organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3,6-Tri­chloro-5-(tri­chloro­meth­yl)pyridine

aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No. 9 Yancheng, Yancheng 224051, People's Republic of China, and bInstitute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key and Open Laboratory on Forest Chemical Engineering, SFA, Nanjing 210042, Jiangsu Province, People's Republic of China
*Correspondence e-mail: jsyc_czs@163.com

(Received 31 July 2012; accepted 10 August 2012; online 15 August 2012)

The title compound, C6HCl6N, lies on a mirror plane, the asymmetric unit conataining a half-mol­ecule. Weak intra­molecular C—H⋯Cl contacts are observed.

Related literature

For biological background, see: Okorley & Dietsche (1988[Okorley, J. A. & Dietsche, T. J. (1988). Patent Int. Appl. No. PCT/US1998/4723019.]). For the synthetic procedure, see: Allphin et al. (1993[Allphin, C. P., DesJardin, M. A. & Harley, A. D. (1993). Patent Int. Appl. No. PCT /EP1993/544267.]); For a related structure, see: Fun et al. (2011[Fun, H.-K., Arshad, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o1785.]).

[Scheme 1]

Experimental

Crystal data
  • C6HCl6N

  • Mr = 299.78

  • Orthorhombic, P b c m

  • a = 8.3100 (17) Å

  • b = 17.018 (3) Å

  • c = 7.3160 (15) Å

  • V = 1034.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.644, Tmax = 0.739

  • 1985 measured reflections

  • 1033 independent reflections

  • 779 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.123

  • S = 1.01

  • 1033 reflections

  • 77 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl5 0.93 2.48 2.944 (5) 111

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polychloropyridines derivatives are useful as intermediates for production of biological compounds (Okorley & Dietsche, (1988). Herein, we report the crystal structure of the title compound (Fig. 1). The bond distances and angles in the title compound agree very well with the corresponding bond distances and angles reported in a closely related compound (Fun et al., 2011).

Related literature top

For biological background, see: Okorley & Dietsche (1988). For the synthetic procedure, see: Allphin et al. (1993); For a related structure, see: Fun et al. (2011).

Experimental top

The title compound was synthesized by the chlorination of 2-chloro-5-chloromethyl pyridine using chlorine gas as a chlorinating agent in the presence of ultraviolet radiation and in the presence of WCl6 for 6.0 h by following a reported synthetic procedure (Allphin et al., 1993). The crystals of the title compound were obtained from a solution of 1,2-dichloroethane by evaporating the solvent slowly at room temperature in about 5 d.

Refinement top

The only H atom was positioned geometrically and constrained to ride on C1 with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atom ise presented as small spheres of arbitrary radius. [Symmetry code A: x, y, 1/2-z]

Fig. 2. A packing diagram for the title compound showing C—H···Cl intra-molecular hydrogen bonds (dashed lines).
2,3,6-Trichloro-5-(trichloromethyl)pyridine top
Crystal data top
C6HCl6NF(000) = 584
Mr = 299.78Dx = 1.925 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 25 reflections
a = 8.3100 (17) Åθ = 10–13°
b = 17.018 (3) ŵ = 1.61 mm1
c = 7.3160 (15) ÅT = 293 K
V = 1034.6 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
779 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 200
Tmin = 0.644, Tmax = 0.739l = 80
1985 measured reflections3 standard reflections every 200 reflections
1033 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.078P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
1033 reflectionsΔρmax = 0.26 e Å3
77 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.077 (6)
Crystal data top
C6HCl6NV = 1034.6 (4) Å3
Mr = 299.78Z = 4
Orthorhombic, PbcmMo Kα radiation
a = 8.3100 (17) ŵ = 1.61 mm1
b = 17.018 (3) ÅT = 293 K
c = 7.3160 (15) Å0.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
779 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.644, Tmax = 0.7393 standard reflections every 200 reflections
1985 measured reflections intensity decay: 1%
1033 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
1033 reflectionsΔρmin = 0.38 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.5025 (5)0.4324 (2)0.25000.0467 (9)
Cl10.8417 (2)0.26884 (8)0.25000.0806 (6)
C10.8339 (6)0.4268 (3)0.25000.0478 (11)
H1A0.94570.42410.25000.057*
Cl20.45826 (19)0.28195 (8)0.25000.0753 (5)
C20.7445 (7)0.3584 (3)0.25000.0537 (12)
Cl30.47402 (13)0.58193 (7)0.25000.0569 (4)
C30.5783 (6)0.3642 (3)0.25000.0486 (11)
Cl40.81252 (10)0.63147 (5)0.05227 (15)0.0619 (4)
C40.5902 (5)0.4969 (2)0.25000.0399 (10)
Cl51.06686 (13)0.55710 (8)0.25000.0672 (5)
C50.7586 (5)0.4991 (2)0.25000.0418 (10)
C60.8554 (5)0.5748 (2)0.25000.0451 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0472 (18)0.042 (2)0.051 (2)0.0058 (15)0.0000.000
Cl10.1128 (13)0.0423 (7)0.0867 (11)0.0263 (7)0.0000.000
C10.051 (3)0.042 (2)0.051 (3)0.0113 (19)0.0000.000
Cl20.0977 (11)0.0433 (7)0.0849 (10)0.0220 (6)0.0000.000
C20.075 (3)0.042 (2)0.044 (2)0.014 (2)0.0000.000
Cl30.0372 (6)0.0463 (7)0.0872 (10)0.0073 (4)0.0000.000
C30.061 (3)0.043 (2)0.042 (2)0.009 (2)0.0000.000
Cl40.0572 (5)0.0552 (6)0.0734 (7)0.0006 (3)0.0064 (5)0.0182 (4)
C40.039 (2)0.034 (2)0.046 (2)0.0056 (17)0.0000.000
Cl50.0334 (6)0.0666 (8)0.1018 (12)0.0007 (5)0.0000.000
C50.041 (2)0.040 (2)0.044 (2)0.0008 (18)0.0000.000
C60.036 (2)0.039 (2)0.061 (3)0.0008 (17)0.0000.000
Geometric parameters (Å, º) top
N—C41.318 (6)C2—C31.385 (8)
N—C31.321 (6)Cl3—C41.739 (4)
Cl1—C21.724 (5)Cl4—C61.774 (3)
C1—C21.381 (7)C4—C51.400 (6)
C1—C51.381 (6)Cl5—C61.783 (5)
C1—H1A0.9300C5—C61.519 (6)
Cl2—C31.719 (4)C6—Cl4i1.774 (3)
C4—N—C3118.0 (4)N—C4—Cl3112.7 (3)
C2—C1—C5120.5 (4)C5—C4—Cl3122.2 (3)
C2—C1—H1A119.7C1—C5—C4115.4 (4)
C5—C1—H1A119.7C1—C5—C6121.1 (4)
C1—C2—C3118.4 (4)C4—C5—C6123.5 (4)
C1—C2—Cl1119.6 (4)C5—C6—Cl4110.77 (18)
C3—C2—Cl1122.0 (4)C5—C6—Cl4i110.77 (18)
N—C3—C2122.6 (4)Cl4—C6—Cl4i109.2 (2)
N—C3—Cl2116.0 (4)C5—C6—Cl5112.2 (3)
C2—C3—Cl2121.4 (4)Cl4—C6—Cl5106.84 (17)
N—C4—C5125.1 (4)Cl4i—C6—Cl5106.84 (17)
C5—C1—C2—C30.0C2—C1—C5—C6180.0
C5—C1—C2—Cl1180.0N—C4—C5—C10.0
C4—N—C3—C20.0Cl3—C4—C5—C1180.0
C4—N—C3—Cl2180.0N—C4—C5—C6180.0
C1—C2—C3—N0.0Cl3—C4—C5—C60.0
Cl1—C2—C3—N180.0C1—C5—C6—Cl4119.32 (19)
C1—C2—C3—Cl2180.0C4—C5—C6—Cl460.68 (19)
Cl1—C2—C3—Cl20.0C1—C5—C6—Cl4i119.32 (19)
C3—N—C4—C50.0C4—C5—C6—Cl4i60.68 (19)
C3—N—C4—Cl3180.0C1—C5—C6—Cl50.0
C2—C1—C5—C40.0C4—C5—C6—Cl5180.0
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl50.932.482.944 (5)111

Experimental details

Crystal data
Chemical formulaC6HCl6N
Mr299.78
Crystal system, space groupOrthorhombic, Pbcm
Temperature (K)293
a, b, c (Å)8.3100 (17), 17.018 (3), 7.3160 (15)
V3)1034.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.644, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
1985, 1033, 779
Rint0.063
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.123, 1.00
No. of reflections1033
No. of parameters77
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.38

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl50.93002.48002.944 (5)111.00
 

Acknowledgements

We gratefully acknowledged the support of the National Natural Science Foundation of P. R. China (No. 31170543) and the Foundation of the Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province (No. AE 201155). We also gratefully acknowledge the support of China Pharmaceutical University and Changzhou University in the analysis.

References

First citationAllphin, C. P., DesJardin, M. A. & Harley, A. D. (1993). Patent Int. Appl. No. PCT /EP1993/544267.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFun, H.-K., Arshad, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o1785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOkorley, J. A. & Dietsche, T. J. (1988). Patent Int. Appl. No. PCT/US1998/4723019.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds