85.4 (2)C14—C13—H13A107.6
N3ii—Ni2—N485.4 (2)C11—C13—H13B107.6
N3—Ni2—N494.6 (2)C14—C13—H13B107.6
N4ii—Ni2—N4180.000 (1)H13A—C13—H13B107.0
N3ii—Ni2—O1ii86.13 (19)C14—C15—H15A109.5
N3—Ni2—O1ii93.87 (19)C14—C15—H15B109.5
N4ii—Ni2—O1ii90.23 (18)H15A—C15—H15B109.5
N4—Ni2—O1ii89.77 (18)C14—C15—H15C109.5
N3ii—Ni2—O193.87 (19)H15A—C15—H15C109.5
N3—Ni2—O186.13 (19)H15B—C15—H15C109.5
N4ii—Ni2—O189.77 (18)C11—C12—H12A109.5
N4—Ni2—O190.23 (18)C11—C12—H12B109.5
O1ii—Ni2—O1180.000 (2)H12A—C12—H12B109.5
C1—N1—C6116.7 (5)C11—C12—H12C109.5
C1—N1—Ni1104.6 (4)H12A—C12—H12C109.5
C6—N1—Ni1122.1 (4)H12B—C12—H12C109.5
C1—N1—H1C103.7N2—C3—C4112.5 (6)
C6—N1—H1C103.7N2—C3—C5109.4 (5)
Ni1—N1—H1C103.7C4—C3—C5110.3 (6)
C2—N2—C3113.8 (5)N2—C3—H3108.2
C2—N2—Ni1105.4 (4)C4—C3—H3108.2
C3—N2—Ni1115.3 (4)C5—C3—H3108.2
C2—N2—H2C107.3C6—C8—H8A109.5
C3—N2—H2C107.3C6—C8—H8B109.5
Ni1—N2—H2C107.3H8A—C8—H8B109.5
C10—N4—C11115.2 (5)C6—C8—H8C109.5
C10—N4—Ni2104.7 (4)H8A—C8—H8C109.5
C11—N4—Ni2114.5 (4)H8B—C8—H8C109.5
C10—N4—H4D107.3C6—C7—H7A109.5
C11—N4—H4D107.3C6—C7—H7B109.5
Ni2—N4—H4D107.3H7A—C7—H7B109.5
C9—N3—C14116.5 (5)C6—C7—H7C109.5
C9—N3—Ni2104.7 (4)H7A—C7—H7C109.5
C14—N3—Ni2121.3 (4)H7B—C7—H7C109.5
C9—N3—H3A104.1C3—C4—H4A109.5
C14—N3—H3A104.1C3—C4—H4B109.5
Ni2—N3—H3A104.1H4A—C4—H4B109.5
N1—C6—C7110.9 (6)C3—C4—H4C109.5
N1—C6—C5107.7 (5)H4A—C4—H4C109.5
C7—C6—C5111.8 (6)H4B—C4—H4C109.5
N1—C6—C8110.2 (5)N1—C1—C2i109.7 (5)
C7—C6—C8108.9 (5)N1—C1—H1A109.7
C5—C6—C8107.4 (6)C2i—C1—H1A109.7
N4—C11—C13109.7 (6)N1—C1—H1B109.7
N4—C11—C12111.8 (6)C2i—C1—H1B109.7
C13—C11—C12110.3 (6)H1A—C1—H1B108.2
N4—C11—H11108.3N2—C2—C1i108.5 (5)
C13—C11—H11108.3N2—C2—H2A110.0
C12—C11—H11108.3C1i—C2—H2A110.0
C6—C5—C3119.3 (6)N2—C2—H2B110.0
C6—C5—H5A107.5C1i—C2—H2B110.0
C3—C5—H5A107.5H2A—C2—H2B108.4
C6—C5—H5B107.5H2WA—O2W—H2WB109 (3)
C3—C5—H5B107.5H4WB—O4W—H4WA109 (3)
H5A—C5—H5B107.0H3WA—O3W—H3WB107 (3)
N3—C9—C10ii107.7 (5)
O1—W1—O4—Ni1113.9 (5)N4ii—Ni2—N3—C14149.8 (5)
O2—W1—O4—Ni15.5 (6)N4—Ni2—N3—C1430.2 (5)
O3—W1—O4—Ni1125.6 (5)O1ii—Ni2—N3—C1459.9 (5)
O2—W1—O1—Ni273.4 (4)O1—Ni2—N3—C14120.1 (5)
O4—W1—O1—Ni2167.2 (3)C1—N1—C6—C753.1 (7)
O3—W1—O1—Ni246.1 (4)Ni1—N1—C6—C777.3 (6)
W1—O4—Ni1—N287.9 (5)C1—N1—C6—C5175.7 (5)
W1—O4—Ni1—N2i92.1 (5)Ni1—N1—C6—C545.2 (7)
W1—O4—Ni1—N1i2.5 (5)C1—N1—C6—C867.5 (7)
W1—O4—Ni1—N1177.5 (5)Ni1—N1—C6—C8162.1 (5)
W1—O1—Ni2—N3ii117.7 (4)C10—N4—C11—C13178.8 (5)
W1—O1—Ni2—N362.3 (4)Ni2—N4—C11—C1359.7 (6)
W1—O1—Ni2—N4ii147.8 (4)C10—N4—C11—C1256.2 (8)
W1—O1—Ni2—N432.2 (4)Ni2—N4—C11—C12177.7 (5)
N2—Ni1—N1—C1167.3 (4)N1—C6—C5—C367.8 (7)
N2i—Ni1—N1—C112.7 (4)C7—C6—C5—C354.3 (8)
O4—Ni1—N1—C176.4 (4)C8—C6—C5—C3173.6 (6)
O4i—Ni1—N1—C1103.6 (4)C14—N3—C9—C10ii179.4 (5)
N2—Ni1—N1—C632.0 (5)Ni2—N3—C9—C10ii43.7 (6)
N2i—Ni1—N1—C6148.0 (5)C11—N4—C10—C9ii171.2 (5)
O4—Ni1—N1—C658.9 (5)Ni2—N4—C10—C9ii44.5 (6)
O4i—Ni1—N1—C6121.1 (5)C9—N3—C14—C13172.9 (5)
N1i—Ni1—N2—C216.8 (4)Ni2—N3—C14—C1343.5 (7)
N1—Ni1—N2—C2163.2 (4)C9—N3—C14—C1649.2 (8)
O4—Ni1—N2—C268.4 (4)Ni2—N3—C14—C1680.2 (7)
O4i—Ni1—N2—C2111.6 (4)C9—N3—C14—C1569.0 (7)
N1i—Ni1—N2—C3143.2 (5)Ni2—N3—C14—C15161.6 (5)
N1—Ni1—N2—C336.8 (5)N4—C11—C13—C1478.2 (8)
O4—Ni1—N2—C358.0 (4)C12—C11—C13—C14158.4 (6)
O4i—Ni1—N2—C3122.0 (4)N3—C14—C13—C1166.9 (8)
N3ii—Ni2—N4—C1016.1 (4)C16—C14—C13—C1157.8 (8)
N3—Ni2—N4—C10163.9 (4)C15—C14—C13—C11174.6 (6)
O1ii—Ni2—N4—C1070.1 (4)C2—N2—C3—C456.5 (8)
O1—Ni2—N4—C10109.9 (4)Ni1—N2—C3—C4178.5 (5)
N3ii—Ni2—N4—C11143.2 (5)C2—N2—C3—C5179.3 (5)
N3—Ni2—N4—C1136.8 (5)Ni1—N2—C3—C558.7 (7)
O1ii—Ni2—N4—C1157.1 (4)C6—C5—C3—N277.9 (8)
O1—Ni2—N4—C11122.9 (4)C6—C5—C3—C4157.9 (6)
N4ii—Ni2—N3—C915.4 (4)C6—N1—C1—C2i178.6 (5)
N4—Ni2—N3—C9164.6 (4)Ni1—N1—C1—C2i40.5 (6)
O1ii—Ni2—N3—C974.5 (4)C3—N2—C2—C1i170.8 (6)
O1—Ni2—N3—C9105.5 (4)Ni1—N2—C2—C1i43.5 (6)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.932.323.253 (7)180
N2—H2C···O4Wi0.932.213.040 (8)149
O4W—H4WB···O3W0.85 (2)2.12 (5)2.720 (8)128 (6)
O4W—H4WA···O30.86 (2)2.05 (3)2.900 (7)168 (6)
O2W—H2WA···O1Wiii0.85 (2)1.94 (2)2.790 (8)175 (7)
O3W—H3WA···O2iv0.87 (2)2.01 (5)2.784 (7)148 (8)
O1W—H1WA···O20.86 (2)1.95 (2)2.801 (7)172 (8)
O2W—H2WB···O30.86 (2)1.99 (3)2.811 (7)160 (8)
O3W—H3WB···O2W0.86 (2)2.08 (4)2.834 (8)145 (6)
O1W—H1WB···O2W0.85 (2)2.10 (4)2.895 (9)157 (7)
C16—H16A···O1ii0.982.403.241 (9)144
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[NiWO4(C16H36N4)]·4H2O
Mr663.11
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.8402 (14), 11.7653 (18), 13.931 (2)
α, β, γ (°)107.163 (2), 102.529 (3), 104.984 (3)
V3)1268.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)5.32
Crystal size (mm)0.31 × 0.11 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.289, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
7631, 5397, 4330
Rint0.030
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.096, 1.02
No. of reflections5397
No. of parameters304
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.33, 1.48

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.932.323.253 (7)179.7
N2—H2C···O4Wi0.932.213.040 (8)149.0
O4W—H4WB···O3W0.845 (19)2.12 (5)2.720 (8)128 (6)
O4W—H4WA···O30.86 (2)2.05 (3)2.900 (7)168 (6)
O2W—H2WA···O1Wii0.85 (2)1.94 (2)2.790 (8)175 (7)
O3W—H3WA···O2iii0.87 (2)2.01 (5)2.784 (7)148 (8)
O1W—H1WA···O20.86 (2)1.95 (2)2.801 (7)172 (8)
O2W—H2WB···O30.86 (2)1.99 (3)2.811 (7)160 (8)
O3W—H3WB···O2W0.863 (19)2.08 (4)2.834 (8)145 (6)
O1W—H1WB···O2W0.85 (2)2.10 (4)2.895 (9)157 (7)
C16—H16A···O1iv0.982.403.241 (9)143.8
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+2, y+2, z+1.
 

Acknowledgements

The authors thank the Science and Technology Planning Project of Hunan Province (2012 F J3050, 2012 N K3067), the Construct Program of the Key Discipline in Hunan Province (2011–76) and the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012–318) for financial support.

References

First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationOu, G. C., Zou, L. S. & Yuan, Z. H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 543–544.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds