organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-1-methyl-4-[2-(4-nitro­benzyl­­idene)hydrazin-1-yl­­idene]-2,2-dioxo-3,4-di­hydro-1H-2λ6,1-benzo­thia­zine

aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Mston Walk, Aberdeen AB24 3UE, Scotland, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: hafizshafique@hotmail.com

(Received 1 August 2012; accepted 10 August 2012; online 15 August 2012)

In the title compound, C16H13BrN4O4S, the dihedral angle between the aromatic rings is 4.1 (2)° and the C=N—N=C torsion angle is 175.5 (3)°. The nitro group is almost coplanar with the benzene ring to which it is attached [dihedral angle = 2.9 (7)°]. The thia­zine ring has an S-envelope conformation with the S atom displaced by 0.819 (3) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.017 Å). In the crystal, C—H⋯O inter­actions link the mol­ecules and weak aromatic ππ stacking [centroid–centroid separation = 3.874 (2) Å] is also observed.

Related literature

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-ur-Rehman et al. (2011[Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chilean Chem. Soc. 56, 527-531.]). For related structures, see: Shafiq, Khan et al. (2011[Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2092.]); Shafiq, Harrison et al. (2012[Shafiq, M., Harrison, W. T. A., Khan, I. U., Bukhari, I. H. & Bokhari, T. H. (2012). Acta Cryst. E68, o2643.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrN4O4S

  • Mr = 437.27

  • Triclinic, [P \overline 1]

  • a = 8.2772 (4) Å

  • b = 9.0572 (4) Å

  • c = 12.6868 (6) Å

  • α = 87.132 (4)°

  • β = 70.976 (3)°

  • γ = 75.098 (2)°

  • V = 868.32 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.52 mm−1

  • T = 296 K

  • 0.36 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.464, Tmax = 0.843

  • 17474 measured reflections

  • 4251 independent reflections

  • 2484 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.00

  • 4251 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.93 2.56 3.325 (4) 139
C8—H8B⋯O2ii 0.97 2.44 3.310 (4) 150
C13—H13⋯O4iii 0.93 2.53 3.306 (5) 141
C15—H15⋯O2iv 0.93 2.53 3.426 (4) 162
C16—H16⋯O1v 0.93 2.45 3.218 (4) 139
Symmetry codes: (i) x, y+1, z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y-1, -z; (iv) x, y, z-1; (v) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A number of benzothiazine derivatives have been found to be effective as drugs (Shafiq, Zia-ur-Rehman et al., 2011). As a part of our ongoing studies in this area, we now describe the crystal structure of the title compound in this areticle.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Shafiq, Khan et al., 2011; Shafiq, Harrison et al., 2012). In the title molecule, the dihedral angle between the aromatic rings (C1–C6 and C11–C16) is 4.1 (2)° and the C7N2—N3C10 torsion angle is 175.5 (3)°. The nitro group is almost coplanar with benzene ring ((C11–C16) to which it is attached [dihedral angle = 2.9 (7)°]. The thiazine ring adopts an S-envelope conformation with S1 atom displaced by 0.819 (3) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.017 Å).

The crystal packing (Fig. 2) is stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1) linking the molecules to generate a three-dimensional network with all four O atoms acting as acceptors. Weak aromatic π-π stacking [centroid-centroid separation = 3.874 (2) Å] is also observed.

Related literature top

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-ur-Rehman et al. (2011). For related structures, see: Shafiq, Khan et al. (2011); Shafiq, Harrison et al. (2012).

Experimental top

The compound was synthesized following the literature procedure (Shafiq, Zia-ur-Rehman et al., 2011) and recrystalized from an ethylacetate solution under slow evaporation.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied. The (0 0 1) and (0 1 0) reflections were obstructed by the beamstop and were omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. A view of the C—-H···O hydrogen bonds (orange double-dashed lines) in the crystal structure of the title compound.
6-Bromo-1-methyl-4-[2-(4-nitrobenzylidene)hydrazin-1-ylidene]-2,2-dioxo- 3,4-dihydro-1H-2λ6,1-benzothiazine top
Crystal data top
C16H13BrN4O4SZ = 2
Mr = 437.27F(000) = 440
Triclinic, P1Dx = 1.672 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2772 (4) ÅCell parameters from 4062 reflections
b = 9.0572 (4) Åθ = 2.3–22.1°
c = 12.6868 (6) ŵ = 2.52 mm1
α = 87.132 (4)°T = 296 K
β = 70.976 (3)°Needle, yellow
γ = 75.098 (2)°0.36 × 0.09 × 0.07 mm
V = 868.32 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
4251 independent reflections
Radiation source: fine-focus sealed tube2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.464, Tmax = 0.843k = 1212
17474 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.5116P]
where P = (Fo2 + 2Fc2)/3
4251 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C16H13BrN4O4Sγ = 75.098 (2)°
Mr = 437.27V = 868.32 (7) Å3
Triclinic, P1Z = 2
a = 8.2772 (4) ÅMo Kα radiation
b = 9.0572 (4) ŵ = 2.52 mm1
c = 12.6868 (6) ÅT = 296 K
α = 87.132 (4)°0.36 × 0.09 × 0.07 mm
β = 70.976 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
4251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2484 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.843Rint = 0.043
17474 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.00Δρmax = 0.58 e Å3
4251 reflectionsΔρmin = 0.40 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8000 (4)0.2966 (4)0.3910 (3)0.0429 (8)
C20.8376 (5)0.4239 (4)0.4267 (3)0.0591 (10)
H20.82400.43650.50170.071*
C30.8940 (5)0.5298 (4)0.3531 (3)0.0516 (9)
H30.91650.61460.37840.062*
C40.9175 (4)0.5116 (3)0.2422 (3)0.0443 (8)
C50.8801 (4)0.3880 (3)0.2041 (3)0.0385 (7)
H50.89560.37690.12870.046*
C60.8192 (4)0.2795 (3)0.2783 (2)0.0371 (7)
C70.7760 (4)0.1511 (3)0.2351 (2)0.0336 (7)
C80.7034 (4)0.0381 (4)0.3145 (2)0.0438 (8)
H8A0.73150.05900.27500.053*
H8B0.57570.07440.34460.053*
C90.6400 (6)0.2323 (5)0.5848 (3)0.0799 (13)
H9A0.71660.24990.62290.120*
H9B0.58740.15180.61950.120*
H9C0.54880.32420.58860.120*
C100.7637 (4)0.0248 (3)0.0055 (3)0.0390 (7)
H100.80220.10390.04720.047*
C110.7208 (4)0.0903 (3)0.0607 (2)0.0362 (7)
C120.6593 (4)0.2102 (4)0.0032 (2)0.0413 (7)
H120.64510.21870.07240.050*
C130.6194 (4)0.3163 (4)0.0580 (3)0.0454 (8)
H130.57750.39640.01990.054*
C140.6428 (4)0.3016 (4)0.1703 (3)0.0404 (7)
C150.7034 (4)0.1855 (4)0.2294 (3)0.0431 (8)
H150.71840.17820.30520.052*
C160.7415 (4)0.0794 (4)0.1731 (2)0.0414 (8)
H160.78200.00100.21160.050*
S10.79259 (11)0.01247 (9)0.42342 (6)0.0432 (2)
O10.9788 (3)0.0430 (3)0.37576 (19)0.0558 (6)
O20.7010 (3)0.0721 (3)0.50933 (18)0.0569 (6)
O30.6135 (4)0.3959 (3)0.3268 (2)0.0759 (8)
O40.5483 (5)0.5195 (3)0.1767 (3)0.0898 (10)
N10.7408 (4)0.1889 (3)0.4696 (2)0.0498 (7)
N20.7990 (3)0.1447 (3)0.1299 (2)0.0404 (6)
N30.7509 (3)0.0216 (3)0.0964 (2)0.0396 (6)
N40.5998 (4)0.4145 (4)0.2289 (3)0.0559 (8)
Br11.00058 (6)0.65482 (4)0.13996 (3)0.06700 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.048 (2)0.0466 (19)0.0369 (18)0.0160 (15)0.0144 (15)0.0020 (15)
C20.076 (3)0.063 (2)0.046 (2)0.022 (2)0.0239 (19)0.0153 (18)
C30.069 (2)0.0375 (18)0.058 (2)0.0180 (17)0.0296 (18)0.0092 (16)
C40.051 (2)0.0363 (17)0.052 (2)0.0126 (15)0.0240 (16)0.0005 (15)
C50.0415 (19)0.0375 (16)0.0399 (18)0.0096 (14)0.0175 (14)0.0018 (14)
C60.0370 (18)0.0389 (17)0.0387 (17)0.0117 (14)0.0143 (13)0.0046 (13)
C70.0338 (17)0.0365 (16)0.0320 (17)0.0101 (13)0.0115 (13)0.0018 (13)
C80.050 (2)0.0496 (19)0.0379 (18)0.0230 (16)0.0139 (15)0.0011 (15)
C90.094 (3)0.081 (3)0.046 (2)0.023 (2)0.006 (2)0.013 (2)
C100.0408 (19)0.0436 (17)0.0361 (18)0.0185 (14)0.0109 (14)0.0002 (14)
C110.0338 (17)0.0423 (17)0.0352 (17)0.0125 (13)0.0121 (13)0.0018 (13)
C120.049 (2)0.0495 (19)0.0304 (17)0.0177 (15)0.0161 (14)0.0016 (14)
C130.056 (2)0.0424 (18)0.046 (2)0.0217 (16)0.0201 (16)0.0032 (15)
C140.0412 (19)0.0451 (18)0.0381 (18)0.0107 (15)0.0158 (14)0.0079 (14)
C150.0395 (19)0.060 (2)0.0315 (17)0.0118 (16)0.0128 (14)0.0055 (15)
C160.0431 (19)0.0498 (19)0.0353 (18)0.0197 (15)0.0123 (14)0.0032 (14)
S10.0471 (5)0.0504 (5)0.0333 (4)0.0180 (4)0.0110 (3)0.0065 (4)
O10.0443 (15)0.0642 (15)0.0522 (14)0.0085 (11)0.0126 (11)0.0132 (12)
O20.0661 (17)0.0680 (16)0.0400 (13)0.0306 (13)0.0132 (11)0.0155 (11)
O30.100 (2)0.091 (2)0.0488 (17)0.0368 (17)0.0284 (15)0.0191 (15)
O40.143 (3)0.076 (2)0.085 (2)0.063 (2)0.055 (2)0.0059 (17)
N10.064 (2)0.0584 (18)0.0280 (14)0.0241 (15)0.0083 (12)0.0028 (12)
N20.0479 (17)0.0391 (14)0.0405 (16)0.0188 (12)0.0163 (12)0.0023 (12)
N30.0482 (16)0.0375 (14)0.0382 (16)0.0167 (12)0.0157 (12)0.0036 (11)
N40.058 (2)0.060 (2)0.057 (2)0.0167 (16)0.0241 (15)0.0144 (16)
Br10.0932 (4)0.0392 (2)0.0830 (3)0.0297 (2)0.0394 (2)0.01409 (18)
Geometric parameters (Å, º) top
C1—C61.398 (4)C10—N31.262 (4)
C1—C21.400 (4)C10—C111.459 (4)
C1—N11.420 (4)C10—H100.9300
C2—C31.367 (5)C11—C161.380 (4)
C2—H20.9300C11—C121.391 (4)
C3—C41.368 (4)C12—C131.376 (4)
C3—H30.9300C12—H120.9300
C4—C51.382 (4)C13—C141.379 (4)
C4—Br11.884 (3)C13—H130.9300
C5—C61.400 (4)C14—C151.366 (4)
C5—H50.9300C14—N41.470 (4)
C6—C71.478 (4)C15—C161.381 (4)
C7—N21.288 (4)C15—H150.9300
C7—C81.497 (4)C16—H160.9300
C8—S11.748 (3)S1—O11.420 (2)
C8—H8A0.9700S1—O21.423 (2)
C8—H8B0.9700S1—N11.631 (3)
C9—N11.443 (4)O3—N41.217 (4)
C9—H9A0.9600O4—N41.219 (4)
C9—H9B0.9600N2—N31.402 (3)
C9—H9C0.9600
C6—C1—C2119.1 (3)N3—C10—H10118.6
C6—C1—N1121.3 (3)C11—C10—H10118.6
C2—C1—N1119.7 (3)C16—C11—C12119.2 (3)
C3—C2—C1121.0 (3)C16—C11—C10119.0 (3)
C3—C2—H2119.5C12—C11—C10121.8 (3)
C1—C2—H2119.5C13—C12—C11120.2 (3)
C2—C3—C4120.2 (3)C13—C12—H12119.9
C2—C3—H3119.9C11—C12—H12119.9
C4—C3—H3119.9C12—C13—C14118.7 (3)
C3—C4—C5120.3 (3)C12—C13—H13120.6
C3—C4—Br1120.3 (2)C14—C13—H13120.6
C5—C4—Br1119.3 (2)C15—C14—C13122.6 (3)
C4—C5—C6120.4 (3)C15—C14—N4118.6 (3)
C4—C5—H5119.8C13—C14—N4118.8 (3)
C6—C5—H5119.8C14—C15—C16117.9 (3)
C1—C6—C5118.9 (3)C14—C15—H15121.0
C1—C6—C7122.2 (3)C16—C15—H15121.0
C5—C6—C7118.9 (3)C11—C16—C15121.3 (3)
N2—C7—C6117.6 (3)C11—C16—H16119.3
N2—C7—C8123.0 (2)C15—C16—H16119.3
C6—C7—C8119.4 (2)O1—S1—O2118.22 (15)
C7—C8—S1110.5 (2)O1—S1—N1110.53 (15)
C7—C8—H8A109.6O2—S1—N1108.09 (14)
S1—C8—H8A109.6O1—S1—C8107.65 (15)
C7—C8—H8B109.6O2—S1—C8110.70 (14)
S1—C8—H8B109.6N1—S1—C8100.17 (15)
H8A—C8—H8B108.1C1—N1—C9122.1 (3)
N1—C9—H9A109.5C1—N1—S1116.7 (2)
N1—C9—H9B109.5C9—N1—S1121.3 (2)
H9A—C9—H9B109.5C7—N2—N3113.8 (2)
N1—C9—H9C109.5C10—N3—N2112.1 (2)
H9A—C9—H9C109.5O3—N4—O4123.4 (3)
H9B—C9—H9C109.5O3—N4—C14117.9 (3)
N3—C10—C11122.9 (3)O4—N4—C14118.7 (3)
C6—C1—C2—C30.6 (5)C13—C14—C15—C160.2 (5)
N1—C1—C2—C3179.7 (3)N4—C14—C15—C16179.3 (3)
C1—C2—C3—C41.1 (6)C12—C11—C16—C150.3 (5)
C2—C3—C4—C51.7 (5)C10—C11—C16—C15179.8 (3)
C2—C3—C4—Br1178.5 (3)C14—C15—C16—C110.5 (5)
C3—C4—C5—C60.5 (5)C7—C8—S1—O160.1 (3)
Br1—C4—C5—C6179.6 (2)C7—C8—S1—O2169.3 (2)
C2—C1—C6—C51.7 (5)C7—C8—S1—N155.4 (2)
N1—C1—C6—C5179.2 (3)C6—C1—N1—C9149.0 (4)
C2—C1—C6—C7177.8 (3)C2—C1—N1—C930.0 (5)
N1—C1—C6—C71.2 (5)C6—C1—N1—S131.0 (4)
C4—C5—C6—C11.2 (5)C2—C1—N1—S1149.9 (3)
C4—C5—C6—C7178.4 (3)O1—S1—N1—C157.5 (3)
C1—C6—C7—N2179.6 (3)O2—S1—N1—C1171.7 (2)
C5—C6—C7—N20.8 (4)C8—S1—N1—C155.9 (3)
C1—C6—C7—C82.2 (4)O1—S1—N1—C9122.5 (3)
C5—C6—C7—C8177.4 (3)O2—S1—N1—C98.3 (4)
N2—C7—C8—S1148.6 (3)C8—S1—N1—C9124.2 (3)
C6—C7—C8—S133.3 (4)C6—C7—N2—N3178.5 (3)
N3—C10—C11—C16178.9 (3)C8—C7—N2—N30.4 (4)
N3—C10—C11—C121.2 (5)C11—C10—N3—N2179.8 (3)
C16—C11—C12—C130.1 (5)C7—N2—N3—C10175.5 (3)
C10—C11—C12—C13179.7 (3)C15—C14—N4—O32.8 (5)
C11—C12—C13—C140.4 (5)C13—C14—N4—O3176.7 (3)
C12—C13—C14—C150.3 (5)C15—C14—N4—O4178.9 (3)
C12—C13—C14—N4179.8 (3)C13—C14—N4—O41.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.563.325 (4)139
C8—H8B···O2ii0.972.443.310 (4)150
C13—H13···O4iii0.932.533.306 (5)141
C15—H15···O2iv0.932.533.426 (4)162
C16—H16···O1v0.932.453.218 (4)139
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x, y, z1; (v) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC16H13BrN4O4S
Mr437.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2772 (4), 9.0572 (4), 12.6868 (6)
α, β, γ (°)87.132 (4), 70.976 (3), 75.098 (2)
V3)868.32 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.52
Crystal size (mm)0.36 × 0.09 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.464, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
17474, 4251, 2484
Rint0.043
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.00
No. of reflections4251
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.932.563.325 (4)139
C8—H8B···O2ii0.972.443.310 (4)150
C13—H13···O4iii0.932.533.306 (5)141
C15—H15···O2iv0.932.533.426 (4)162
C16—H16···O1v0.932.453.218 (4)139
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x, y, z1; (v) x+2, y, z.
 

Acknowledgements

MS acknowledges the Higher Education Commission of Pakistan for financial support and GC University Lahore, Pakistan for provision of facilities during his PhD studies.

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Harrison, W. T. A., Khan, I. U., Bukhari, I. H. & Bokhari, T. H. (2012). Acta Cryst. E68, o2643.  CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chilean Chem. Soc. 56, 527–531.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds